基于棉花冠层光谱的土壤氮素监测研究

潘文超, 李少昆, 王克如, 肖 华, 陈 兵, 王方永, 苏 毅, 陈江鲁, 赖军臣, 黄芳德

PDF(547 KB)
PDF(547 KB)
棉花学报 ›› 2010, Vol. 22 ›› Issue (1) : 70-76. DOI: 10.11963/cs100111
研究与进展

基于棉花冠层光谱的土壤氮素监测研究

  • 潘文超1,2,李少昆1,2*,王克如1,2,肖 华1,陈 兵1,王方永1,苏 毅2,陈江鲁2,赖军臣1,2,黄芳德1
作者信息 +

Monitoring Soil Nitrogen and Plant Nitrogen Based on Hyperspectral of Cotton Canopy

  • PAN Wen-Chao1,2,LI Shao-kun1,2*,WANG Ke-ru1,2,XIAO Hua1,CHEN Bing1,WANG Fang-yong1,SU Yi2,CHEN Jiang-lu2,LAI Jun-chen1,2,HUANG Fang-de1
Author information +
History +

摘要

通过连续2年小区氮肥试验,在棉花不同生育期采集冠层高光谱数据并同步测定土壤氮含量,分析棉花冠层高光谱参数与土壤氮含量间的关系,建立基于植株冠层光谱的土壤氮含量估算模型。结果表明:土壤全氮含量随着施氮水平的增加而增加,且差异显著;基于棉花不同时期冠层光谱构建的14种光谱参量与土壤氮含量间的相关性有显著差异。其中,利用冠层光谱参数P_Area 1100、Depth 980、Area 672、PPR(550,540)建立的土壤氮含量监测模型分别在蕾期、花期、铃期、吐絮期4个关键生育期对土壤氮含量的预测均达到了较高的精度,能够很好地反映棉花土壤氮素营养状况。利用植株冠层光谱参数可以很好地监测土壤氮素营养,说明利用植株冠层光谱方法监测土壤氮含量是可行的。

Abstract

Through a 2-year community trial of nitrogen fertilizer in cotton, canopy hyperspectral data and synchronous determination of soil nitrogen content at different growth stages were obtained and the relationship between cotton canopy hyperspectral parameters and the soil nitrogen content was analyzed, soil nitrogen content estimation model based on hyperspectral parameter was established. The results showed that the nitrogen content increased with nitrogen level. The correlation between 14 kinds of selected parameters based on hyperspectral data of diffeled periods and plant nitrogen content was significantly different. The use of the soil nitrogen content model that established with spectral parameters P_Area 1100、Depth 980、Area 672、PPR(550,540) in four key developmental stages showed a higher prediction accuracy. It can be concluded that using spectra spectroscopic methods to monitor soil nitrogen content are feasible.

关键词

棉花 / 冠层光谱 / 土壤含氮量 / 高光谱参数

Keywords

cotton / canopy spectra / soil nitrogen content / hyperspectral parameters

引用本文

导出引用
潘文超, 李少昆, 王克如, 肖 华, 陈 兵, 王方永, 苏 毅, 陈江鲁, 赖军臣, 黄芳德. 基于棉花冠层光谱的土壤氮素监测研究[J]. 棉花学报, 2010, 22(1): 70-76. https://doi.org/10.11963/cs100111
PAN Wen-Chao, LI Shao-Kun, WANG Ke-Ru, XIAO Hua, CHEN Bing, WANG Fang-Yong, SU Yi, CHEN Jiang-Lu, LAI Jun-Chen, HUANG Fang-De. Monitoring Soil Nitrogen and Plant Nitrogen Based on Hyperspectral of Cotton Canopy[J]. Cotton Science, 2010, 22(1): 70-76. https://doi.org/10.11963/cs100111

参考文献

[1] 徐永明,蔺启忠,黄秀华,等. 利用可见光/ 近红外反射光谱估算土壤总氮含量的实验研究
[J].地理与地理信息科学,2005,21(1):19-22.       XU Yong-ming, Lin Qi-zhong, Huang Xiu-hua, et al. Experimental study on total nitrogen concentration in soil by VNIR reflectance spectrum
[J]. Geography and Geo-Information Science,2005,21(1):19-22.
[2] KIMES D S, Idso S B, Pinter P J, et al. View angle effects in the radiometric measurement of plant canopy temperatures
[J].Remote Sensing of Environment, 1980, 10:273-284.
[3] KRISHNAN P, John D, Alexander, et al. Reflectance technique for predicting soil organic matter
[J]. Soil Science Society of America Journal,1980, 44: 1282-1285.
[4] BEN-DOR E, Banin A. Near - infrared analysis as a rapid method to simultaneously evaluate several soil properties
[J] . Soil Science Society of America Journal, 1995, 59:364-372.
[5] KOOISTRA L ,Wehrens L , Leuven RSEW, et al. Possibilities of visible - near - infrared spectroscopy for the assessment of soil contamination in river floodplains
[J] . Analytica Chimica Acta ,2001, 446: 97-105.
[6] LIU Wei-dong, Baret F, Gu Xing-fa, et al. Using hyperspectral data to estimate soil surface moisture under experimental conditions
[J]. Journal of Remote Sensing, 2004(5):434-442.
[7] 王    渊, 王福民, 黄敬峰.油菜不同组分生物量光谱遥感估算模型
[J]. 浙江农业大学学报, 2004, 16 (2):79-83.       WANG Yuan , Wang Fu-min, Huang Jing-feng. The models for estimation of dry biomass from different components of rapeseed using canopy spectral data
[J]. Acta Agriculturae Zhejiangensis,2004, 16(2): 79-83.
[8] 王人潮,黄敬峰. 水稻遥感估产[M]. 北京:农业出版社, 2001.      WANG Ren-chao,Huang Jing-feng. Rice estimation by remote sensing[M]. Beijing: Agriculture Press, 2001.
[9] 王 坷, 蒋亨显, 王人潮. 建立大田早稻农学光谱估产模式研究初报
[J].浙江农业大学学报, 1993, 19(增刊): 66-72.      WANG Ke, Jiang Heng-xian, Wang Ren-chao. Study on the establishment of agronomic spectral yield estimation model for early rice in the field
[J]. Journal of Zhejiang University, 1993, 19(S): 66-72.
[10] BARET F, Guyot G, Major D J. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation
[C]// 12th Canadian Symposium on Remote Sensing and IGARRS,89. Vancouver, Canada: IGARSS, 1989: 1355-1358.
[11] 王登伟, 黄春燕, 张 伟,等. 高光谱数据与棉花叶绿素含量和叶绿素密度的相关分析
[J].棉花学报,2008,20(5):368-371.        WANG Deng-wei, Huang Chun-yan, Zhang Wei,et al. Relationship analysis between cotton chlorophyll content, chlorophyll density and hyperspectral data
[J]. Cotton Science, 2008, 20(5):368-371.
[12] 李章成,周清波,江道辉,等. 棉花苗期冻害高光谱特征研究
[J].棉花学报,2008, 20(4):306-311.       LI Zhang-cheng, Zhou Qing-bo, Jiang Dao-hui, et al. Study on hyperspectral features of the frostbite cotton at seedling stage
[J]. Cotton Science, 2008, 20(4): 306-311.
[13] RICHARDSON A J, Wiegand C L. Distinguishing vegetation from soil background information
[J]. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1541-1552.
[14] HUETE A R. A soil-adjusted vegetation index(SAVI)
[J]. Remote Sensing of Environment, 1988, 25: 295-309.
[15] GAMON J A. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency
[J]. Remote Sensing of Environment, 1992, 41: 35-44.

基金

国家“863“计划(2006AA10A302、2006AA10Z207),国家科技支撑计划(2007BAH12B02)和国家自然科学基金 (30860139)

PDF(547 KB)

83

Accesses

0

Citation

Detail

段落导航
相关文章

/