
花铃期不同灌溉处理对棉花光合特性和产量的影响
齐文婷, 薛皓文, 王政钧, 王航, 马晓鹏, 肖娟, 王建东
花铃期不同灌溉处理对棉花光合特性和产量的影响
Effects of different irrigation treatments at flowering and boll setting stage on photosynthetic characteristics and yield of cotton
【目的】 揭示花铃期不同灌水下限对棉花叶片光合特征参数及产量的影响,为新疆北疆植棉区灌溉制度的优化提供参考。【方法】 2023年在新疆昌吉开展大田试验,以中棉所125为供试品种,在花铃期设置3种灌水下限,分别为55%(T1)、60%(T2)和70%(T3)田间持水量,以当地常规的滴灌模式作为对照(CK),分析不同处理对花铃期土壤含水率、棉花叶片光合特性及产量性状的影响,并探究了光合指标与叶面温度和气象因子之间的相关关系和回归关系。【结果】 花铃期T3处理的0~60 cm土层土壤含水率维持在相对较高且稳定的范围(18.5%~21.6%)。花铃前期(7月11日),T3处理的净光合速率日平均值最大,呈升-降-升-降的日变化趋势。相关分析表明,净光合速率、蒸腾速率均与0~60 cm土层土壤含水率、叶面温度、太阳辐射强度和环境温度呈显著正相关关系。T3处理的籽棉产量和灌溉水利用效率最高,分别较CK显著提高26.46%和71.43%。基于秩和比法的多目标综合评价表明,T3处理的综合效果最优。【结论】 在水资源短缺的北疆膜下滴灌棉田,花铃期灌水下限、上限分别设置为70%、90%田间持水量可以实现节水且高产。
[Objective] This study aims to reveal the effects of different irrigation treatments at the flowering and boll setting stage on the photosynthetic characteristics and yield of cotton, and to provide a reference for the optimization of irrigation system in cotton planting areas of northern Xinjiang. [Methods] A field experiment was conducted in Changji, Xinjiang in 2023, with CCRI 125 as the test variety. Three lower limits of irrigation were set at the flowering and boll setting stage, which were 55% field capacity (T1), 60% field capacity (T2), and 70% field capacity (T3), respectively. The local conventional drip irrigation mode was used as the control (CK). The effects of different treatments on the soil moisture content, photosynthetic characteristics, and yield traits of cotton during the flowering and boll setting stage were analyzed. And the correlation and regression relationships between the photosynthetic index, foliar temperature, and the meteorological factors were also explored. [Results] The soil moisture content of 0-60 cm soil layer of T3 treatment was maintained in a relatively high and stable range (18.5%-21.6%) during the flowering and boll setting period. During the early flowering and boll setting period (11 July), the daily average of net photosynthesis rate of T3 treatment was the highest, showing a daily trend of increasing-decreasing-ascending-decreasing. Correlation analyses showed that net photosynthetic rate and transpiration rate were positively correlated with 0-60 cm soil moisture content, foliar temperature, solar radiation intensity, and ambient temperature. Seed cotton yield and irrigation water use efficiency were the highest under T3 treatment, which were significantly increased by 26.46% and 71.43%, respectively, compared with that of CK. The multi-objective evaluation based on the rank-sum ratio method showed that T3 treatment had the best overall effect. [Conclusion] In the northern Xinjiang where water resources are scarce, the lower and upper limits of irrigation at the flowering and boll setting stage setting at 70% and 90% field capacity, respectively, is a reasonable water-saving and high-yield irrigation mode for cotton fields under the drip irrigation with plastic-film mulching.
棉花 / 土壤含水率 / 花铃期 / 光合特性 / 产量 / 灌水下限 / 田间持水量 {{custom_keyword}} /
cotton / soil moisture content / flowering and boll setting stage / photosynthetic characteristics / yield / lower limit of irrigation / field capacity {{custom_keyword}} /
表1 各处理的灌水量和灌水次数Table 1 Irrigation amount and irrigation frequency of each treatment |
处理 Treatment | 灌水量 Irrigation amount/mm | 灌水次数 Irrigation frequency | 灌溉定额 Irrigation quota/mm | |||
---|---|---|---|---|---|---|
苗期 Seedling period | 蕾期 Squaring period | 花铃期Flowering and boll setting period | 吐絮期 Boll opening period | |||
T1 | 12.48 (1) | 114.23 (9) | 261.75 (7) | 0 (0) | 17 | 388.46 |
T2 | 7.56 (1) | 107.25 (8) | 234.60 (7) | 31.65 (1) | 17 | 381.06 |
T3 | 14.15 (1) | 119.48 (9) | 279.75 (12) | 0 (0) | 22 | 413.38 |
CK | 82.50 (2) | 123.75 (3) | 354.75 (7) | 0 (0) | 12 | 561.00 |
注:括号内的数值表示不同生育时期的灌水次数。 | |
Note: The values in the brackets indicate the irrigation frequency during different growth periods. |
表2 不同灌水处理下棉花叶片光合参数日平均值的比较Table 2 Comparison of daily average photosynthetic parameters of cotton leaf under different irrigation treatments |
日期 Date | 处理 Treatment | Pn/(μmol· m-2·s-1) | Tr/(mmol· m-2·s-1) | Gs/(mmol· m-2·s-1) | Ci/(μmol·mmol-1) | WUEL/(μmol·mmol-1) |
---|---|---|---|---|---|---|
07-11 | T1 | 13.79±1.86 b | 2.07±0.33 b | 86.77±12.55 b | 113.18±12.43 a | 8.54±1.07 ab |
T2 | 15.06±2.38 a | 2.24±0.41 a | 91.39±13.82 a | 112.46±17.66 a | 8.39±0.90 a | |
T3 | 15.13±2.10 a | 2.28±0.39 a | 91.59±18.32 ab | 111.95±24.06 a | 8.62±1.52 a | |
CK | 13.77±2.83 a | 2.13±0.30 a | 85.39±12.43 ab | 111.89±24.37 a | 6.83±0.97 b | |
08-05 | T1 | 12.44±2.36 b | 2.03±0.16 b | 93.63±11.54 a | 196.54±34.74 a | 6.53±1.02 a |
T2 | 12.75±1.99 b | 2.25±0.18 ab | 96.07±14.97 a | 216.96±29.70 a | 6.27±0.90 a | |
T3 | 12.96±3.12 b | 2.32±0.17 ab | 93.02±13.00 a | 218.10±48.92 a | 6.30±1.31 a | |
CK | 15.32±3.33 a | 2.48±0.16 a | 102.22±12.66 a | 222.33±25.62 a | 6.54±1.25 a | |
09-07 | T1 | 1.91±0.23 b | 0.74±0.18 b | 43.19±4.96 b | 353.53±21.00 a | 2.57±0.70 a |
T2 | 2.35±0.59 b | 0.89±0.19 b | 44.79±6.17 b | 356.67±19.30 a | 2.67±0.65 a | |
T3 | 1.93±0.20 b | 0.86±0.09 b | 43.35±5.13 b | 354.62±42.27 a | 2.70±0.86 a | |
CK | 2.53±0.66 a | 1.25±0.34 a | 56.93±13.04 a | 368.08±42.23 a | 2.69±0.93 a |
注:数据为平均值±标准差。同列不同小写字母表示同一日期不同处理间差异显著(P<0.05)。 | |
Note: Data is mean ± standard deviation. Different lowercase letters in the same column indicate significant difference among different treatments on the same date (P < 0.05). |
图4 不同处理下棉花叶片光合参数影响因素的日变化同列不同小写字母表示同一时间点不同处理间差异显著(P<0.05)。 Fig. 4 Diurnal change of influencing factors of photosynthetic parameters of cotton leaf under different treatments Different lowercase letters in the same column indicate significant difference among different treatments at the same time (P < 0.05). |
图5 光合指标与其影响因素的相关分析Pn:净光合速率,Tr:蒸腾速率,Gs:气孔导度,Ci:胞间CO2浓度,WUEL:叶片水分利用效率,θ:0~60 cm土层土壤含水率,Tl:叶面温度,S:太阳辐射强度,Ta:环境温度,RH:相对湿度。*表示在0.05水平显著相关。 Fig. 5 Correlation analysis between photosynthetic indexes and their influencing factors Pn: net photosynthetic rate, Tr: transpiration rate, Gs: stomatal conductance, Ci: intercellular CO2 concentration, WUEL: water use efficiency of leaf, θ: soil moisture content in 0-60 cm soil layer, Tl: leaf temperature, S: solar radiation intensity, Ta: ambient temperature, RH: relative humidity of atmosphere. * indicates significant correlation at the 0.05 probability level. |
表3 棉花叶片光合指标与其影响因子的一元线性回归方程Table 3 Simple linear regression equations of photosynthetic indexes of cotton leaf and their influencing factors |
影响 因素 Impact factor | 光合指标Photosynthetic indicator | 线性方程 Linear equation | R2 | P | 光合指标Photosynthetic indicator | 线性方程 Linear equation | R2 | P |
---|---|---|---|---|---|---|---|---|
S | Pn | y=0.013x+2.483 | 0.511 3 | <0.01 | Tr | y=0.002x+0.829 | 0.513 5 | <0.01 |
Tl | y=0.920x-17.582 | 0.511 6 | y=0.134x-2.479 | 0.530 7 | ||||
RH | y=-0.258x+23.521 | 0.522 1 | y=-0.041x+4.158 | 0.512 9 | ||||
Ta | y=0.698x-9.957 | 0.523 4 | y=0.110x-1.012 | 0.531 8 | ||||
S | Gs | y=0.085x+20.798 | 0.522 5 | <0.01 | Ci | y=-0.229x+380.930 | 0.516 6 | <0.01 |
Tl | y=-5.974x+258.310 | 0.525 7 | y=-16.358x+766.290 | 0.515 6 | ||||
RH | y=2.037x-19.367 | 0.530 5 | y=5.536x-52.471 | 0.530 1 | ||||
Ta | y=-5.404x+213.160 | 0.519 0 | y=-11.975x+576.480 | 0.510 5 |
表4 棉花叶片光合指标与其影响因子的多元逐步回归方程Table 4 Multiple stepwise regression equations of photosynthetic indexes and their influencing factors in cotton |
光合指标 Photosynthetic indicator | 方程 Equation | R2 | P |
---|---|---|---|
Pn | Pn=0.598Tl+0.920RH+0.595Ta+0.289S-8.575 | 0.488 | 0.006 |
Tr | Tr=0.815Ta+0.791RH+0.358S-40.731 | 0.324 | 0.000 |
Gs | Gs=1.314RH+0.841Ta+0.282S-279.889 | 0.522 | 0.006 |
Ci | Ci=-0.304S-0.302Ta+457.681 | 0.256 | 0.013 |
表5 不同处理下棉花产量性状及水分利用效率的比较Table 5 Comparison of yield traits and water use efficiency of cotton under different treatments |
处理 Treatment | 收获株数 Number of harvested plants/(×103·hm-2) | 单株铃数 Number of bolls per plant | 铃重 Boll weight/g | 籽棉产量 Seed cotton yield/ (kg·hm-2) | IWUE/ (kg·m-3) |
---|---|---|---|---|---|
T1 | 217.5±7.95 a | 6.10±0.57 ab | 5.25±0.02 a | 6 275.55±788.25 ab | 1.62±0.20 a |
T2 | 213.0±3.90 a | 6.86±0.50 ab | 4.58±0.29 a | 6 042.00±420.30 ab | 1.59±0.11 a |
T3 | 216.0±8.25 a | 6.86±0.20 a | 5.22±0.11 a | 6 946.65±224.55 a | 1.68±0.05 a |
CK | 213.0±9.00 a | 5.72±0.60 b | 5.02±0.22 a | 5 493.00±410.70 b | 0.98±0.07 b |
注:同列不同小写字母表示不同处理间差异显著(P<0.05)。 | |
Note: Different lowercase letters in the same column indicate significant difference among different treatments (P < 0.05). |
表6 基于棉花光合指标、产量及其构成因素和灌溉定额的综合效益评价Table 6 Comprehensive benefit evaluation of cotton based on photosynthetic indicators, yield and its components, and irrigation quota |
处理Treatment | 编秩Organize and rank | RSR | 排序Ranking | Probit | 分挡结果Grading result | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pn | Tr | Gs | Ci | WUEL | H | Nb | BW | Y | NI | I | |||||
T1 | 1.000 | 1.000 | 1.000 | 1.000 | 4.000 | 4 | 2 | 4.000 | 2.615 | 2.500 | 3.877 | 0.613 | 3 | 5.000 | 2 |
T2 | 2.744 | 2.597 | 2.239 | 2.754 | 3.400 | 1 | 4 | 1.000 | 2.133 | 2.500 | 4.000 | 0.645 | 2 | 5.675 | 2 |
T3 | 2.620 | 2.798 | 1.626 | 2.645 | 3.952 | 3 | 4 | 3.866 | 4.000 | 4.000 | 3.461 | 0.817 | 1 | 6.531 | 3 |
CK | 4.000 | 4.000 | 4.000 | 4.000 | 1.000 | 1 | 1 | 2.970 | 1.000 | 1.000 | 1.000 | 0.568 | 4 | 4.326 | 2 |
注:Pn,净光合速率;Tr,蒸腾速率;Gs,气孔导度;Ci,胞间CO2浓度;WUEL,叶片水分利用效率;H,收获密度;Nb,单株铃数;BW,铃重;Y:籽棉产量;NI,灌水次数;I,灌溉定额。 | |
Note: Pn, net photosynthetic rate; Tr, transpiration rate; Gs, stomatal conductance; Ci, intercellular CO2 concentration; WUEL, water use efficiency of leaf; H, harvest density; Nb: number of bolls per plant; BW, boll weight; Y: seed cotton yield; NI irrigation frequency; I, irrigation quota. |
附表1 试验地土壤的物理性状Table S1 Physical properties of soil in experimental field |
土层 Soil layer/cm | 颗粒占比Particle proportion/% | 土壤容重 Soil bulk density/(g·cm-3) | 田间持水量 Field capacity/% | 土壤质地 Soil texture | ||
---|---|---|---|---|---|---|
<0.002 mm | 0.002~0.02 mm | 0.02~0.2 mm | ||||
0~10 | 15.6 | 44.4 | 38.4 | 1.52 | 27 | 黏壤土Clay loam |
10~20 | 13.5 | 47.9 | 37.4 | 1.59 | 26 | 粉(砂)质壤土Chalky loam |
20~30 | 12.3 | 46.3 | 40.1 | 1.49 | 26 | 粉(砂)质壤土Chalky loam |
30~40 | 15.6 | 48.1 | 35.4 | 1.45 | 27 | 粉(砂)质壤土Chalky loam |
40~50 | 15.3 | 33.4 | 48.2 | 1.48 | 27 | 黏壤土Clay loam |
50~60 | 14.8 | 46.6 | 36.6 | 1.57 | 37 | 粉(砂)质壤土Chalky loam |
60~70 | 25.7 | 44.3 | 28.8 | 1.45 | 29 | 壤质黏土Loamy clay |
70~80 | 14.7 | 40.9 | 44.2 | 1.44 | 32 | 壤土Loam |
80~90 | 11.0 | 36.4 | 51.8 | 1.44 | 28 | 壤土Loam |
90~100 | 11.6 | 37.2 | 50.6 | 1.40 | 31 | 壤土Loam |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
赵燕东, 高超, 张新, 等. 植物水分胁迫实时在线检测方法研究进展[J/OL]. 农业机械学报, 2016, 47(7): 290-300[2024-03-01]. https://doi.org/10.6041/j.issn.1000-1298.2016.07.040.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
李禄军, 蒋志荣, 车克钧, 等. 柠条叶片蒸腾速率日变化节律及其影响因子分析[J/OL]. 西部林业科学, 2006, 35(3): 104-106[2024-03-01]. https://doi.org/10.16473/j.cnki.xblykx1972.2006.03.021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
马文云, 孙西欢, 马娟娟, 等. 蓄水坑灌不同灌水上下限对苹果树叶片蒸腾日变化的影响[J]. 节水灌溉, 2019(5): 51-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
马军勇, 郑国玉, 周建伟, 等. 不同灌水下限对枣树光合特性、产量及品质的影响[J/OL]. 灌溉排水学报, 2020, 39(1): 31-36[2024-03-01]. https://doi.org/10.13522/j.cnki.ggps.2019087.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
李泽霞, 成自勇, 张芮, 等. 不同灌水上限对酿酒葡萄生长、产量及品质的影响[J/OL]. 灌溉排水学报, 2015, 34(6): 83-85[2024-03-01]. https://doi.org/10.13522/j.cnki.ggps.2015.06.017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
姚佳宾, 李和平, 吴鑫淼, 等. 不同灌水下限对盆栽油葵生长、耗水及产量的影响[J]. 中国农村水利水电, 2018(5): 23-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
柴付军, 程鸿, 郭建国, 等. 滴灌杂交棉花需水规律及灌溉制度试验研究[J]. 新疆农垦科技, 2010, 33(5): 59-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
张安琪, 郑春莲, 李宗毅, 等. 棉花成苗和幼苗生长对咸水滴灌的响应特征[J/OL]. 灌溉排水学报, 2018, 37(10): 16-22[2024-03-01]. https://doi.org/10.13522/j.cnki.ggps.20170046.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
