[1] Clouse S D, Langford M, Mcmorris T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiology, 1996, 111(3): 671-678.
[2] Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997, 90(5): 929-938.
[3] Ye Qianqian, Zhu Wenjiao, Li Lei, et al. Brassinosteroids control male fertility by regulating the of key genes involved in Arabidopsis anther and pollen development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 6100-6105.
[4] Clouse S D. Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development[J]. The Plant Cell, 2011, 23(4): 1219-1230.
[5] Khripach V, Zhabinskii V, Groot A D. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century[J]. Annals of Botany, 2000, 86(3): 441-447.
[6] Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry, 2009, 47(1): 1-8.
[7] Campos M L, de Almeida M, Rossi M L, et al. Brassinosteroids interact negatively with jasmonates in the formation of antiherbivory traits in tomato[J]. Journal of Experimental Botany, 2009, 60(15): 4347-4361.
[8] Yang D H, Hettenhausen C, Baldwin IT, et al. BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory[J]. Journal of Experimental Botany, 2010, 62(2): 641-652.
[9] Clouse S D, Sasse J M. Brassinosteroids: essential regulators of plant growth and development[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 427-451.
[10] Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene in Arabidopsis[J]. Cell, 2005, 120: 249-259.
[11] He J X, Gendron J M, Sun Y, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses[J]. Science, 2005, 307(5715): 1634-1638.
[12] Li J, Wen J, Lease K A, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signalling[J]. Cell, 2002, 110(2): 213-222.
[13] Nam K H, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2): 203-212.
[14] He J X, Gendron J M, Yang Y, et al. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15):10185-10190.
[15] Li J M, Nam K H, Vafeados D, et al. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis[J/OL]. Plant Physiology, 2001, 127(1): 14 [2016-12-20]. http://www.plantphysiol.org/ cgi/reprint/127/14.pdf. DOI: 10.1104/pp.127.1.14.
[16] Yin Yanhai, Wang Zhiyong, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene and promote stem elongation[J]. Cell, 2002, 109(2): 181-191.
[17] Zhao J, Peng P, Schmitz R J, et al. Two putative BIN2 substrates are nuclear components of brassinosteroid signaling[J]. Plant Physiology, 2002, 130(3): 1221-1229.
[18] Tang Wenqiang, Yuan Min, Wang Ruiju, et al. PP2A activates brassinosteroid-responsive gene and plant growth by dephosphorylating BZR1[J]. Nature Cell Biology, 2011, 13(2): 124-131.
[19] Jiang Wenbo, Huang Huiya, Hu Yuwei, et al. Brassinosteroid regulates seed size and shape in Arabidopsis[J]. Plant Physiology, 2013, 162(4): 1965-1977.
[20] Gallego-Bartolomé J, Minguet E G, Grau-Enguix F, et al. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13446-13451.
[21] Li Qianfeng, Wang Chunming, Jiang Lei, et al. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis[J/OL]. Science Signaling, 2012, 5(244): ra72 (2012-10-02) [2016-11- 15]. http://stke.sciencemag.org/content/5/244/ra72/tab-pdf. DOI: 10.1126/scisignal.2002908.
[22] Oh E, Zhu J Y, Wang Z Y, et al. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nature Cell Biology, 2012, 14(8): 802-809.
[23] Liu Lihong, Jia Chengguo, Zhang Min, et al. Ectopic of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato[J]. Plant Biotechnology Journal, 2014, 12(1): 105-115.
[24] Luo Xiaomin, Lin Wenhui, Zhu Shengwei, et al. Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis[J]. Developmental Cell, 2010, 19(6): 872-883.
[25] Sun Yu, Fan Xiying, Cao Dongmei, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Developmental Cell, 2010, 19(5): 765-777.
[26] Yu Xiaofei, Li Li, li Lei, et al. Modulation of brassinosteroid-regulated gene by Jumonji domain containing proteins ELF6 and REF6 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(21): 7618-7623.
[27] Yu Xiaofei, Li Lei, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BES1 target genes in Arabidopsis thaliana[J]. The Plant Journal, 2011, 65(4): 634-646.
[28] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429): 423-427.
[29] Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44(10): 1098-1103.
[30] Li Fuguang, Fan Guangyi, Wang Kunbo, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6): 567-572.
[31] Zhang Tianzhen, Hu Yan, Jiang Wenkai, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537.
[32] Finn R D, Mistry J, Tate J, et al. Pfam: The protein family's database[J]. Nucleic Acids Research, 2010, 38(Database): D211- D222.
[33] Bai Mingyi, Zhang Liying, Gampala S S, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13839-13844.
[34] Saha G, Park J I, Jung H J, et al. Molecular characterization of BZR transcription factor family and abiotic stress induced profiling in Brassica rapa[J]. Plant Physiology and Biochemistry, 2015, 92(4): 92-104.
[35] Letunic I, Doerks T, Bork P. SMART: Recent updates, new developments and status in 2015[J]. Nucleic Acids Research, 2015, 43(Database): D302-D305.
[36] Marchler-Bauer A, Anderson J B, Cherukuri P F, et al. CDD: NCBI's conserved domain database[J]. Nucleic Acids Research, 2015, 43(Database): D222-D226.
[37] Hu Bo, Jin Jinpu, Guo Anyuan, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
[38] Tang Haibao, Bowers J E, Wang Xiyin, et al. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875): 486- 488.
[39] Wang Yupeng, Tang Haibao, DeBarry J D, et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity[J/OL]. Nucleic Acids Research, 2012, 40(7): e49 (2012-01-04) [2016-11-15]. https://doi.org/10.1093/nar/gkr1293.
[40] Suyama M, Torrents D, Bork P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments[J]. Nucleic Acids Research, 2006, 34(Web Server issue): 609-612.
[41] Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J/OL]. BMC Plant Biology, 2004, 4(1): 10 (2004-06-01) [2016-11-15]. https://bmcplant- biol.biomedcentral.com/articles/10.1186/1471-2229-4-10. DOI: 10.1186/1471-2229-4-10.
[42] Jung H J, Dong Xiangshu, Park J I, et al. Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br135K oligomeric chip[J/OL]. PLoS ONE, 2014, 9(8): e106069 (2014-08-28) [2016- 11-15]. https://doi.org/10.1371/journal.pone.0106069.
[43] Dong X, Im S B, Lim Y P, et al. Comparative transcriptome profiling of freezing stress responsiveness in two contrasting Chinese cabbage genotypes, Chiifu and Kenshin[J]. Genes and Genomics, 2014, 36(2): 215-227.
[44] Ryu H, Kim K, Cho H, et al. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling[J]. Plant Cell, 2007, 19(9): 2749-2762.
[45] 周颖. 14-3-3蛋白参与BR信号调控及其在棉花(Gossypium hirsutum)纤维发育中的功能研究[D]. 武汉: 华中师范大学, 2014.
Zhou Ying. Functional analysis of 14-3-3 proteins that are involved in regulating BR signaling in cotton (Gossypium hirsutum) fiber[D]. Wuhan: Central China Normal University, 2014.
[46] 李冰樱. 棉花MADS和BZR基因鉴定及转基因棉花表型分析[D]. 武汉: 华中师范大学, 2012.
Li Bingying. Characterization of cotton MADS and BZR Genes and phenotypic analysis of transgenic cotton plants[D]. Wuhan: Central China Normal University, 2012. |