棉花无腺体近等基因系差异表达基因分析

姜鹏飞, 陆才瑞, 邹长松, 程海亮, 杨文翠, 冯晓旭, 张友平, 王巧连, 宋国立

PDF(840 KB)
PDF(840 KB)
棉花学报 ›› 2015, Vol. 27 ›› Issue (6) : 506-514. DOI: 10.11963/issn.1002-7807.201506002
研究与进展

棉花无腺体近等基因系差异表达基因分析

  • 姜鹏飞,陆才瑞,邹长松,程海亮,杨文翠,冯晓旭,张友平,王巧连,宋国立*
作者信息 +

Analysis of Differentially Expressed Genes from Glandless Near-isogenic Lines of Cotton

  • Jiang Pengfei, Lu Cairui, Zou Changsong, Cheng Hailiang, Yang Wencui, Feng Xiaoxu, Zhang Youping, Wang Qiaolian, Song Guoli*
Author information +
History +

摘要

为了揭示棉花腺体发育的分子机制,本研究利用RNA-Seq对棉花无腺体性状近等基因系Z12/Z12YW的幼嫩叶片进行转录组测序,寻找差异表达基因。转录组测序结果表明,与有腺体棉Z12相比,无腺体棉Z12YW中共有306个基因表达发生变化,其中282个基因下调,24个基因上调。差异表达基因GO(Gene ontology)功能注释显示,细胞组分、胞外基质组分的功能变化以及细胞杀伤生物学过程在腺体形成过程中发挥重要作用;COG(Cluster of orthologous groups)功能和KEGG(Kyoto encyclopedia of genes and genomes)通路显著性富集发现,棉酚等萜烯物质的合成主要受甲羟戊酸途径上游基因的表达调控。此外,本研究共筛选到13个差异表达转录因子,可能在腺体发育和棉酚合成过程中发挥关键作用。

Abstract

The expression changes of transcriptome of tender leaves of Z12/Z12YW were analyzed by RNA-Seq to reveal the molecular mechanism of gland formation. Z12/Z12YW are cotton near-isogenic lines with a common genetic background but contrasting a gland phenotype. A total of 306 differentially expressed genes were uncovered, of which 282 were down-regulated and 24 were up-regulated in the glandless material Z12YW. Gene Ontology functional annotation showed that the cell part, the extracellular matrix part and the cell killing played important roles in the process of gland development. Clustering of Orthologous groups and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the upstream key genes of the mevalonate pathway had a great influence on the biosynthesis of gossypol and other terpene compounds. In addition, we screened 13 transcription factors with different expression levels, which might display key function in gland formation and gossypol biosynthesis.

关键词

棉花(Gossypiumhirsutum L.) / 腺体 / 近等基因系 / 转录组

Keywords

cotton (Gossypium hirsutum L.) / gland / near-isogenic lines / transcriptome

引用本文

导出引用
姜鹏飞, 陆才瑞, 邹长松, 程海亮, 杨文翠, 冯晓旭, 张友平, 王巧连, 宋国立. 棉花无腺体近等基因系差异表达基因分析[J]. 棉花学报, 2015, 27(6): 506-514. https://doi.org/10.11963/issn.1002-7807.201506002
Jiang Pengfei, Lu Cairui, Zou Changsong, Cheng Hailiang, Yang Wencui, Feng Xiaoxu, Zhang Youping, Wang Qiaolian, Song Guoli. Analysis of Differentially Expressed Genes from Glandless Near-isogenic Lines of Cotton[J]. Cotton Science, 2015, 27(6): 506-514. https://doi.org/10.11963/issn.1002-7807.201506002

参考文献

[1] Bertrand J A, Sudduth T Q, Condon A, et al. Nutrient content of whole cottonseed
[J]. Journal of Dairy Science, 2005, 88(4): 1470- 1477.
[2] Gerasimidis K, Triantafillou D, Babatzimopoulou M, et al. Preparation of an edible cottonseed protein concentrate and evaluation of its functional properties
[J]. International Journal of Food Sciences and Nutrition, 2007, 58(6): 486-490.
[3] Blom J H, Lee K J, Rinchard J, et al. Reproductive efficiency and maternal-offspring transfer of gossypol in rainbow trout(Oncorhynchus mykiss) fed diets containing cottonseed meal
[J]. Journal of Animal Science, 2001, 79: 1533-1539.
[4] Stipanovic R D, Lopez Jr J D, Dowd M K, et al. Effect of racemic and (+)- and (-)-gossypol on the survival and development of Helicoverpa zea larvae
[J]. Journal of Chemical Ecology, 2006, 32(5): 959-968.
[5] Wang J Y, Cai Y, Gou J Y, et al. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting
[J]. Applied and Environmental Microbiology, 2004, 70(8): 4989-4995.
[6] Scheffler J A, Romano G B. Modifying gossypol in cotton (Gossypium hirsutum L.): a cost effective method for small seed samples
[J]. Journal of Cotton Science, 2008, 12: 202-209.
[7] 邓德旺, 曲健木. 陆地棉色素腺体基因的表达
[J].棉花学报,1991, 3(2):1-8. Deng Dewang, Qu Jianmu. The expression of pigment gland genes in upland cotton (Gossypium hirsutum L.)
[J]. Cotton Science, 1991, 3(2):1-8.
[8] Miravalle R J, Hyer A H. Identification of the Gl2gl2Gl3gl3 genotype in breeding for glandless cottonseed
[J]. Crop Science, 1962, 2(5): 395-397.
[9] Lee J A. Genetical studies concerning the distribution of pigment glands in the cotyledons and leaves of upland cotton
[J]. Genetics, 1962, 47(1): 131.
[10] Dong Chengguang, Ding Yezhang, Guo Wangzhen, et al. Fine mapping of the dominant glandless Gl2e in sea-island cotton (Gossypiumbar badence L.)
[J]. Chinese Science Bulletin, 2007, 52(22): 3105-3109.
[11] 黄娟. 棉花显性无腺体基因GL2e的精细定位
[D]. 开封: 河南大学, 2012. Huang Juan. Fine mapping of the dominant glandless gene GL2e in cotton
[D]. Kaifeng: Henan University, 2012.
[12] 程海亮. 棉花显性无腺体基因GL2e的精细定位与克隆
[D]. 北京: 中国农业科学院, 2014. Cheng Hailiang. Fine mapping and cloning of the dominant glandless gene GL2e in cotton (Gossypium hirsutum L.)
[D].Beijing: Chinese Academy of Agricultural Sciences, 2014.
[13] Kaplan I, Halitschke R, Kessler A, et al. Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory
[J]. Ecology Letters, 2008, 11(8): 841-851.
[14] Loguercio L L, Scott H C, Trolinder N L, et al. Hmg-coA reductase gene family in cotton(Gossypium hirsutum L.): unique structural features and differential expression of hmg2 potentially associated with synthesis of specific isoprenoids in developing embryos
[J]. Plant and Cell Physiology, 1999, 40(7): 750- 761.
[15] Liu C J, Heinstein P, Chen X Y. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors
[J]. Molecular Plant-microbe Interactions, 1999, 12(12): 1095- 1104.
[16] Meng Y L, Jia J W, Liu C J, et al. Coordinated accumulation of (+)-δ-cadinene synthase mRNAs and gossypol in developing seeds of Gossypium hirsutum and a new member of the cad 1 family from G. arboreum
[
J]. Journal of Natural Products, 1999, 62(2): 248-252.
[17] Raherison E, Rigault P, Caron S, et al. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression
[J]. BMC Genomics, 2012, 13: 434.
[18] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics
[J]. Nature Reviews Genetics, 2009, 10(1):57-63.
[19] Tao Tao, Zhao Liang, Lü Yuanda, et al. Transcriptome sequencing and differential gene expression analysis of delayed gland morphogenesis in Gossypium australe during seed germination
[J]. Plos One, 2013, 8(9): e75323.
[20] 李锡花, 吴嫚, 于霁雯, 等. 棉花纤维发育早期RNA-seq转录组分析
[J]. 棉花学报, 2013, 25(3): 189-196. Li Xihua, Wu Man, Yu Jiwen, et al. Transcriptome analysis of early developing cotton fiber by RNA-Seq
[J]. Cotton Science, 2013, 25(3): 189-196.
[21] 安文燕, 孙君灵,龚文芳, 等. 陆地棉矮化突变体Ari327茎尖的转录组分析
[J]. 植物遗传资源学报, 2014, 15(5): 1046-1052. An Wenyan, Sun Junling, Gong Wenfang, et al. Transcriptome analysis of stem apex of an upland cotton dwarf mutant Ari1327
[J]. Journal of Plant Genetic Resources, 2014, 15(5): 1046-1052.
[22] 董承光, 王娟, 肖光顺, 等. 棉花腺体性状基因的遗传与克隆研究进展
[J]. 中国农学通报, 2010, 26(7): 44-47. Dong Chengguang, Wang Juan, Xiao Guangshun, et al. Advances on gland gene heredity and clone in cotton(Gossypium)
[J]. Chinese Agricultural Science Bulletin, 2010, 26(7): 44-47.
[23] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome
[J]. Nature Biotechnology, 2011, 29(7): 644-652.
[24] Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq
[J]. Nature methods, 2008, 5(7): 621-628.
[25] Bouvier F, Rahier A, Camara B, et al. Biogenesis, molecular regulation and function of plant isoprenoids
[J]. Progress in Lipid Research, 2005, 44: 357-429.
[26] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism
[J]. Annual Review of Plant Biology, 2005, 56: 165- 185.
[27] Xu Y H, Wang J W, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor thatregulates thesesquiterpene synthase gene (+)-δ-cadinene synthase-A
[J]. Plant Physiology, 2004, 135(1): 507-515.
[28] Xie Y F, Wang B C, Li B, et al. Construction of cDNA library of cotton mutant (Xiangmian-18) library during glandforming stage
[J]. Colloids and Surface B:Biointerfaces, 2007, 60(2): 258- 263.
[29] 邱志坚, 刘文哲. 棉花色素腺体研究进展
[J]. 鲁东大学学报: 自然科学版, 2008, 24(2): 162-167. Qiu Zhijian, Liu Wenzhe. Advances in research on pigment gland of cotton
[J]. Ludong University Journal: Natural Science Edition, 2008, 24(2): 162-167.
[30] Fernandez-Calvo P, Chini A, Fernandez-Barbero G, et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses
[J]. Plant Cell, 2011, 23(2): 701-715.
[31] Niu Y, Figueroa P, Browse J. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis
[J]. Journal of Experimental Botany, 2011, 62(6): 2143-2154.
[32] Yoshida Y, Sano R, Wada T, Takabayashi J, et al. Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis
[J]. Development, 2009, 136(6): 1039- 1048.
[33] Cai Y F, Chen M, Sun Q, et al. Profiling gene expression during gland morphogenesis of a glanded and a glandless upland cotton
[J]. Journal of Plant Biology, 2009, 52(6): 609-615.
[34] Sun Quan, Cai Yingfan, Li Shengwei, et al. Identification of the genes and pathways associated with pigment gland morphogenesis in cotton by transcriptome profiling of near-isogenic lines
[J]. Biologia, 2013, 68(2): 249-257.     

基金

国家自然科学基金(31271768, 31301369, 31401425)
PDF(840 KB)

110

Accesses

0

Citation

Detail

段落导航
相关文章

/