[1] Gill S S, Tuteja N. Polyamines and fabiotic stress tolerance in plants[J]. Plant Signal Behavior, 2010, 5(1): 26-33.
[2] Liu J H, Nada K, Honda C, et al. Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response[J]. Journal of Experimental Botany, 2006, 57(11): 2589-2599.
[3] Wen X P, Pang X M, Matsuda N, et al. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers[J]. Transgenic Research, 2008, 17(2): 251-263.
[4] 蔡秋华. 植物多胺的生理研究进展[J]. 福建稻麦科技, 2009, 27(1): 37-40.
Cai Qiuhua. Plant physiological polyamine research progress[J]. Fujian Science and Technology of Rice and Wheat, 2009, 27(1): 37-40.
[5] Konstantinos A, Paschalidis K, Roubelakisangelakis. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant correlations with age cell division/expansion, and differentiation[J]. Plant Physiol, 2005, 138(1): 142-15
[6] Alcázar R, Cuevas J C, Patron M, et al. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana[J]. Physiol Plant, 2006, 128(3): 448-455.
[7] Groppa M D, Benavides M P. Polyamines and abiotic stress: recent advances[J]. Amino Acid, 2008, 34(1): 35-45.
[8] 路玉兰, 孙艳香, 冯雪, 等. 百脉根S ̄腺苷甲硫氨酸脱羧酶基因克隆与表达分析[J]. 华北农学报, 2013, 28(2): 78-85.
Lu Yulan, Sun Yanxiang, Feng Xue, et al. Cloning and expression analysis of S-adenosylmethionine decarboxylase gene from Lotus corniculatus L.[J]. Acta Agriculturae Boreali Sincia, 2013, 28(2): 78-85.
[9] 王小利, 刘晓霞, 王舒颖, 等. 高羊茅腺苷甲硫氨酸脱羧酶基因 FaSAMDC 的克隆与差异表达分析[J]. 草业学报, 2011, 20(4): 169-179.
Wang Xiaoli, Liu Xiaoxia, Wang Shuying, et al. Cloning and differential expressed analysis of FaSAMDC gene in Festuca arundinacea[J]. Acta Prataculturae Sinica, 2011, 20(4): 169-179.
[10] 张梅, 王然, 马春晖, 等. 杜梨S ̄腺苷甲硫氨酸脱羧酶基因的克隆与生物信息学分析[J]. 华北农学报, 2013, 28(1) : 82-87.
Zhang Mei, Wang Ran, Ma Chunhui, et al. Cloning and bio-informatics analysis of S-adenosylmethionine decarboxylase gene in Pyrus betulaefolia Bunge[J]. Acta Agriculturae Boreali Sincia, 2013, 28(1): 82-87.
[11] 陆俊杏, 卢坤, 张凯, 等. 甘蓝型油菜SAMDC3基因及其启动子的克隆与分析[J]. 基因组学与应用生物学, 2010, 29(2): 215- 224.
Lu Junxing, Lu Kun, Zhang Kai, et al. Cloning and analysis of SAMDC3 genes of their promoters from Brassica napus[J]. Genomics and Applied Biology, 2010, 29(2): 215-224.
[12] Hao Y J, Zhang Z, Kitashiba H, et al. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses[J]. Gene, 2005, 350(1): 41-50.
[13] 刘志勇, 王孝宣, 高建昌, 等. 番茄 S ̄腺苷蛋氨酸脱羧酶基因 SlSAMDC1 的克隆与序列分析[J]. 园艺学报, 2008, 35 ( 8) : 1137-1146.
Liu Zhiyong, Wang Xiaoxuan, Gao Jianchang,et al. Cloning and sequence analysis of a S-adenosylmethionine decarboxylase gene SlSAMDC1 in tomato[J]. Acta Horticulturae Sinica, 2008, 35 (8): 1137-1146.
[14] Franceschftti M, Hanfrey C, Scaramagli S, et al. Characterization of monocot and dicot plant S-adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames[J]. Biochemical Journal, 2001, 353: 403-409.
[15] Li Z Y, Chen S Y. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress[J]. Theoretical and Applied Genetics, 2000, 100(5): 782-788.
[16] 张佳景, 丁淑丽, 邹宜静, 等. 植物腺苷甲硫氨酸脱羧酶研究进展[J]. 细胞生物学杂志, 2008, 30(1): 622-628.
Zhang Jiajing, Ding Shuli, Zou Yijing, et al. The research progress of S-adenosylmethionine decarboxylase in plant[J]. Chinese Journal of Cell Biology, 2008, 30(1): 622-628.
[17] Waie B, Rajam M V. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene[J]. Plant Science, 2003, 164(5): 727-734.
[18] Cheng L, Zou Y, Ding S, et al. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress[J]. Journal of Integrative Plant Biology, 2009, 51(5): 489- 499.
[19] Momtaz O A, Hussein E M, Fahmy E M, et al. Expression of S-adenosylmethionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90[J]. GM crops, 2010, 1(4): 257-266.
[20] Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana[J]. Plant and Cell Physiology, 2004, 45(6): 712-722.
[21] 耿卫东, 李艳军, 张新宇, 等. 棉花 S ̄腺苷甲硫氨酸脱羧酶基因的克隆及低温下的表达分析[J]. 作物学报, 2012, 38(9): 1649-1656.
Geng Weidong, Li Yanjun, Zhang Xinyu, et al. Molecular cloning and expression analysis of GhSAMDC at low temperature stress in cotton(Gossypium hirsutum L.)[J]. Acta Agronomica Sinica, 2012, 38 (9): 1649-1656.
[22] Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis[J]. Science, 1986, 234(4774): 364-368.
[23] Rechsteiner M, Rogers S, Rote K. Protein-structure and intracellular stability[J]. Trends in Biochemical Sciences, 1987, 12(10): 390-394.
[24] 金勇丰, 边腾飞, 周萍. 高等植物基因上游可译框架 (uOFR)的分析[J]. 农业生物技术学报, 2004, 12(5): 493-499.
Jin Yongfeng, Bian Tengfei, Zhou Ping. Upstream open reading frames (uORF) analysis of plant mRNA[J]. Journal of Agriculteral Biotechnology, 2004, 12 (5): 493-499.
[25] Hanfrey C, Franceschetti M, Mayer M J, et al. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations[J]. Journal of Biological Chemistry, 2002, 277(46): 44131-44139.
[26] Ge C, Cui X, Wang Y, et al. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development [J]. Cell research, 2006, 16(5): 446-456.
[27] Urano K, Hobo T, Shinozaki K. Arabidopsis ADC genes involved in polyamine biosynthesis is essential for seed development[J]. FEBS letters, 2005, 579(6): 1557-1564.
[28] Imai A, Matsuyama T, Hanzawa Y, et al. Spermidine synthase genes are essential for survival of Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1565-1573. |