棉花学报 ›› 2010, Vol. 22 ›› Issue (6): 617-624.
唐 涛1, 2,刘雪源2,邱立红1*
收稿日期:
2010-06-21
出版日期:
2010-11-15
发布日期:
2010-11-15
通讯作者:
lihongqiuyang@126.com
作者简介:
唐 涛(1980-),男,博士研究生,助理研究员,tanson_1@163.com
基金资助:
国家自然科学基金(30971943)
TANG Tao1, 2, LIU Xue-yuan2, QIU Li-hong1*
Received:
2010-06-21
Online:
2010-11-15
Published:
2010-11-15
Contact:
lihongqiuyang@126.com
摘要: 以不同农药为主的防治策略对棉铃虫和小菜蛾等农业害虫的控制卓有成效,但易产生害虫抗药性问题。害虫抗药性与细胞色素P450酶系、酯酶、钙粘蛋白等酶或受体的生化与分子机理相关。RNA干扰(RNA interference,简称RNAi)作为分子生物学领域中功能基因及基因组研究的一种强有力工具,已逐渐用于昆虫抗药性相关基因的敲除研究并鉴定其功能。本文围绕RNAi的作用机理及其对昆虫抗药性相关基因的沉默研究展开综述,旨在为农业害虫及其抗药性治理提供新思路与新途径。
中图分类号:S435.622
唐 涛, 刘雪源, 邱立红. RNA干扰及其对昆虫抗药性相关基因的沉默研究[J]. 棉花学报, 2010, 22(6): 617-624.
TANG Tao, LIU Xue-Yuan, QIU Li-Hong. RNA Interference and Its Applications on Silencing of Insecticide-resistant Genes in Insects[J]. Cotton Science, 2010, 22(6): 617-624.
[1] SONODA S, Igaki C. Characterization of acephate resistance in the diamondback moth Plutella xylostella[J]. Pestic Biochem Physiol, 2010, 98(1): 121-127. [2] XIA Xiao-ming, Wang Kai-yun, Wang Hong-yan. Resistance of Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae) to fenvalerate, phoxim and methomyl in China[J]. Crop Protection,2009, 28(2): 162-167. [3] HEAD G, Savinelli C. Adapting insect resistance management programs to local needs[M] // Onstad D W. Insect resistance management: biology, economic and predictions. New York: Academic Press, 2008: 89-106. [4] WU Kong-ming, Guo Yu-yuan. The evolution of cotton pest management practices in China[J]. Annu Rev Entomol, 2005, 50: 31-52. [5] SCOTT J G, Kasai S. Evolutionary plasticity of monooxygenase-mediated resistance[J]. Pestic Biochem Physiol, 2004, 78(3): 171-178. [6] MARTIN T, Chandre F, Ochou O G, et al. Pyrethroid resistance mechanisms in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa[J]. Pestic Biochem Physiol, 2002, 74(1): 17-26. [7] SCOTT J G, Wen Zhi-mou. Cytochromes P450 of insects: the tip of the iceberg[J]. Pest Management Science, 2001, 57(10): 958- 967. [8] ZHANG Lan, Shi Jing, Shi Xue-yan, et al. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera: Muscidae)[J]. Comp Biochem Physiol B: Biochem Mol Biol, 2010, 156(1): 6-11. [9] KONUS M, Ugurlu S, Iscan M. Investigation of the role of glutathione S-transferase isozymes in pyrethroid resistance of Helicoverpa armigera in Turkey[J]. Toxicol Lett, 2009, 189(S1): 217- 218. [10] AHMAD M. Potentiation between pyrethroid and organophosphate insecticides in resistant field populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan[J]. Pestic Biochem Physiol, 2008, 91(1): 24-31. [11] CHEN Mao-hua, Han Zhao-jun, Qiao Xian-feng, et al. Mutations in acetylcholinesterase genes of Rhopalosiphum padi resistant to organophosphate and carbamate insecticides[J]. Genome, 2007, 50(2): 172-179. [12] NING Chang-ming, Wu Kong-ming, Liu Chen-xi, et al. Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hübner) larvae[J]. J Insect Physiol, 2010, 56(6): 666-672. [13] ZHANG Shao-ping, Cheng Hong-mei, Gao Yu-lin, et al. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin[J]. Insect Biochem Mol Biol, 2009, 39(7): 421-429. [14] NAGAMATSU Y, Koike T, Sasaki K, et al. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin[J]. FEBS Lett, 1999, 460 (2): 385-390. [15] YUAN Guo-rui, Gao Wei-yue, Yang Yi-hua, et al. Molecular cloning, genomic structure, and genetic mapping of two Rdl-orthologous genes of GABA receptors in the diamondback moth, Plutella xylostella[J]. Arch Insect Biochem Physiol, 2010, 74(2): 81-90. [16] WEE C W, Lee S F, Robin C, et al. Identification of candidate genes for fenvalerate resistance in Helicoverpa armigera using cDNA-AFLP[J]. Insect Mol Biol, 2008, 17(4): 351-360. [17] LEE D W, Kim S S, Shin S W, et al. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenée)[J]. Biochim Biophys Acta, 2006, 1760(2): 125-133. [18] FLANNAGAN R D, Yu Cao-guo, Mathis J P, et al. Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae)[J]. Insect Biochem Mol Biol, 2005, 35(1): 33-40. [19] FIRE A, Xu Si-qun, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. [20] CLEMENS J C, Worby C A, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways[J]. Proc Natl Acad Sci USA, 2000, 97(12): 6499-6503. [21] TAVERNARAKIS N, Wang Shi-liang, Dorovkov M, et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes[J]. Nat Genet, 2000, 24(2): 180-183. [22] UI-TEI K, Zenno S, MiyataY, et al. Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target[J]. FEBS Lett, 2000, 479(3): 79-82. [23] STARK G R, Kerr I M, Williams B R G, et al. How cells respond to interferons ?[J]. Annu Rev Biochem, 1998, 67: 227- 264. [24] ELBASHIR S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411(6836): 494-498. [25] ELBASGUR S M, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs[J]. Genes Dev, 2001, 15(2): 188-200. [26] ZAMORE P D, Tuschl T, Sharp P A, et al. Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000, 101(1): 25-33. [27] VOLPE T A, Kidner C, Hall I M, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi[J]. Science, 2002, 297(5588): 1833-1837. [28] PAL-BHADRA M, Leibovitch B A, Gandhi S G, et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery[J]. Science, 2004, 303(5658):669-672. [29] KIM D H, Villeneuve L M, Morris K V, et al. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells[J]. Nat Struct Mol Biol, 2006, 13(9): 793-797. [30] NAPOLI C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J]. The Plant Cell, 1990, 2(4): 279-289. [31] COGONI C, Romano N, Macino G. Suppression of gene expression by homologous transgenes[J]. Antonie van Leeuwenhoek, 1994, 65: 205-209. [32] WANG Bing-bing, Love T M, Call M E, et al. Recapitulation of short RNA-directed translational gene silencing in vitro[J]. Mol Cell, 2006, 22(4): 553-560. [33] LINGEL A, Simon B, Izaurralde E, et al. Nucleic acid 3' -end recognition by the Argonaute 2 PAZ domain[J]. Nat Struct Mol Biol, 2004, 11(6): 575-576. [34] SONG J J, Liu J D, Tolia N H, et al. The crystal structure of the Argonaute 2 PAZ domain reveals an RNA binding motif in RNAi effector complexes[J]. Nat Struct Biol, 2003, 10(12): 1026- 1032. [35] LINGEL A, Simon B, Izaurralde E, et al. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain[J]. Nature, 2003, 426(6965): 465-469. [36] NYKÄNEN A, Haley B, Zamore P D. ATP requirements and small interfering RNA structure in the RNA interference pathway[J]. Cell, 2001, 107(3): 309-321. [37] SCHWARZ D S, Tomari Y, Zamore P D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease[J]. Curr Biol, 2004, 14(9): 787-791. [38] KIM V N, Han J J, Siomi M C. Biogenesis of small RNAs in animals[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 126-139. [39] LEE H C, Chang S S, Choudhary S, et al. qiRNA is a new type of small interfering RNA induced by DNA damage[J]. Nature, 2009, 459(7244): 274-278. [40] EAMENS A, Wang M B, Smith N A, et al. RNA silencing in plants: yesterday, today, and tomorrow[J]. Plant Physiol, 2008, 147(2): 456-468. [41] HAN Jin-ju, Lee Y, Yeom K H, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex[J]. Cell, 2006, 125(5): 887-901. [42] LEE R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. [43] HUVENNE H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review[J]. J Insect Physiol, 2010, 56(3): 227-235. [44] JOSE A M, Smith J J, Hunter C P. Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1[J]. Proc Natl Acad Sci USA, 2009, 106(7):2283-2288. [45] WINSTON W M, Sutherlin M, Wright A J, et al. Caenorhabditis elegans SID-2 is required for environmental RNA interference[J]. Proc Natl Acad Sci USA, 2007, 104(25): 10565-10570. [46] TIJSTERMAN M, May R C, Simmer F, et al. Genes required for systemic RNA interference in Caenorhabditis elegans[J]. Curr Biol, 2004, 14 (2): 111-116. [47] FEINBERG E H, Hunter C P. Transport of dsRNA into cells by the transmembrane protein SID-1[J]. Science, 2003, 301(5639): 1545-1547. [48] WINSTON W M, Molodowitch C, Hunter C P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science, 2002, 295(5564): 2456-2459. [49] MILLER S C, Brown S J, Tomoyasu Y. Larval RNAi in Drosophila ?