
外源茉莉酸甲酯对花铃期棉花耐高温能力的影响
谢贤运, 冯常辉, 王孝刚, 夏松波, 张教海, 张友昌, 王琼珊, 秦鸿德, 别墅
外源茉莉酸甲酯对花铃期棉花耐高温能力的影响
Effects of exogenous methyl jasmonate on cotton tolerance to heat stress during flowering and boll-setting stage
【目的】 探讨外源茉莉酸甲酯(methyl jasmonate, MeJA)对花铃期棉花耐高温能力的影响。【方法】 以自育品系ZS08为试验材料,在人工高温胁迫(昼温38.0 ℃/夜温30.0 ℃,持续3 d)和自然高温胁迫(昼平均气温35.2~37.5 ℃,夜平均气温26.4~27.2 ℃,持续10 d)下,比较200 μmol·L-1、400 μmol·L-1和600 μmol·L-1 MeJA和清水(对照)喷施处理后的花铃期棉花的花粉活力、光合效率相关指标、抗氧化酶活性、丙二醛(malondialdehyde, MDA)含量、产量和纤维品质。【结果】 在人工高温胁迫下棉株花粉活力降低。与对照相比,3种浓度的MeJA处理的花粉活力受高温胁迫影响的程度均减弱;高温胁迫2~3 d,400 μmol·L-1、600 μmol·L-1 MeJA处理的主茎倒四叶的净光合速率(net photosynthetic rate, Pn)、蒸腾速率(transpiration rate, Tr)和气孔导度(stomatal conductivity, Gs)较对照均有不同程度提高,增幅分别为1.6%~3.7%、7.2%~15.7%和44.4%~53.4%。高温胁迫下2~3 d,400 μmol·L-1、600 μmol·L-1 MeJA处理的主茎倒二叶超氧化物歧化酶(superoxide dismutase, SOD)活性和过氧化物酶(peroxidase, POD)活性比对照分别提高3.1%~7.2%和5.7%~20.0%,同时 MDA含量较对照降低10.9%~17.9%。在自然高温胁迫下,不同浓度的MeJA处理下棉花成铃率、铃重较对照有不同程度的提高,皮棉产量较对照显著提高9.0%~18.3%。【结论】 在花铃期遭遇高温胁迫,施用MeJA可以增加高温胁迫下叶片的Pn、SOD活性和POD活性,降低叶片受伤害程度,提高花粉活力,从而增强棉花的耐高温性能,减轻高温胁迫对成铃率和铃重造成的影响,减少产量损失。
[Objective] This study aims to explore the effects of exogenous methyl jasmonate (MeJA) on cotton tolerance to the heat stress. [Method] The self-bred line ZS08 was used as the test material. Distilled water (CK) and MeJA with different concentrations (200 μmol·L-1, 400 μmol·L-1 and 600 μmol·L-1) were used on plants at the flowering and boll-setting stage. And after the artificial heat stress of 38.0 ℃/30.0 ℃ (day/night) for three days or under natural heat stress of 35.2-37.5 ℃/26.4-27.2 ℃ (day/night) for ten days, the pollen viability, photosynthetic characteristics, antioxidant enzyme activity, malondialdehyde (MDA) content, yield and fiber quality of each treatment were measured. [Result] The pollen viability was reduced under the artificial heat stress. The MeJA treatment of three concentrations all had alleviated the inhibition of heat stress on pollen viability compared with the water control. The net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of the fourth leaf from top of the main stem in the 400 μmol·L-1 and 600 μmol·L-1 MeJA treated plants were increased in various degree than those of the control under 2-3 days heat stress by 1.6%-3.7%, 7.2%-15.7%, and 44.4%-53.4%, respectively. The activity of superoxide dismutase (SOD) and peroxidase (POD) of the second leaf from top on the main stem in 400 μmol·L-1 and 600 μmol·L-1 MeJA treatment were increased by 3.1%-7.2% and 5.7%-20.0% than those of the control under 2-3 days heat stress. While the content of MDA was reduced by 10.9%-17.9%. Under the natural heat stress, plants which were treated by different concentrations of MeJA had improved boll-setting rate and boll weight in varying degree, and had significantly improved lint yield by 9.0%-18.3% compared with the control. [Conclusion] When encountering heat stress during the flowering and boll-setting stage, the application of MeJA can increase Pn and the activities of SOD and POD, reduce the degree of leaf damage, and improve pollen viability, thereby enhance the heat tolerance of cotton, and reduce the impact of heat stress on boll-setting rate, boll weight, and yield loss.
棉花 / 高温胁迫 / 茉莉酸甲酯 / 花铃期 / 产量 / 纤维品质 {{custom_keyword}} /
cotton / heat stress / methyl jasmonate / flowering and boll-setting stage / yield / fiber quality {{custom_keyword}} /
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
陈颖, 邵伟玲, 曹萌, 等. 新疆夏季高温日数的变化特征及其影响因子[J/OL]. 干旱区研究, 2020, 37(1): 58-66[2022-09-20]. https://doi.org/10.13866/j.azr.2020.01.07.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
张克新, 董小刚, 廖空太, 等. 1960-2017年黄河流域极端气温的季节变化特征及其与ENSO的相关性分析[J/OL]. 水土保持研究, 2020, 27(2): 185-192[2022-09-20]. https://doi.org/10.13869/j.cnki.rswc.2020.02.027.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
孙亚卿, 李春, 石剑. 长江流域夏季极端高温的年代际变化特征及其与大西洋多年代际振荡的关系[J/OL]. 中国海洋大学学报, 2022, 52(2): 13-22[2022-09-20]. https://doi.org/10.16441/j.cnki.hdxb.20210079.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
韩婉瑞, 雷亚平, 李亚兵, 等. 气候变暖背景下中国三大棉区水热时空变化[J/OL]. 中国生态农业学报, 2021, 29(8): 1430-1441[2022-09-20]. https://doi.org/10.13930/j.cnki.cjea.210131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
朱春权, 魏倩倩, 项兴佳, 等. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J/OL]. 作物学报, 2022, 48(8): 2016-2027[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2022.12041.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
刘霞, 唐设, 窦志, 等. 茉莉酸甲酯对武运粳24和宁粳3号灌浆早期高温胁迫生理特性的影响[J/OL]. 中国水稻科学, 2016, 30(3): 291-303[2022-09-20]. https://doi.org/10.16819/j.1001-7216.2016.5063.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
罗直文. 茉莉酸甲酯对水稻抗高温的效应[D]. 南昌: 江西农业大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
董桃杏, 蔡昆争, 曾任森. 茉莉酸甲酯(MeJA)对干旱胁迫下水稻幼苗光合作用特性的影响[J/OL]. 生态环境学报, 2009, 18(5): 1872-1876[2022-09-20]. https://doi.org/10.16258/j.cnki.1674-5906.2009.05.066.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
李杨洋, 焦浈. 外源茉莉酸甲酯对小麦幼苗低温耐受性的影响[J/OL]. 生物技术通报, 2018, 34(3): 87-92[2022-09-20]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2017-0780.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
马超, 张均, 王学平, 等. 外源MeJA对花后干旱胁迫下小麦光合特性的影响[J/OL]. 麦类作物学报, 2018, 38(5): 563-571[2022-09-20]. https://doi.org/10.7606/j.issn.1009-1041.2018.05.09.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
李兆举, 徐新娟, 齐红志, 等. MeJA浸种对干旱胁迫下玉米种子萌发及幼苗生理特性的影响[J/OL]. 河南农业科学, 2017, 46(12): 36-41[2022-09-20]. https://doi.org/10.15933/j.cnki.1004-3268.2017.12.007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
忽雪琦, 李东阳, 严加坤, 等. 干旱胁迫下外源茉莉酸甲酯对玉米幼苗根系吸水的影响[J/OL]. 植物生理学报, 2018, 54(6): 991-998[2022-09-20]. https://doi.org/10.13592/j.cnki.ppj.2018.0136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
王芳, 周娟, 黄兴华, 等. 外源MeJA对盐胁迫下玉米幼苗生长及抗氧化酶基因表达的影响[J/OL]. 玉米科学, 2022, 30(2): 75-81[2022-09-20]. https://doi.org/10.13597/j.cnki.maize.science.20220211.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
