棉花学报 ›› 2022, Vol. 34 ›› Issue (1): 60-68.doi: 10.11963/cs20210069
李世梅1(),李自良1,冯旭飞1,向导2,杨明凤2,张旺锋1,张亚黎1,*(
)
收稿日期:
2021-12-06
出版日期:
2022-01-15
发布日期:
2022-05-31
通讯作者:
张亚黎
E-mail:1821315614@qq.com;zhangyalicn@foxmail.com
作者简介:
李世梅(1995―),女,硕士研究生, 基金资助:
Li Shimei1(),Li Ziliang1,Feng Xufei1,Xiang Dao2,Yang Mingfeng2,Zhang Wangfeng1,Zhang Yali1,*(
)
Received:
2021-12-06
Online:
2022-01-15
Published:
2022-05-31
Contact:
Zhang Yali
E-mail:1821315614@qq.com;zhangyalicn@foxmail.com
摘要:
【目的】研究棉花器官水平氮(Nitrogen, N)、磷(Phosphorus, P)化学计量特征及其异速关系,为实现棉花协调生长和资源高效利用奠定理论基础。【方法】选取13个棉花材料(8个陆地棉和5个海岛棉)为研究对象,在盛铃期测定不同器官(根、茎、叶和棉铃)的N和P含量,分析各器官N、P化学计量特征及N-P异速关系的差异。【结果】叶和棉铃的N、P含量显著高于茎和根;棉铃的氮磷质量比(N:P)最低。生殖器官(棉铃)与营养器官(根、茎和叶)N:P化学计量调控存在差异,营养器官N:P与P含量呈显著负相关,而生殖器官N:P与N含量呈显著正相关。不同器官的N-P异速关系存在差异,叶与根中N-P含量呈异速积累,P含量积累速率快于N含量;茎与棉铃中N-P含量呈等速积累。与海岛棉比,陆地棉叶P含量显著较高,N:P显著较低。陆地棉叶N:P与P含量呈极显著负相关关系,海岛棉叶N:P与N、P含量均呈显著负相关关系。陆地棉根、茎和叶的N-P异速指数低于海岛棉,异速常数略高于或与海岛棉相似。【结论】棉花各器官N、P化学计量特征受器官功能分化的影响,N:P化学计量调控机制与N-P异速关系存在器官特异性。
李世梅,李自良,冯旭飞,向导,杨明凤,张旺锋,张亚黎. 棉花盛铃期不同器官氮磷化学计量特征及异速关系[J]. 棉花学报, 2022, 34(1): 60-68.
Li Shimei,Li Ziliang,Feng Xufei,Xiang Dao,Yang Mingfeng,Zhang Wangfeng,Zhang Yali. The stoichiometry and allometric relationship of nitrogen and phosphorus in different cotton organs at full-boll stage[J]. Cotton Science, 2022, 34(1): 60-68.
附表1
不同棉花试验材料各器官N、P含量和N∶P"
器官 Organ | 品种名称 Name of test materials | 氮含量 N content/(g·kg-1) | 磷含量 P content/(g·kg-1) | 氮磷比 N:P |
---|---|---|---|---|
根Root | 早长1号 Zaochang 1 | 7.17±0.88 | 1.54±0.24 | 4.66 |
墨83-90 Mo 83-90 | 6.05±0.52 | 0.99±0.04 | 6.08 | |
新海2号 Xinhai 2 | 10.00±0.74 | 1.90±0.29 | 5.25 | |
玉龙29号 Yulong 29 | 5.66±0.11 | 1.06±0.21 | 5.31 | |
新海33号 Xinhai 33 | 8.28±1.34 | 1.98±0.21 | 4.17 | |
苏联8905 Sulian 8905 | 6.46±0.31 | 1.52±0.19 | 4.24 | |
洞684 Dong684 | 5.63±0.56 | 0.87±0.19 | 6.48 | |
得州-4 Dezhou-4 | 7.81±0.54 | 0.96±0.03 | 8.12 | |
新陆早80号 Xinluzao 80 | 6.71±0.52 | 0.67±0.06 | 10.00 | |
7-9 | 9.15±1.53 | 1.84±0.16 | 4.99 | |
新陆早62号 Xinluzao 62 | 6.46±0.31 | 1.22±0.33 | 5.28 | |
16566 | 7.97±0.76 | 1.52±0.23 | 5.24 | |
巴1 Ba 1 | 9.36±0.38 | 2.71±0.10 | 3.45 | |
茎Stem | 早长1号 Zaochang 1 | 11.95±0.52 | 1.27±0.18 | 9.40 |
墨83-90 Mo 83-90 | 10.77±0.99 | 1.16±0.12 | 9.30 | |
新海2号 Xinhai 2 | 14.14±0.25 | 1.58±0.11 | 8.93 | |
玉龙29号 Yulong 29 | 9.71±0.25 | 1.09±0.11 | 8.91 | |