[J]. Dev Genes Evol, 2008, 218(9): 505-510. [50] GORDON K H J, Waterhouse P M. RNAi for insect-proof plants[J]. Nat Biotechnol, 2007, 25(11): 1231-1232. [51] JOSE A M, Hunter C P. Transport of sequence-specific RNA interference[J]. Annu Rev Genet, 2007, 41: 305-330. [52] ULVILA J, Parikka M, Kleino A, et al. Double-stranded RNA is internalized by Scavenger receptor-mediated endocytosis in Drosophila S2 Cells[J]. J Biol Chem, 2006, 281(20): 14370-14375. [53] SALEH M C, Rij R P, Hekele A, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing[J]. Nat Cell Biol, 2006, 8(8): 793-802. [54] SALEH M C, Tassetto M, Rij R P, et al. Antiviral immunity in Drosophila requires systemic RNA interference spread[J]. Nature, 2009, 458(7236): 346-351. [55] TIMMONS L, Tabara H, Mello C C, et al. Inducible systemic RNA silencing in Caenorhabditis elegans[J]. Mol Biol Cell, 2003, 14 (7): 2972-2983. [56] MAO Ying-bo, Cai Wen-juan, Wang Jia-wei, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nat Biotechnol, 2007, 25(11): 1307-1313. [57] BAUTISTA M A M, Miyata T, Miura K, et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin[J]. Insect Biochem Mol Biol, 2009, 39(1): 38-46. [58] SIVAKUMAR S, Rajagopal R G, Venkatesh R, et al. Knockdown of Aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf 21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac[J]. J Biol Chem, 2007, 282(10): 7312-7319. [59] BAUTISTA M A M, Tanaka T, Miyata T. Identification of permethrin-inducible cytochrome P450s from Plutella xylostella(L.) and the possibility of involvement in permethrin resistance[J]. Pestic Biochem Physiol, 2007, 87(1): 85-93. [60] TURNER C T, Davy M W, MacDiarmid R M, et al. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding[J]. Insect Mol Biol, 2006, 15(3): 383-391. [61] KUMAR M, Gupta G P, Rajam M V. Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle[J]. J Insect Physiol, 2009, 55(3): 273-278. [62] TABASHNIK B E, Gassmann A J, Crowder D W, et al. Insect resistance to Bt crops: evidence versus theory[J]. Nat Biotechnol, 2008, 26(2): 199-203. [63] WU Kong-ming. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China[J]. J Invertebr Pathol, 2007, 95(3): 220-223. [64] YANG Zhong-xia, Wen Li-zhang, Wu Qing-jun, et al. Effects of injecting cadherin gene dsRNA on growth and development in diamondback moth Plutella xylostella(Lep: Plutellidae)[J]. J Appl Entomol, 2009, 133(2): 75-81. [65] 杨中侠,吴青君,王少丽,等.利用RNAi技术沉默小菜蛾类钙粘蛋白基因[J].昆虫学报,2009,52(8):832-837. YANG Zhong-xia, Wu Qing-Jun, Wang Shao-li, et al. Silencing of cadherin-like gene in the diamondback moth, Plutella xylostella (Lep: Plutellidae), using RNAi technique[J]. Acta Entomol Sinica, 2009, 52(8): 832-837. [66] JAUBERT P S, Trionnaire G, Bonhomme J, et al. Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum[J]. BMC Biotechnol, 2007, 7: 63. [67] BAUM J A, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference[J]. Nat Biotechnol, 2007, 25(11): 1322-1326. |
[1] | 李玉, 宗涛, 杨浩娜, 柏连阳. 长江中下游棉田马唐(Digitaria sanguinalis)对草甘膦的抗药性初步研究[J]. 棉花学报, 2016, 28(3): 300-306. |
[2] | 杨浩娜, 柏连阳. 棉田反枝苋和马齿苋对草甘膦的抗药性[J]. 棉花学报, 2014, 26(6): 492-498. |
[3] | 王琳, 商海红, 李俊文, 王少干, 刘爱英, 石玉真, 龚举武, 巩万奎, 陈婷婷, 袁有禄. 陆地棉果胶甲酯酶GhPME6的克隆及功能分析[J]. 棉花学报, 2014, 26(5): 438-444. |
[4] | 李洁, 宗涛, 刘祥英, 柏连阳. 湖南省部分地区棉田牛筋草(Eleusine indica)对高效氟吡甲禾灵的抗药性[J]. 棉花学报, 2014, 26(3): 279-282. |
[5] | 马 惠, 赵 鸣, 夏晓明, 王红艳, 董合忠. Bt棉对棉叶螨发生的影响及与次生代谢物质的关系[J]. 棉花学报, 2012, 24(6): 481-487. |
[6] | 尹富仕, 曾洪梅, 张雨良, 邱德文, 杨秀芬, 王立梅. 棉铃虫HaHR3基因的克隆及其植物RNA干扰载体的构建[J]. 棉花学报, 2010, 22(2): 157-162. |
[7] | 杨亦桦, 陈 松, 吴益东. 有机磷/拟除虫菊酯混剂筛选棉铃虫品系的交互抗性和生化机理[J]. 棉花学报, 2008, 20(4): 249-255. |
|