杨艺, 常丹, 王艳, 等. 茉莉酸甲酯对棉花抗旱效果的影响[J/OL]. 西北农业学报, 2016, 25(9): 1333-1341[2022-09-20]. https://doi.org/10.7606/j.issn.1004-1389.2016.09.009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
杨艺, 常丹, 王艳, 等. 盐胁迫下茉莉酸(JA)及茉莉酸甲酯(MeJA)对棉花种子萌发及种苗生化特性的影响[J/OL]. 种子, 2015, 34(1): 8-13[2022-09-20]. https://doi.org/10.16590/j.cnki.1001-4705.2015.01.045.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
郑甲成, 詹兰兰, 刘婷, 等. 有机肥和茉莉酸甲酯配施对水稻产量和品质的影响[J/OL]. 云南农业大学学报(自然科学), 2020, 35(3): 519-525[2022-09-20]. https://doi.org/10.12101/j.issn.1004-390X(n).202001033.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
姚锋先, 曾晓春, 熊伟, 等. 茉莉酸类与光敏核不育水稻N5088S育性的关系[J/OL]. 江西农业大学学报, 2007, 29(1): 6-10[2022-09-20]. https://doi.org/10.3969/j.issn.1000-2286.2007.01.002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
刘晨. 茉莉酸参与光周期诱导光敏核不育水稻育性转换的研究[D]. 武汉: 华中农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
许阳东. 开花期高温胁迫下茉莉酸甲酯对水稻光温敏核不育系开花结实的调节作用[D]. 扬州: 扬州大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
费柯琦. 开花期高温胁迫下茉莉酸类对水稻光温敏核不育系开颖的调控作用[D]. 扬州: 扬州大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
马骅, 张立平, 赵昌平, 等. 外源茉莉酸甲脂(MeJA)对光温敏不育小麦花药开裂率及结实率的影响[J/OL]. 麦类作物学报, 2011, 31(4): 648-652[2022-09-20]. https://doi.org/10.7606/j.issn.1009-1041.2011.04.012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
王苗苗. 高温逆境对陆地棉雄性生殖系统的影响[D]. 南京: 南京农业大学, 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
洪继仁. 高温对棉花花器官发育和棉铃生长的影响[J]. 中国棉花, 1982(5): 36-37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
闵玲. 高温胁迫下棉花花药发育表达谱分析及GhCKI基因功能鉴定[D]. 武汉: 华中农业大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
张占芳, 李睿, 仲天庭, 等. 水稻细胞质雄性不育系和保持系对外源茉莉酸响应以及内源茉莉酸合成的差异[J/OL]. 南京农业大学学报, 2014, 37(6): 7-12[2022-09-20]. https://doi.org/10.7685/j.issn.1000-2030.2014.06.002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
张玉屏, 朱德峰, 林贤青, 等. 高温对水稻剑叶生长和气孔导度影响[J/OL]. 江西农业大学学报, 2012, 34(1): 1-4[2022-09-20]. https://doi.org/10.13836/j.jjau.2012001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
邓茳明, 熊格生, 袁小玲, 等. 棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应[J/OL]. 棉花学报, 2010, 22(3): 242-247[2022-09-20]. https://doi.org/10.3969/j.issn.1002-7807.2010.03.009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
张英华, 杨佑明, 曹莲, 等. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响[J/OL]. 作物学报, 2015, 41(1): 136-144[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2015.00136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
曹云英, 段骅, 杨立年, 等. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J/OL]. 作物学报, 2009, 35(3): 512-521[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2009.00512.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
甄博, 周新国, 陆红飞, 等. 高温与涝交互胁迫对水稻孕穗期生理指标的影响[J/OL]. 灌溉排水学报, 2019, 38(3): 1-7[2022-09-20]. https://doi.org/10.13522/j.cnki.ggps.20180323.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |