棉花S-腺苷蛋氨酸脱羧酶基因(GhSAMDC2/3/4)的克隆及其诱导表达分析

王凡龙, 朱华国, 程文翰, 刘永昌, 成新琪, 孙杰

PDF(1318 KB)
PDF(1318 KB)
棉花学报 ›› 2015, Vol. 27 ›› Issue (2) : 176-183. DOI: 10.11963/issn.1002-7807.201502011
研究与进展

棉花S-腺苷蛋氨酸脱羧酶基因(GhSAMDC2/3/4)的克隆及其诱导表达分析

  • 王凡龙,朱华国*,程文翰,刘永昌,成新琪,孙杰
作者信息 +

Cloning and Induced Expression Analysis of GhSAMDC2/3/4 in Cotton(Gossypium hirsutum L.)

  • Wang Fanlong, Zhu Huaguo*, Cheng Wenhan, Liu Yongchang, Cheng Xinqi, Sun Jie
Author information +
History +

摘要

利用电子克隆结合RT-PCR技术克隆获得陆地棉(Gossypium hirsutum L.)S ̄腺苷蛋氨酸脱羧酶(S-adenosylmethionine decarboxylase, SAMDC)基因家族3个基因,分别命名为GhSAMDC2、GhSAMDC3和GhSAMDC4。序列分析显示,该基因cDNA包含的upstream ORF(uORF)和 main ORF(mORF)为植物SAMDC基因特征ORF,其中mORF长度分别为1068 bp、1110 bp和1032 bp,分别编码355、369和343个氨基酸。聚类分析表明,GhSAMDC2/3蛋白与可可树(Theobroma cacao)SAMDC聚为一类,且GhSAMDC2与GhSAMDC3蛋白亲缘关系最近;GhSAMDC4与拟南芥AtSAMDC4聚为一类。实时荧光定量PCR分析表明,GhSAMDC2在茎中表达相对较高,随着纤维发育其表达量不断增加,在纤维发育后期其表达量达到最高;GhSAMDC2/3/4在不同的胁迫条件下表现出不同的表达模式,GhSAMDC2受低温和干旱胁迫诱导最强烈,GhSAMDC3响应盐胁迫显著,GhSAMDC4受ABA诱导强烈。上述结果为进一步研究棉花SAMDC基因功能奠定了一定基础。

Abstract

S-adenosine methionine decarboxylase(SAMDC) is one of three key enzymes in the polyamine synthesis pathway. GhSAMDC2/3/4(GhSAMDC2, GhSAMDC3 and GhSAMDC4) were acquired from Gossypium hirsutum L. by electronic cloning and reverse-transcription polymerase chain reaction(RT-PCR) technology. Sequence analysis showed that the gene cDNA contained two plant general SAMDC open reading frames(ORFs), the upstream ORF(uORF) and the main ORF(mORF). The mORFs of GhSAMDC2/3/4 were 1068, 1110 and 1032 bp, encoding 355, 369 and 343 amino acids, respectively. Cluster analysis showed that GhSAMDC2/3 and cacao tree SAMDC clustered within a class and GhSAMDC4 and AtSAMDC4 clustered within a separate category. Real-time PCR analysis showed GhSAMDC2/3/4 were expressed in all testing organization and fiber. GhSAMDC2 was obviously expressed in stem and late developed fiber. GhSAMDC2/3/4 were induced by abiotic stress, but GhSAMDC2 was strongly affected by low temperature and drought stress. GhSAMDC3 responded significantly to salt stress and GhSAMDC4 was strongly induced by ABA.

关键词

棉花 / 多胺 / S-腺苷蛋氨酸脱羧酶基因 / 非生物胁迫

Keywords

Cotton / Polyamines / S-adenosylmethionine decarboxylase gene / Abiotic stress

引用本文

导出引用
王凡龙, 朱华国, 程文翰, 刘永昌, 成新琪, 孙杰. 棉花S-腺苷蛋氨酸脱羧酶基因(GhSAMDC2/3/4)的克隆及其诱导表达分析[J]. 棉花学报, 2015, 27(2): 176-183. https://doi.org/10.11963/issn.1002-7807.201502011
Wang Fanlong, Zhu Huaguo, Cheng Wenhan, Liu Yongchang, Cheng Xinqi, Sun Jie. Cloning and Induced Expression Analysis of GhSAMDC2/3/4 in Cotton(Gossypium hirsutum L.)[J]. Cotton Science, 2015, 27(2): 176-183. https://doi.org/10.11963/issn.1002-7807.201502011

参考文献

[1] Gill S S, Tuteja N. Polyamines and fabiotic stress tolerance in plants
[J]. Plant Signal Behavior, 2010, 5(1): 26-33.
[2] Liu J H, Nada K, Honda C, et al. Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response
[J]. Journal of Experimental Botany, 2006, 57(11): 2589-2599.
[3] Wen X P, Pang X M, Matsuda N, et al. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers
[J]. Transgenic Research, 2008, 17(2): 251-263.
[4] 蔡秋华. 植物多胺的生理研究进展
[J]. 福建稻麦科技, 2009, 27(1): 37-40. Cai Qiuhua. Plant physiological polyamine research progress
[J]. Fujian Science and Technology of Rice and Wheat, 2009, 27(1): 37-40.
[5] Konstantinos A, Paschalidis K, Roubelakisangelakis. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant correlations with age cell division/expansion, and differentiation
[J]. Plant Physiol, 2005, 138(1): 142-15
[6] Alcázar R, Cuevas J C, Patron M, et al. Abscisic acid modulates polyamine metabolism under water  stress in Arabidopsis thaliana
[J]. Physiol Plant, 2006, 128(3): 448-455.
[7] Groppa M D, Benavides M P. Polyamines and abiotic stress: recent advances
[J]. Amino Acid, 2008, 34(1): 35-45.
[8] 路玉兰, 孙艳香, 冯雪, 等. 百脉根S ̄腺苷甲硫氨酸脱羧酶基因克隆与表达分析
[J]. 华北农学报, 2013, 28(2): 78-85. Lu Yulan, Sun Yanxiang, Feng Xue, et al. Cloning and expression analysis of S-adenosylmethionine decarboxylase gene from Lotus corniculatus L.
[J]. Acta Agriculturae Boreali Sincia, 2013, 28(2): 78-85.
[9] 王小利, 刘晓霞, 王舒颖, 等. 高羊茅腺苷甲硫氨酸脱羧酶基因 FaSAMDC 的克隆与差异表达分析
[J]. 草业学报, 2011, 20(4): 169-179. Wang Xiaoli, Liu Xiaoxia, Wang Shuying, et al. Cloning and differential expressed analysis of FaSAMDC gene in Festuca arundinacea
[J]. Acta Prataculturae Sinica, 2011, 20(4): 169-179.
[10] 张梅, 王然, 马春晖, 等. 杜梨S ̄腺苷甲硫氨酸脱羧酶基因的克隆与生物信息学分析
[J]. 华北农学报, 2013, 28(1) : 82-87. Zhang Mei, Wang Ran, Ma Chunhui, et al. Cloning and bio-informatics analysis of S-adenosylmethionine decarboxylase gene in Pyrus betulaefolia Bunge
[J]. Acta Agriculturae Boreali Sincia, 2013, 28(1): 82-87.
[11] 陆俊杏, 卢坤, 张凯, 等. 甘蓝型油菜SAMDC3基因及其启动子的克隆与分析
[J]. 基因组学与应用生物学, 2010, 29(2): 215- 224. Lu Junxing, Lu Kun, Zhang Kai, et al. Cloning and analysis of SAMDC3 genes of their promoters from Brassica napus
[J]. Genomics and Applied Biology, 2010, 29(2): 215-224.
[12] Hao Y J, Zhang Z, Kitashiba H, et al. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses
[J]. Gene, 2005, 350(1): 41-50.
[13] 刘志勇, 王孝宣, 高建昌, 等. 番茄 S ̄腺苷蛋氨酸脱羧酶基因 SlSAMDC1 的克隆与序列分析
[J]. 园艺学报, 2008, 35 ( 8) : 1137-1146. Liu Zhiyong, Wang Xiaoxuan, Gao Jianchang,et al. Cloning and sequence analysis of a S-adenosylmethionine decarboxylase gene SlSAMDC1  in tomato
[J]. Acta Horticulturae Sinica, 2008, 35 (8): 1137-1146.
[14] Franceschftti  M,  Hanfrey  C,  Scaramagli  S, et al. Characterization  of  monocot and dicot plant S-adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames
[J]. Biochemical Journal, 2001, 353: 403-409.
[15] Li Z Y, Chen S Y. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress
[J]. Theoretical and Applied Genetics, 2000, 100(5): 782-788.
[16] 张佳景, 丁淑丽, 邹宜静, 等. 植物腺苷甲硫氨酸脱羧酶研究进展
[J]. 细胞生物学杂志, 2008, 30(1): 622-628. Zhang Jiajing, Ding Shuli, Zou Yijing, et al. The research progress of S-adenosylmethionine decarboxylase in plant
[J]. Chinese Journal of Cell Biology, 2008, 30(1): 622-628.
[17] Waie B, Rajam M V. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene
[J]. Plant Science, 2003, 164(5): 727-734.
[18] Cheng L, Zou Y, Ding S, et al. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress
[J]. Journal of Integrative Plant Biology, 2009, 51(5): 489- 499.
[19] Momtaz O A, Hussein E M, Fahmy E M, et al. Expression of S-adenosylmethionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90
[J]. GM crops, 2010, 1(4): 257-266.
[20] Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana
[J]. Plant and Cell Physiology, 2004, 45(6): 712-722.
[21] 耿卫东, 李艳军, 张新宇, 等. 棉花 S ̄腺苷甲硫氨酸脱羧酶基因的克隆及低温下的表达分析
[J]. 作物学报, 2012, 38(9): 1649-1656. Geng Weidong, Li Yanjun, Zhang Xinyu, et al. Molecular cloning and expression analysis of GhSAMDC at low temperature stress in cotton(Gossypium hirsutum L.)
[J]. Acta Agronomica Sinica, 2012, 38 (9): 1649-1656.
[22] Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis
[J]. Science, 1986, 234(4774): 364-368.
[23] Rechsteiner M, Rogers S, Rote K. Protein-structure and intracellular stability
[J]. Trends in Biochemical Sciences, 1987, 12(10): 390-394.
[24] 金勇丰, 边腾飞, 周萍. 高等植物基因上游可译框架 (uOFR)的分析
[J]. 农业生物技术学报, 2004, 12(5): 493-499. Jin Yongfeng, Bian Tengfei, Zhou Ping. Upstream open reading frames (uORF) analysis of plant mRNA
[J]. Journal of Agriculteral Biotechnology, 2004, 12 (5): 493-499.
[25] Hanfrey C, Franceschetti M, Mayer M J, et al. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations
[J]. Journal of Biological Chemistry, 2002, 277(46): 44131-44139.
[26] Ge C, Cui X, Wang Y, et al. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development
[J]. Cell research, 2006, 16(5): 446-456.
[27] Urano K, Hobo T, Shinozaki K. Arabidopsis ADC genes involved in polyamine biosynthesis is essential for seed development
[J]. FEBS letters, 2005, 579(6): 1557-1564.
[28] Imai A, Matsuyama T, Hanzawa Y, et al. Spermidine synthase genes are essential for survival of Arabidopsis
[J]. Plant Physiology, 2004, 135(3): 1565-1573.  

基金

国家自然科学基金(31301363);棉花生物学国家重点实验室开放课题(CB2014A12);兵团种质资源创新与功能基因发掘利用专项(2012BB049);国家“十二五”科技支撑计划(2011BAD35B05-3-6)

PDF(1318 KB)

130

Accesses

0

Citation

Detail

段落导航
相关文章

/