李彦, 雷晓云, 白云岗. 不同灌水下限对棉花产量及水分利用效率的影响[J]. 灌溉排水学报, 2013, 32(4): 132-134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
何平如, 张富仓, 范军亮, 等. 土壤水分调控对南疆滴灌棉花生长、品质及水分利用的影响[J/OL]. 干旱地区农业研究, 2020, 38(4): 39-46[2024-03-01]. https://doi.org/10.7606/j.issn.1000-7601.2020.04.06.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
潘俊杰, 付秋萍, 阿布都卡依木·阿布力米提, 等. 蕾期和花铃期不同灌水下限对滴灌棉花产量的影响[J/OL]. 干旱地区农业研究, 2019, 37(5): 27-32[2024-03-01]. https://doi.org/10.7606/j.issn.1000-7601.2019.05.05.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
申孝军, 张寄阳, 孙景生, 等. 灌水模式及下限对滴灌棉花产量和品质的影响[J/OL]. 排灌机械工程学报, 2014, 32(8): 711-718[2024-03-01]. https://doi.org/10.3969/j.issn.1674-8530.13.0077.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
中华人民共和国水利部. 微灌工程技术标准: GB/T 50485-2020[S]. 北京: 中国计划出版社, 2020.
Ministry of Water Resources of the People’s Republic of China. Technical standard for microirrigation engineering: GB/T50485-2020[S]. Beijing: China Planning Press, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
赵盼盼, 赵金祥, 孙勇, 等. 不同水分处理对枣园间作棉花光合特征及水分利用效率的影响[J/OL]. 西北农业学报, 2013, 22(11): 54-58[2024-03-01]. https://doi.org/10.7606/j.issn.1004-1389.2013.11.010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
水利部农村水利司, 中国灌溉排水发展中心. 灌溉水有效利用系数测算分析理论方法与应用[M]. 北京: 中国水利水电出版社, 2018.
Department of Rural Water Resources, Ministry of Water Resources, China Irrigation and Drainage Development Center. Theoretical methods and applications of measurement and analysis of effective utilization coefficient of irrigation water[M]. Beijing: China Water Resources and Hydropower Press, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
田凤调. 秩和比法及其应用[J]. 中国医师杂志, 2002, 4(2): 115-119.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
田凤调. RSR法中的分档问题[J]. 中国卫生统计, 1993(2): 26-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
贾耀宇, 黄伟斌, 杨北方, 等. 亏缺灌溉对中国棉花产量和灌溉水分生产力影响的元分析[J/OL]. 棉花学报, 2023, 35(3): 195-210[2024-03-01]. https://doi.org/10.11963/cs20220065.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
施英俊. 灰胡杨光合生理指标与微气象环境因子的相关分析[J]. 新疆农垦科技, 2018, 41(2): 16-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
吴统贵, 周和锋, 吴明, 等. 旱柳光合作用动态及其与环境因子的关系[J]. 生态学杂志, 2008, 27(12): 2056-2061.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
关清, 郑有飞. 冬小麦田CO2通量观测及其与气象因子的关系[J]. 科学技术与工程, 2019, 19(11): 313-320.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
赵文渊, 孙西欢, 马娟娟, 等. 蓄水坑灌下苹果树冠层导度日变化及影响因子研究[J]. 节水灌溉, 2020(9): 64-68, 74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
高冠龙, 冯起, 张小由, 等. 植物叶片光合作用的气孔与非气孔限制研究综述[J/OL]. 干旱区研究, 2018, 35(4): 929-937[2024-03-01]. https://doi.org/10.13866/j.azr.2018.04.22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
姬亚琴, 杨鹏年. 不同土壤含水量条件棉花光合作用日变化特性研究[J]. 节水灌溉, 2015(2): 21-23, 30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
易小龙, 李国, 李文雯, 等. 不同滴灌灌水处理对棉花花铃期光合特性及产量构成的影响[J/OL]. 江苏农业科学, 2018, 46(17): 73-78[2024-03-01]. https://doi.org/10.15889/j.issn.1002-1302.2018.17.018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |