棉花纤维由胚珠外被单个表皮细胞分化发育而成,其分化和伸长涉及细胞骨架的重排。本研究根据已报道的植物DISTORTED2基因,同源候选基因法克隆棉花GhDIS2。该基因包括975 bp ORF,编码324个氨基酸。qPCR分析表明,它在陆地棉TM-1不同来源的组织中均表达,于开花后12 d的纤维中达到表达高峰,开花后18 d表达开始下降,根和茎的表达量较低。Southern杂交结果表明,GhDIS2在四倍体棉花基因组中存在2个拷贝。克隆GhDIS2到酵母表达载体中,并转化到裂殖酵母中,诱导该基因过量表达,GhDIS2促使细胞扩大。初步推测,GhDIS2和其它植物DIS2功能相似,参与植物细胞肌动蛋白骨架的组装。
Abstract
Cotton fibers are single-celled seed trichomes of major economic importance. Many important genes are expressed during cotton fiber development. DISTORTED2 encodes the Arabidopsis homolog of the ARPC2 subunit of the ARP2/3 complex, which binds to the sides of existing actin filaments and efficiently nucleates new filaments. The cytoskeleton arrangement processes in the cotton fiber initial and elongation. In this study, the Gossypium homology of the ARPC2 subunit named as GhDIS2 was isolated from the TM-1 ovule on the day of flowering. GhDIS2 contained 975 bp open reading frame, encoding a polypeptide containing 324 amino acids. GhDIS2 was expressed constitutively in every tissue with different expression levels, with the peak in 12 days post anthesis (DPA) fiber cells and low expression levels in 18, 24 DPA fiber cells, roots and stems. Southern blotting showed that GhDIS2 had two copies in allotetraploid cotton genome. A shuttle vector contained GhDIS2 cDNA sequence was transformed into fission yeast. GhDIS2 led to a significant increase in cell length and width. These results indicated that GhDIS2 had the same function to DIS in other plants.
关键词
棉花纤维 /
GhDIS2 /
克隆 /
酵母
{{custom_keyword}} /
Keywords
cotton fiber /
GhDIS2 /
molecular cloning /
fission yeast
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BASRA A S, Malik C P. Development of the cotton fiber
[J]. Int Rev Cyto, 1984, 89: 65-113.
[2] PREUSS M L, Kovar D R, Lee Y R, et al. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers
[J]. Plant Physiol, 2004, 136: 3945- 3955.
[3] DIXON D C, Seagull R W, Triplett B A. Changes in the accumulation of alpha-and beta-tubulin isotypes during cotton fiber development
[J]. Plant Physiol, 1994, 105: 1347-1353.
[4] LI Chun-hong, Zhu Yong-qing, Meng Yu-ling, et al. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR
[J]. Plant Science, 2002, 163: 1113-1120.
[5] JI Sheng-jian, Lu Ying-chun, Li Jun, et al. A beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast
[J]. Biochem Biophys Res Commun, 2002, 296: 1245-1250.
[6] MACHESKY L M, Atkinson S J, Ampe C, et al. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profiling-agarose
[J]. J Cell Biol, 1994, 127: 107-115.
[7] AMANN K, Pollard T. Direct real-time observation of action filament branching mediated by Arp 2/3 complex using total internal reflection fluorescence microscopy
[J]. Proc Natl Acad Sci USA, 2001, 98: 15009-15013.
[8]BLANCHION L, Amann K J, Higgs H N, et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins
[J]. Nature, 2000, 404: 1007- 1011.
[9] 蒋建雄, 张天真. 利用CTAB酸酚法提取棉花组织总RNA
[J]. 棉花学报, 2003, 15(3): 166-167. JIANG Jian-xiong, Zhang Tian-zheng. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method
[J]. Cotton Sci, 2003, 15(3): 166-167.
[10] WINER J, Jung C K S, Shackel I, et al. Development and validation of real-time quantitative reverse transcriptase polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro
[J]. Anal Biochem, 1999, 270: 41-49.
[11] PATERSON A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis
[J]. Plant Mol Biol Rep, 1993, 11: 122-127.
[12] STAIGER S J. Signaling to the actin cytoskeleton in plants
[J]. Annu Rev Physiol, 2000, 51: 257-288.
[13] WASTENEYS G O, Galway M E. Remodeling the cytoskeleton for growth and form: an overview with some new views
[J]. Annu Rev Plant Biol, 2003, 54: 691-722.
[14] LARKIN J C, Young N, Prigge M, et al. The control of trichome spacing and number in Arabidopsis
[J]. Development, 1996, 122: 997-1005.
[15] SZYMANSKI D B. Arabidopsis trichome morphogenesis: a genetic approach to studying cytoskeletal function
[J]. J Plant Growth Regul, 2001, 20: 131-140.
[16] LEES-MILLER J P, Henry G, Helfman D M. Identification of act 2, an essential gene in the fission yeast Schizosaccharomyces pombe that encodes a protain related to actin
[J]. Proc Natl Acad Sci USA, 1992, 89: 80-83.
[17] WINTER D C, Choe E Y, Li Rong. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits
[J]. Proc Natl Acad Sci USA, 1999, 96: 7288-7293.
[18] HUDSON A M, Cooley L. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex
[J]. J Cell Biol, 2002, 156: 677-687.
[19] LI Shun-dai, Blanchoin L, Yang Zhen-biao, et al. The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis
[J]. Plant Physiol, 2003, 132: 2034-2044.
[20] SAEDLER R, Mathur N, Srinivas B P, et al. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog
[J]. Plant Cell Physiol, 2004, 45(7): 813-822.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
转基因生物新品种培育科技重大专项(2008ZX08009-003)
{{custom_fund}}