新海33号 Xinhai 33 | 10.06±0.35 | 0.96±0.09 | 10.51 | |
苏联8905 Sulian 8905 | 11.80±0.60 | 1.28±0.04 | 9.23 | |
洞684 Dong684 | 13.66±1.14 | 1.33±0.28 | 10.30 | |
得州-4 Dezhou-4 | 18.06±2.54 | 1.28±0.11 | 14.10 | |
新陆早80号 Xinluzao 80 | 11.45±0.78 | 0.82±0.20 | 13.90 | |
7-9 | 13.52±0.68 | 1.84±0.36 | 7.36 | |
新陆早62号 Xinluzao 62 | 12.63±0.12 | 1.14±0.07 | 11.12 | |
16566 | 17.80±0.30 | 1.86±0.18 | 9.56 | |
巴1 Ba 1 | 20.34±1.32 | 2.68±0.18 | 7.60 | |
叶Leaf | 早长1号 Zaochang 1 | 38.58±1.67 | 2.52±0.10 | 15.30 |
墨83-90 Mo 83-90 | 32.71±0.15 | 2.08±0.07 | 15.71 | |
新海2号 Xinhai 2 | 44.14±2.07 | 3.00±0.08 | 14.74 | |
玉龙29号 Yulong 29 | 41.37±2.41 | 2.84±0.20 | 14.56 | |
新海33号 Xinhai 33 | 39.27±1.51 | 2.57±0.10 | 15.30 | |
苏联8905 Sulian 8905 | 38.31±3.69 | 3.20±0.02 | 11.95 | |
洞684 Dong684 | 39.50±2.19 | 2.89±0.06 | 13.68 | |
得州-4 Dezhou-4 | 39.53±0.30 | 2.52±0.15 | 15.67 | |
新陆早80号 Xinluzao 80 | 34.54±0.74 | 2.44±0.11 | 14.17 | |
7-9 | 37.10±1.11 | 3.34±0.08 | 11.11 | |
新陆早62号 Xinluzao 62 | 39.22±1.11 | 3.38±0.07 | 11.61 | |
16566 | 44.66±0.87 | 3.65±0.07 | 12.22 | |
巴1 Ba 1 | 45.18±0.94 | 5.00±0.36 | 9.03 | |
棉铃Boll | 早长1号 Zaochang 1 | 14.22±0.84 | 4.46±0.21 | 3.19 |
墨83-90 Mo 83-90 | 16.27±1.47 | 3.70±0.23 | 4.40 | |
新海2号 Xinhai 2 | 29.94±1.42 | 5.00±0.18 | 5.98 | |
玉龙29号 Yulong 29 | 20.03±2.78 | 4.25±0.27 | 4.71 | |
新海33号 Xinhai 33 | 17.19±1.72 | 3.58±0.46 | 4.81 | |
苏联8905 Sulian 8905 | 34.79±1.08 | 4.64±0.22 | 7.50 | |
洞684 Dong684 | 16.98±1.76 | 3.91±0.17 | 4.35 | |
得州-4 Dezhou-4 | 19.54±2.68 | 3.48±0.13 | 5.61 | |
新陆早80号 Xinluzao 80 | 15.42±2.52 | 2.52±0.09 | 6.13 | |
7-9 | 14.64±1.72 | 3.82±0.49 | 3.84 | |
新陆早62号 Xinluzao 62 | 19.15±0.57 | 4.18±0.13 | 4.58 | |
16566 | 30.68±3.99 | 4.82±0.36 | 6.36 | |
巴1 Ba 1 | 24.07±3.47 | 5.73±0.19 | 4.20 |
表2
棉花不同器官N 、P含量和N:P相关性分析"
指标 Index | 根Root | 茎Stem | 叶Leaf | 棉铃Boll | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
氮含量 N content | 磷含量 P content | 氮磷比 N:P | 氮含量 N content | 磷含量 P content | 氮磷比 N:P | 氮含量 N content | 磷含量 P content | 氮磷比 N:P | 氮含量 N content | 磷含量 P content | 氮磷比 N:P | ||
所有棉花材料 All tested materials | 氮含量 N content | 1 | 0.774** | -0.351 | 1 | 0.799** | -0.034 | 1 | 0.698** | -0.395 | 1 | 0.624* | 0.762** |
磷含量 P content | 1 | -0.780** | 1 | -0.601* | 1 | -0.910** | 1 | -0.017 | |||||
氮磷比 N:P | 1 | 1 | 1 | 1 | |||||||||
海岛棉 G. barbadense | 氮含量 N content | 1 | 0.898* | -0.396 | 1 | 0.962** | -0.399 | 1 | 0.993** | -0.890* | 1 | 0.703 | 0.895* |
磷含量 P content | 1 | -0.749 | 1 | -0.633 | 1 | -0.936* | 1 | 0.314 | |||||
氮磷比 N:P | 1 | 1 | 1 | 1 | |||||||||
陆地棉 G. hirsutum | 氮含量 N content | 1 | 0.764* | -0.373 | 1 | 0.766* | -0.196 | 1 | 0.776* | -0.482 | 1 | 0.632 | 0.703 |
磷含量 P content | 1 | -0.921* | 1 | -0.754* | 1 | -0.902** | 1 | -0.092 | |||||
氮磷比 N:P | 1 | 1 | 1 | 1 |
表3
棉花各器官N-P异速关系标准主轴回归分析"
器官 Organ | 斜率 αSMA | 95%置信区间 95% CI | 截距 βSMA | 95%置信区间95% CI | r2 | P | |
---|---|---|---|---|---|---|---|
所有棉花材料 | 根Root | 0.49 | 0.32~0.76 | 0.80 | 0.75~0.85 | 0.55 | <0.01 |
All tested materials | 茎Stem | 0.74 | 0.49~1.10 | 1.03 | 0.97~1.08 | 0.61 | <0.01 |
叶Leaf | 0.42 | 0.27~0.66 | 1.40 | 1.30~1.49 | 0.52 | <0.01 | |
棉铃Boll | 1.45 | 0.88~2.40 | 0.41 | -0.05~0.88 | 0.39 | <0.05 | |
海岛棉 | 根Root | 0.72 | 0.37~1.43 | 0.75 | 0.64~0.86 | 0.84 | <0.05 |
G. barbadense | 茎Stem | 0.81 | 0.45~1.43 | 0.99 | 0.94~1.04 | 0.89 | <0.05 |
叶Leaf | 0.80 | 0.66~0.97 | 1.26 | 1.20~1.33 | 0.99 | <0.01 | |
棉铃Boll | 2.08 | 0.65~6.62 | -0.01 | -1.87~1.84 | 0.39 | 0.26 | |
陆地棉 | 根Root | 0.40 | 0.21~0.78 | 0.82 | 0.76~0.88 | 0.50 | <0.05 |
G. hirsutum | 茎Stem | 0.60 | 0.32~1.11 | 1.07 | 0.98~1.16 | 0.57 | <0.05 |
叶Leaf | 0.39 | 0.21~0.72 | 1.40 | 1.27~1.53 | 0.59 | <0.05 | |
棉铃Boll | 1.29 | 0.65~2.55 | 0.54 | -0.05~1.13 | 0.45 | 0.07 |
[1] |
Güsewell S. N:P in terrestrial plants: variation and functional significance[J/OL]. The New Phytologist, 2004, 164(2): 243-266[2022-03-08]. https://doi.org/10.1111/j.1469-8137.2004.01192.x.
doi: 10.1111/j.1469-8137.2004.01192.x |
[2] |
周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1): 7-16.
doi: 10.3773/j.issn.1005-264x.2010.01.003 |
Zhou Peng, Geng Yan, Ma Wenhong, et al. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 7-16.
doi: 10.3773/j.issn.1005-264x.2010.01.003 |
|
[3] |
Zhang J, He N, Liu C, et al. Allocation strategies for nitrogen and phosphorus in forest plants[J/OL]. Oikos, 2018, 127(10): 1506-1514[2022-03-08]. https://doi.org/10.1111/oik.05517.
doi: 10.1111/oik.05517 |
[4] |
Zhao N, Yu G R, Wang Q F, et al. Conservative allocation strategy of multiple nutrients among major plant organs: from species to community[J/OL]. Journal of Ecology, 2019, 108(1): 267-278[2022-03-08]. https://doi.org/10.1111/1365-2745.13256.
doi: 10.1111/1365-2745.13256 |
[5] | 陈婵, 王光军, 赵月, 等. 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系[J/OL]. 生态学报, 2016, 36(23): 7614-7623[2022-03-08]. https://doi.org/10.5846/stxb201512142500. |
Chen Chan, Wang Guangjun, Zhao Yue, et al. Seasonal dynamics and allometric growth relationships of C, N and P stoichiometry in the organs of Cunninghamia lanceolata from Huitong[J/OL]. Acta Ecologica Sinica, 2016, 36(23): 7614-7623[2022-03-08]. https://doi.org/10.5846/stxb201512142500. | |
[6] | 王凯, 高爽, 刘焕彬, 等. 施氮与增水对杨树幼苗不同器官碳氮磷化学计量的影响[J/OL]. 生态学杂志, 2021, 40(12): 3870-3880[2022-03-08]. https://doi.org/10.13292/j.1000-4890.202112.020. |
Wang Kai, Gao Shuang, Liu Huanbin, et al. Effects of nitrogen and water addition on C, N, P stoichiometry in different organs of poplar seedlings[J/OL]. Chinese Journal of Ecology, 2021, 40(12): 3870-3880[2022-03-08]. https://doi.org/10.13292/j.1000-4890.202112.020. | |
[7] | Tang Z Y, Xu W T, Zhou G Y, et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4033-4038[2022-03-08]. https://doi.org/10.1073/pnas.1700295114. |
[8] |
Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J/OL]. Ecology Letters, 2010, 8(6): 636-642[2022-03-08]. https://doi.org/10.1111/j.1461-0248.2005.00759.x.
doi: 10.1111/j.1461-0248.2005.00759.x |
[9] |
Guo Y, Yan Z B, Gheyret G, et al. The community-level scaling relationship between leaf nitrogen and phosphorus changes with plant growth, climate and nutrient limitation[J/OL]. Journal of Ecology, 2020, 108(4): 1276-1286[2022-03-08]. https://doi.org/10.1111/1365-2745.13369.
doi: 10.1111/1365-2745.13369 |
[10] |
Elser J J, Sterner R, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J/OL]. Ecology Letters, 2000, 3(6): 540-550[2022-03-08]. https://doi.org/10.1111/j.1461-0248.2000.00185.x.
doi: 10.1111/j.1461-0248.2000.00185.x |
[11] | 田地, 严正兵, 方精云. 植物化学计量学:一个方兴未艾的生态学研究方向[J/OL]. 自然杂志, 2018, 40(4): 235-241[2022-03-08]. https://doi.org/10.3969/j.issn.0253-9608.2018.04.001. |
Tian Di, Yan Zhengbing, Fang Jingyun. Plant stoichiometry: a research frontier in ecology[J/OL]. Chinese Journal of Nature, 2018, 40(4): 235-241[2022-03-08]. https://doi.org/10.3969/j.issn.0253-9608.2018.04.001. | |
[12] | Ning Z, Yu G R, He N P, et al. Coordinated pattern of multi-element variability in the leaves and roots across Chinese forest biomes[J/OL]. Global Ecology & Biogeography, 2016, 25(3): 359-367[2022-03-08]. https://doi.org/10.1111/geb.12427. |
[13] |
Kerkhoff A J, Fagan W F, Elser J J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants[J/OL]. The American Naturalist, 2006, 168(4): E103-E122[2022-03-08]. https://doi.org/10.1086/507879.
doi: 10.1086/507879 pmid: 17004214 |
[14] | Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006[2022-03-08]. https://doi.org/10.1073/pnas.0403588101. |
[15] |
Tian D, Yan Z B, Niklas K J, et al. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent[J/OL]. National Science Review, 2017, 5(5): 728-739[2022-03-08]. https://doi.org/10.1093/nsr/nwx142.
