[1] | Ernst H A, Olsen A N, Larsen S, et al.Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. EMBO Reports, 2004, 5(3): 297-303. | [2] | Olsen A N, Ernst H A, Leggio L L, et al.NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79-87. | [3] | Duval M, Hsieh T F, Kim S Y, et al.Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily[J]. Plant Molecular Biology, 2002, 50(2): 237-248. | [4] | Ooka H, Satoh K, Doi K, et al.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 2003, 10(6): 239-247. | [5] | Wang Hongyan, Wang Honglei, Shao Hongbo, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J/OL]. Frontiers in Plant Science, 2016, 7: 67 [2016-04-20]. . | [6] | Nuruzzaman M, Sharoni A M, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J/OL]. Frontiers in Microbiology, 2013, 4: 248 [2016-04-20]. . | [7] | Fang Yujie, You Jun, Xie Kabin, et al.Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Molecular Genetics and Genomics, 2008, 280(6): 547-563. | [8] | Hu Honghong, Dai Mingqiu, Yao Jialiang, et al.Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the USA, 2006, 103(35): 12987-12992. | [9] | Saad A S I, Li Xu, Li Heping, et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses[J]. Plant Science, 2013, 203/204: 33-40. | [10] | An Xia, Liao Yiwen, Zhang Jingyu, et al.Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance[J]. Plant Growth Regulation, 2014, 76(2): 211-223. | [11] | Liu Guanze, Li Xuelin, Jin Shuangxia, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J/OL]. PLoS ONE, 2014, 9(1): e86895 [2016- 04-20]. . | [12] | 喻树迅. 我国棉花生产现状与发展趋势[J]. 中国工程科学, 2013, 15(4): 9-13. | [12] | Yu Shuxun.Present situation and development trend of cotton production in China[J]. Engineering Science, 2013, 15(4): 9-13. | [13] | Li Fuguang, Fan Guangyi, Lu Cairui, et al.Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530. | [14] | Yuan Daojun, Tang Zhonghui, Wang Maojun, et al. The genome sequence of sea-island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres[J/OL]. Scientific Reports, 2015, 5: 17662 [2016-04-20]. . | [15] | Zhang Tianzhen, Hu Yan, Jiang Wenkai, et al.Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537. | [16] | Long Lu, Gao Wei, Xu Li, et al.GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco[J]. Plant Cell Tissue and Organ Culture, 2014, 116(2): 153-162. | [17] | Gao Wei, Long Lu, Xu Li, et al.Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton[J]. Journal of Integrative Plant Biology, 2016, 58(5): 503-513. | [18] | Schmittgen T, Livak K J.Analyzing real-time PCR data by the comparative C(T) method[J]. Nature Protocols, 2008, 3(6): 1101-1108. | [19] | Shang Haihong, Li Wei, Zou Changsong, et al.Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns[J]. Journal of Integrative Plant Biology, 2013, 55(7): 663-676. | [20] | Shang Haihong, Wang Zhongna, Zou Changsong, et al.Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development[J]. Science China: Life Sciences, 2016, 59(2): 142-153. | [21] | Collinge M, Boller T.Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding[J]. Plant Molecular Biology, 2001, 46(5): 521-529. | [22] | Wu Yaorong, Deng Zhiyong, Lai Jianbin, et al.Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell Research, 2009, 19(11): 1279-1290. | [23] | Lu Pingli, Chen Naizhi, An Rui, et al.A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Molecular Biology, 2007, 63(2): 289-305. | [24] | Song Shiyong, Chen Ying, Chen Jie, et al.Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress[J]. Planta, 2011, 234(2): 331-345. | [25] | Nakashima K, Tran L S, van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal, 2007, 51(4): 617-630. | [26] | Jeong J S, Kim Y S, Redillas M, et al.OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnology Journal, 2013, 11(1): 101-114. | [27] | Nakano Y, Yamaguchi M, Endo H, et al. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants[J/OL]. Frontiers in Plant Science, 2015, 6: 288 [2016- 04-20]. . | [28] | Bari R, Jones J.Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009, 69(4): 473-488. | [29] | 王中娜, 商海红, 陈婷婷, 等. 亚洲棉(Gossypium arboreum L.)纤维次生壁加厚期NAC基因的鉴定与表达分析[J]. 棉花学报, 2016, 28(1): 52-64. | [29] | Wang Zhongna, Shang Haihong, Chen Tingting, et al.Molecular cloning and expression analysis of NAC genes specifically expressed in the fibers of Gossypium arboreum L.[J]. Cotton Science, 2016, 28(1): 52-64. | [30] | 张景霞, 王芙蓉, 高阳, 等. VIGS技术及其在棉花功能基因组研究中的应用进展[J]. 棉花学报, 2015, 27(5): 469-473. | [30] | Zhang Jingxia, Wang Furong, Gao Yang, et al.Application of VIGS in studies of gene function in cotton[J]. Cotton Science, 2015, 27(5): 469-473. | [31] | 刘凯, 张华崇, 齐放军, 等. 棉花GhSKIP35基因的克隆与表达分析[J]. 棉花学报, 2015, 27(2): 111-117. | [31] | Liu Kai, Zhang Huachong, Qi Fangjun, et al.Cloning and expression analysis of GhSKIP35 gene in Gossypium hirsutum L.[J]. Cotton Science, 2015, 27(2): 111-117. | [32] | 赵凤利, 范术丽, 宋美珍,等. 陆地棉转录因子GhNAC78基因的特征及功能分析[J]. 棉花学报, 2014, 26(4): 283-289. | [32] | Zhao Fengli, Fan Shuli, Song Meizhen, et al.Characterization and function analysis of GhNAC78, a transcription factor gene in upland cotton (Gossypium hirsutum L.)[J]. Cotton Science, 2014, 26(4): 283-289. |
|