doi: 10.1093/nsr/nwx142 |
[16] | 潘进疆, 雷丽丹. 元素分析仪的使用和维护-以Vario MACRO cube CN元素分析仪为例[J/OL]. 分析仪器, 2020(5):147-152[2022-03-08]. https://doi.org/10.3969/j.issn.1001-232x.2020.05.032. |
Pan Jinjiang, Lei Lidan. The use and maintenance of elemental analyzer with Vario MACRO cube CN elemental analyzer as an example[J/OL]. Analytical Instrumentation, 2020(5): 147-152[2022-03-08]. https://doi.org/10.3969/j.issn.1001-232x.2020.05.032. | |
[17] | 邓文聪, 王妮, 付治国, 等. 微波消解-ICP-OES法测定藜麦中的微量元素[J/OL]. 广州化工, 2016, 44(18): 146-148[2022-03-08]. https://doi.org/10.3969/j.issn.1001-9677.2016.18.049. |
Deng Wencong, Wang Ni, Fu Zhiguo, et al. Determination of trace elements in quinoa by microwave digestion and ICP-OES[J/OL]. Guangzhou Chemical Industry, 2016, 44(18): 146-148[2022-03-08]. https://doi.org/10.3969/j.issn.1001-9677.2016.18.049. | |
[18] | Warton D I, Duursma R A, Falster D S, et al. SMATR 3-an R package for estimation and inference about allometric lines[J/OL]. Methods in Ecology & Evolution, 2012, 3(2): 257-259[2022-03-08]. https://doi.org/10.1111/j.2041-210X.2011.00153.x. |
[19] |
Fortunel C, Fine P V, Baraloto C. Leaf, stem and root tissue strategies across 758 neotropical tree species[J/OL]. Functional Ecology, 2012, 26(5): 1153-1161[2022-03-08]. https://doi.org/10.1111/j.1365-2435.2012.02020.x.
doi: 10.1111/j.1365-2435.2012.02020.x |
[20] | 谢志霞, 李存东, 孙红春, 等. 不同铃重类型棉花品种的源库特性与产量形成[J/OL]. 棉花学报, 2007, 19(3): 189-193[2022-03-08]. https://doi.org/10.3969/j.issn.1002-7807.2007.03.006. |
Xie Zhixia, Li Cundong, Sun Hongchun, et al. Relationship between yield formation and source-sink of cotton cultivars with different boll weight[J/OL]. Cotton Science, 2007, 19(3): 189-193[2022-03-08]. https://doi.org/10.3969/j.issn.1002-7807.2007.03.006. | |
[21] | 周小玲, 马新娥, 尚可为, 等. 同物候期胀果甘草生物量和营养物质生殖分配研究[J]. 草业学报, 2012, 21(4): 25-32. |
Zhou Xiaoling, Ma Xin’e, Shang Kewei, et al. Research on reproductive allocation of biomass and nutrients in different phenological stages of Glycyrrhiza inflata[J]. Acta Prataculturae Sinica, 2012, 21(4): 25-32. | |
[22] | 王克如, 李少昆, 曹连莆, 等. 新疆高产棉田氮、磷、钾吸收动态及模式初步研究[J/OL]. 中国农业科学, 2003, 36(7): 775-778[2022-03-08]. https://doi.org/10.3321/j.issn:0578-1752.2003.07.008. |
Wang Keru, Li Shaokun, Cao Lianpu, et al. A preliminary study on dynamics and models of N, P, K absorption in high yield cotton in Xinjiang[J/OL]. Scientia Agricultura Sinica, 2003, 36(7): 775-778[2022-03-08]. https://doi.org/10.3321/j.issn:0578-1752.2003.07.008. | |
[23] | 张炎, 王讲利, 毛端明, 等. 新疆主要棉区棉花肥料效应的研究[J/OL]. 中国棉花, 2003, 30(11): 22-25[2022-03-08]. https://doi.org/10.3969/j.issn.1000-632X.2003.11.008. |
Zhang Yan, Wang Jiangli, Mao Duanming, et al. Study on fertilizer effect of cotton in main cotton areas of Xinjiang[J/OL]. China Cotton, 2003, 30(11): 22-25[2022-03-08]. https://doi.org/10.3969/j.issn.1000-632X.2003.11.008. | |
[24] | Ye Y, Liang X, Chen Y, et al. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements[J/OL]. PLoS ONE, 2014, 9(7): e101776[2022-03-08]. https://doi.org/10.1371/journal.pone.0101776. |
[25] | Zhong Y, Yan W M, Xu X B, et al. Influence of nitrogen fertilization on wheat, and soil carbon, nitrogen and phosphorus stoichiometry characteristics[J/OL]. International Journal of Agriculture & Biology, 2015, 17(6): 1179-1185[2022-03-08]. https://doi.org/10.17957/IJAB/15.0042. |
[26] |
Sadras V O. The N:P stoichiometry of cereal, grain legume and oilseed crops[J/OL]. Field Crops Research, 2006, 95(1): 13-29[2022-03-08]. https://doi.org/10.1016/j.fcr.2005.01.020.
doi: 10.1016/j.fcr.2005.01.020 |
[27] | 李春艳, 石洪亮, 文如意, 等. 海岛棉和陆地棉花铃期光合特性及氮素累积特性的差异[J/OL]. 棉花学报, 2018, 30(2): 164-171[2022-03-08]. https://doi.org/10.11963/1002-7807.lcyzjs.20180302. |
Li Chunyan, Shi Hongliang, Wen Ruyi, et al. Differences of the photosynthetic properties and nitrogen accumulation between island cotton and upland cotton[J/OL]. Cotton Science, 2018, 30(2): 164-171[2022-03-08]. https://doi.org/10.11963/1002-7807.lcyzjs.20180302. | |
[28] | 贡璐, 李红林, 刘雨桐, 等. N、 P施肥对塔里木河上游绿洲棉花C、N、P 生态化学计量特征的影响[J]. 生态学报, 2017, 37(22): 7689-7697. |
Gong Lu, Li Honglin, Liu Yutong, et al. Effects of nitrogen and phosphorus fertilizers on carbon, nitrogen and phosphorus stoichiometry of oasis cotton in the upper reaches of Tarim River, Xinjiang, China[J]. Acta Ecologica Sinica, 2017, 37(22): 7689-7697. | |
[29] | 戴婷婷, 盛建东, 陈波浪. 磷肥不同用量对棉花干物质及氮磷钾吸收分配的影响[J]. 棉花学报, 2010, 22(5): 466-470. |
Dai Tingting, Sheng Jiandong, Chen Bolang. Effect of different phosphorus fertilizer rate on dry matter accumulation and the absorption and distribution of nitrogen, phosphorous, potassium of cotton[J]. Cotton Science, 2010, 22(5): 466-470. | |
[30] | 张炎, 姚银坤, 胡伟, 等. 施磷对棉花磷素积累, 分配, 利用及产量的影响[J]. 新疆农业科学, 2020, 58(11): 2004-2011. |
Zhang Yan, Yao Yinkun, Hu Wei, et al. Effects of phosphate fertilizer application on P accumulation, distribution, utilization and yield of cotton[J]. Xinjiang Agricultural Sciences, 2020, 58(11): 2004-2011. | |
[31] | 李春艳, 文如意, 石洪亮, 等. 海岛棉与陆地棉干物质积累与氮素吸收分配的特点[J/OL]. 干旱地区农业研究, 2017, 35(5): 175-181[2022-03-08]. https://doi.org/10.7606/j.issn.1000-7601.2017.05.26. |
Li Chunyan, Wen Ruyi, Shi Hongliang, et al. Dry matter and nitrogen accumulation distribution in island cotton and upland cotton[J/OL]. Agricultural Research in the Arid Areas, 2017, 35(5): 175-181[2022-03-08]. https://doi.org/10.7606/j.issn.1000-7601.2017.05.26. |
[1] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[2] | 王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246. |
[3] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[4] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[5] | 卢合全,唐薇,张冬梅,罗振,孔祥强,李振怀,徐士振,代建龙,李维江,辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[6] | 周雪慧,高二林,王钰静,李焱龙,袁道军,朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[7] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[8] | 苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172. |
[9] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[10] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[11] | 席凯鹏,席吉龙,杨苏龙,张建诚. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48-59. |
[12] | 陈凯丽,田秋恒,刘志洋,王海,熊杰,雷勇辉,孙燕飞. 新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性[J]. 棉花学报, 2022, 34(1): 69-78. |
[13] | 王艳情, 郑杰, 许艳超, 蔡小彦, 周忠丽, 侯宇清, 王坤波, 王玉红, 陈浩东, 刘方, 李志坤. 棉花HDAC基因家族鉴定及其在黄萎病菌侵染下的表达分析[J]. 棉花学报, 2021, 33(6): 469-481. |
[14] | 李秋琳,李燕,陈伟,姚金波,朱守鸿,袁黎,张永山. 基于广泛靶向代谢组学的不同颜色棉花花瓣中类黄酮成分差异分析[J]. 棉花学报, 2021, 33(6): 482-492. |
[15] | 王玉贤, 董莹莹, 李芳军, 杜明伟, 田晓莉, 李召虎. 甲哌鎓通过调节棉花叶片水分平衡和光合性能提高苗期耐旱性的生理机制[J]. 棉花学报, 2021, 33(6): 493-503. |
|