外源茉莉酸甲酯对花铃期棉花耐高温能力的影响

谢贤运, 冯常辉, 王孝刚, 夏松波, 张教海, 张友昌, 王琼珊, 秦鸿德, 别墅

PDF(4688 KB)
PDF(4688 KB)
棉花学报 ›› 2023, Vol. 35 ›› Issue (5) : 365-377. DOI: 10.11963/cs20230017
研究与进展

外源茉莉酸甲酯对花铃期棉花耐高温能力的影响

作者信息 +

Effects of exogenous methyl jasmonate on cotton tolerance to heat stress during flowering and boll-setting stage

Author information +
History +

摘要

【目的】 探讨外源茉莉酸甲酯(methyl jasmonate, MeJA)对花铃期棉花耐高温能力的影响。【方法】 以自育品系ZS08为试验材料,在人工高温胁迫(昼温38.0 ℃/夜温30.0 ℃,持续3 d)和自然高温胁迫(昼平均气温35.2~37.5 ℃,夜平均气温26.4~27.2 ℃,持续10 d)下,比较200 μmol·L-1、400 μmol·L-1和600 μmol·L-1 MeJA和清水(对照)喷施处理后的花铃期棉花的花粉活力、光合效率相关指标、抗氧化酶活性、丙二醛(malondialdehyde, MDA)含量、产量和纤维品质。【结果】 在人工高温胁迫下棉株花粉活力降低。与对照相比,3种浓度的MeJA处理的花粉活力受高温胁迫影响的程度均减弱;高温胁迫2~3 d,400 μmol·L-1、600 μmol·L-1 MeJA处理的主茎倒四叶的净光合速率(net photosynthetic rate, Pn)、蒸腾速率(transpiration rate, Tr)和气孔导度(stomatal conductivity, Gs)较对照均有不同程度提高,增幅分别为1.6%~3.7%、7.2%~15.7%和44.4%~53.4%。高温胁迫下2~3 d,400 μmol·L-1、600 μmol·L-1 MeJA处理的主茎倒二叶超氧化物歧化酶(superoxide dismutase, SOD)活性和过氧化物酶(peroxidase, POD)活性比对照分别提高3.1%~7.2%和5.7%~20.0%,同时 MDA含量较对照降低10.9%~17.9%。在自然高温胁迫下,不同浓度的MeJA处理下棉花成铃率、铃重较对照有不同程度的提高,皮棉产量较对照显著提高9.0%~18.3%。【结论】 在花铃期遭遇高温胁迫,施用MeJA可以增加高温胁迫下叶片的Pn、SOD活性和POD活性,降低叶片受伤害程度,提高花粉活力,从而增强棉花的耐高温性能,减轻高温胁迫对成铃率和铃重造成的影响,减少产量损失。

Abstract

[Objective] This study aims to explore the effects of exogenous methyl jasmonate (MeJA) on cotton tolerance to the heat stress. [Method] The self-bred line ZS08 was used as the test material. Distilled water (CK) and MeJA with different concentrations (200 μmol·L-1, 400 μmol·L-1 and 600 μmol·L-1) were used on plants at the flowering and boll-setting stage. And after the artificial heat stress of 38.0 ℃/30.0 ℃ (day/night) for three days or under natural heat stress of 35.2-37.5 ℃/26.4-27.2 ℃ (day/night) for ten days, the pollen viability, photosynthetic characteristics, antioxidant enzyme activity, malondialdehyde (MDA) content, yield and fiber quality of each treatment were measured. [Result] The pollen viability was reduced under the artificial heat stress. The MeJA treatment of three concentrations all had alleviated the inhibition of heat stress on pollen viability compared with the water control. The net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of the fourth leaf from top of the main stem in the 400 μmol·L-1 and 600 μmol·L-1 MeJA treated plants were increased in various degree than those of the control under 2-3 days heat stress by 1.6%-3.7%, 7.2%-15.7%, and 44.4%-53.4%, respectively. The activity of superoxide dismutase (SOD) and peroxidase (POD) of the second leaf from top on the main stem in 400 μmol·L-1 and 600 μmol·L-1 MeJA treatment were increased by 3.1%-7.2% and 5.7%-20.0% than those of the control under 2-3 days heat stress. While the content of MDA was reduced by 10.9%-17.9%. Under the natural heat stress, plants which were treated by different concentrations of MeJA had improved boll-setting rate and boll weight in varying degree, and had significantly improved lint yield by 9.0%-18.3% compared with the control. [Conclusion] When encountering heat stress during the flowering and boll-setting stage, the application of MeJA can increase Pn and the activities of SOD and POD, reduce the degree of leaf damage, and improve pollen viability, thereby enhance the heat tolerance of cotton, and reduce the impact of heat stress on boll-setting rate, boll weight, and yield loss.

关键词

棉花 / 高温胁迫 / 茉莉酸甲酯 / 花铃期 / 产量 / 纤维品质

Keywords

cotton / heat stress / methyl jasmonate / flowering and boll-setting stage / yield / fiber quality

引用本文

导出引用
谢贤运 , 冯常辉 , 王孝刚 , 夏松波 , 张教海 , 张友昌 , 王琼珊 , 秦鸿德 , 别墅. 外源茉莉酸甲酯对花铃期棉花耐高温能力的影响[J]. 棉花学报, 2023, 35(5): 365-377. https://doi.org/10.11963/cs20230017
Xie Xianyun , Feng Changhui , Wang Xiaogang , Xia Songbo , Zhang Jiaohai , Zhang Youchang , Wang Qiongshan , Qin Hongde , Bie Shu. Effects of exogenous methyl jasmonate on cotton tolerance to heat stress during flowering and boll-setting stage[J]. Cotton Science, 2023, 35(5): 365-377. https://doi.org/10.11963/cs20230017

参考文献

[1]
Singh R P, Vara Prasad P V, Sunita K, et al. Influence of high temperature and breeding for heat tolerance in cotton: a review[J/OL]. Advances in Agronomy, 2007, 93: 313-385[2022-09-20]. https://doi.org/10.1016/S0065-2113(06)93006-5.
[2]
Burke J J, Mahan J R, Hatfield J L. Crop-specific thermal kinetic windows in relation to wheat and cotton biomass production[J/OL]. Agronomy Journal, 1988, 80: 553-556[2022-09-20]. https://doi.org/10.2134/agronj1988.00021962008000040001x.
[3]
陈颖, 邵伟玲, 曹萌, 等. 新疆夏季高温日数的变化特征及其影响因子[J/OL]. 干旱区研究, 2020, 37(1): 58-66[2022-09-20]. https://doi.org/10.13866/j.azr.2020.01.07.
Chen Ying, Shao Weiling, Cao Meng, et al. Variation of summer high temperature days and its affecting factors in Xinjiang[J/OL]. Arid Zone Research, 2020, 37(1): 58-66[2022-09-20]. https://doi.org/10.13866/j.azr.2020.01.07.
[4]
张克新, 董小刚, 廖空太, 等. 1960-2017年黄河流域极端气温的季节变化特征及其与ENSO的相关性分析[J/OL]. 水土保持研究, 2020, 27(2): 185-192[2022-09-20]. https://doi.org/10.13869/j.cnki.rswc.2020.02.027.
Zhang Kexin, Dong Xiaogang, Liao Kongtai, et al. Characteristics of seasonal changes in extreme temperature and their relativity with ENSO in the Yellow River Basin from 1960 to 2017[J/OL]. Research of Soil and Water Conservation, 2020, 27(2): 185-192[2022-09-20]. https://doi.org/10.13869/j.cnki.rswc.2020.02.027.
[5]
孙亚卿, 李春, 石剑. 长江流域夏季极端高温的年代际变化特征及其与大西洋多年代际振荡的关系[J/OL]. 中国海洋大学学报, 2022, 52(2): 13-22[2022-09-20]. https://doi.org/10.16441/j.cnki.hdxb.20210079.
Sun Yaqing, Li Chun, Shi Jian. Interdecadal variation of summer extreme high temperature in the Yangtze River and its relationship with Atlantic multidecadal oscillation[J/OL]. Periodical of Ocean University of China, 2022, 52(2): 13-22[2022-09-20]. https://doi.org/10.16441/j.cnki.hdxb.20210079.
[6]
韩婉瑞, 雷亚平, 李亚兵, 等. 气候变暖背景下中国三大棉区水热时空变化[J/OL]. 中国生态农业学报, 2021, 29(8): 1430-1441[2022-09-20]. https://doi.org/10.13930/j.cnki.cjea.210131.
Han Wanrui, Lei Yaping, Li Yabing, et al. Spatiotemporal characteristics of heat and rainfall in the three cotton areas of China under climate warming[J/OL]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1430-1441[2022-09-20]. https://doi.org/10.13930/j.cnki.cjea.210131.
[7]
Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants: an overview[J/OL]. Environmental and Experimental Botany, 2007, 61: 199-223[2022-09-20]. https://doi.org/10.1016/j.envexpbot.2007.05.011.
[8]
Mathur S, Agrawal D, Jajoo A. Photosynthesis: limitations in response to high temperature stress[J/OL]. Journal of Photoche-mistry and Photobiology B: Biology, 2014, 137: 116-126[2022-09-20]. https://doi.org/10.1016/j.jphotobiol.2014.01.010.
[9]
Ma Y, Min L, Wang M, et al. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence[J/OL]. Plant Cell, 2018, 30: 1387-1403[2022-09-20]. https://doi.org/10.1105/tpc.18.00074.
[10]
Ma Y, Min L, Wang J, et al. A combination of genome-wide and transcriptome-wide association studies reveals genetic elements leading to male sterility during high temperature stress in cotton[J/OL]. New Phytologist, 2021, 231:165-181[2022-09-20]. https://doi.org/10.1111/nph.17325.
[11]
Pettigrew W. The effect of higher temperatures on cotton lint yield production and fiber quality[J/OL]. Crop Science, 2008, 48(1): 278-285[2022-09-20]. https://doi.org/10.2135/cropsci2007.05.0261.
[12]
Burke J J, Mahan J R, Hatfield J L. Crop-specific thermal kinetic windows in relation to wheat and cotton biomass production[J/OL]. Agronomy Journal, 1988, 80(4): 553-556[2022-09-20]. https://doi.org/10.2134/agronj1988.00021962008000040001x
[13]
朱春权, 魏倩倩, 项兴佳, 等. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J/OL]. 作物学报, 2022, 48(8): 2016-2027[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2022.12041.
Zhu Chunquan, Wei Qianqian, Xiang Xingjia, et al. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice[J/OL]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2022.12041.
[14]
刘霞, 唐设, 窦志, 等. 茉莉酸甲酯对武运粳24和宁粳3号灌浆早期高温胁迫生理特性的影响[J/OL]. 中国水稻科学, 2016, 30(3): 291-303[2022-09-20]. https://doi.org/10.16819/j.1001-7216.2016.5063.
Liu Xia, Tang She, Dou Zhi, et al. Effect of MeJA on the physio-logical characteristics of japonica rice Wuyunjing 24 and Ningjing 3 during early grain filling stage under heat stress[J/OL]. Chinese Journal of Rice Science, 2016, 30(3): 291-303[2022-09-20]. https://doi.org/10.16819/j.1001-7216.2016.5063.
[15]
罗直文. 茉莉酸甲酯对水稻抗高温的效应[D]. 南昌: 江西农业大学, 2015.
Luo Zhiwen. Effects of methyl jasmonate on resistance to high temperature in rice[D]. Nanchang: Jiangxi Agricultural University, 2015.
[16]
董桃杏, 蔡昆争, 曾任森. 茉莉酸甲酯(MeJA)对干旱胁迫下水稻幼苗光合作用特性的影响[J/OL]. 生态环境学报, 2009, 18(5): 1872-1876[2022-09-20]. https://doi.org/10.16258/j.cnki.1674-5906.2009.05.066.
Dong Taoxing, Cai Kunzheng, Zeng Rensen. Effects of methyl jasmonate (MeJA)on photosynthetic traits of rice seedlings under drought stress[J/OL]. Ecology and Environmental Sciences, 2009, 18(5): 1872-1876[2022-09-20]. https://doi.org/10.16258/j.cnki.1674-5906.2009.05.066.
[17]
李杨洋, 焦浈. 外源茉莉酸甲酯对小麦幼苗低温耐受性的影响[J/OL]. 生物技术通报, 2018, 34(3): 87-92[2022-09-20]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2017-0780.
Li Yangyang, Jiao Zhen. Effects of exogenous methyl jasmonate on the tolerance of wheat seedlings to low temperature[J/OL]. Biotechnology Bulletin, 2018, 34(3): 87-92[2022-09-20]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2017-0780.
[18]
马超, 张均, 王学平, 等. 外源MeJA对花后干旱胁迫下小麦光合特性的影响[J/OL]. 麦类作物学报, 2018, 38(5): 563-571[2022-09-20]. https://doi.org/10.7606/j.issn.1009-1041.2018.05.09.
Ma Chao, Zhang Jun, Wang Xueping, et al. Effect of exogenous methyl jasmonate on photosynthetic characteristics in wheat under drought stress after anthesis[J/OL]. Journal of Triticeae Crops, 2018, 38(5): 563-571[2022-09-20]. https://doi.org/10.7606/j.issn.1009-1041.2018.05.09.
[19]
李兆举, 徐新娟, 齐红志, 等. MeJA浸种对干旱胁迫下玉米种子萌发及幼苗生理特性的影响[J/OL]. 河南农业科学, 2017, 46(12): 36-41[2022-09-20]. https://doi.org/10.15933/j.cnki.1004-3268.2017.12.007.
Li Zhaoju, Xu Xinjuan, Qi Hongzhi, et al. Effects of seed soaking with MeJA on seed germination and seeding physiological characteristics of maize under drought stress[J/OL]. Journal of Henan Agricultural Sciences, 2017, 46(12): 36-41[2022-09-20]. https://doi.org/10.15933/j.cnki.1004-3268.2017.12.007.
[20]
忽雪琦, 李东阳, 严加坤, 等. 干旱胁迫下外源茉莉酸甲酯对玉米幼苗根系吸水的影响[J/OL]. 植物生理学报, 2018, 54(6): 991-998[2022-09-20]. https://doi.org/10.13592/j.cnki.ppj.2018.0136.
Hu Xueqi, Li Dongyang, Yan Jiakun, et al. Effects of exogenous methyl jasmonate on water absorption capacity of maize (Zea mays L.) seedling root under drought stress[J/OL]. Plant Physiology Journal, 2018, 54(6): 991-998[2022-09-20]. https://doi.org/10.13592/j.cnki.ppj.2018.0136.
[21]
王芳, 周娟, 黄兴华, 等. 外源MeJA对盐胁迫下玉米幼苗生长及抗氧化酶基因表达的影响[J/OL]. 玉米科学, 2022, 30(2): 75-81[2022-09-20]. https://doi.org/10.13597/j.cnki.maize.science.20220211.
Wang Fang, Zhou Juan, Huang Xinghua, et al. Effects of exogenous MeJA on growth and antioxidant enzyme gene expression of maize seedlings under salt stress[J/OL]. Journal of Maize Sciences, 2022, 30(2): 75-81[2022-09-20]. https://doi.org/10.13597/j.cnki.maize.science.20220211.
[22]
杨艺, 常丹, 王艳, 等. 茉莉酸甲酯对棉花抗旱效果的影响[J/OL]. 西北农业学报, 2016, 25(9): 1333-1341[2022-09-20]. https://doi.org/10.7606/j.issn.1004-1389.2016.09.009.
Yang Yi, Chang Dan, Wang Yan, et al. Effect of methyl jasmonate (MeJA) on enhancing drought resistance of cotton[J/OL]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(9): 1333-1341[2022-09-20]. https://doi.org/10.7606/j.issn.1004-1389.2016.09.009.
[23]
杨艺, 常丹, 王艳, 等. 盐胁迫下茉莉酸(JA)及茉莉酸甲酯(MeJA)对棉花种子萌发及种苗生化特性的影响[J/OL]. 种子, 2015, 34(1): 8-13[2022-09-20]. https://doi.org/10.16590/j.cnki.1001-4705.2015.01.045.
Yang Yi, Chang Dan, Wang Yan, et al. Effects of exogenous JA and MeJA on seed germination and seeding physiological characteristics of Gossypium hirsutum under salt stress[J/OL]. Seed, 2015, 34(1): 8-13[2022-09-20]. https://doi.org/10.16590/j.cnki.1001-4705.2015.01.045.
[24]
郑甲成, 詹兰兰, 刘婷, 等. 有机肥和茉莉酸甲酯配施对水稻产量和品质的影响[J/OL]. 云南农业大学学报(自然科学), 2020, 35(3): 519-525[2022-09-20]. https://doi.org/10.12101/j.issn.1004-390X(n).202001033.
Zheng Jiacheng, Zhan Lanlan, Liu Ting, et al. Effects of organic fertilizer and methyl jasmonate on the yield and quality of rice[J/OL]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(3): 519-525[2022-09-20]. https://doi.org/10.12101/j.issn.1004-390X(n).202001033.
[25]
Yang X, Ye J, Zhang L, et al. Blocked synthesis of sporopollenin and jasmonic acid leads to pollen wall defects and anther indehiscence in genic male sterile wheat line 4110S at high temperatures[J/OL]. Functional & Integrative Genomics, 2020, 20: 383-396[2022-09-20]. https://doi.org/10.1007/s10142-019-00722-y.
[26]
Malek B V, Graaff E V D, Schneitz K, et al. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway[J/OL]. Planta, 2002, 216(1): 187-192[2022-09-20]. https://doi.org/10.1007/s00425-002-0906-2.
[27]
姚锋先, 曾晓春, 熊伟, 等. 茉莉酸类与光敏核不育水稻N5088S育性的关系[J/OL]. 江西农业大学学报, 2007, 29(1): 6-10[2022-09-20]. https://doi.org/10.3969/j.issn.1000-2286.2007.01.002.
Yao Fengxian, Zeng Xiaochun, Xiong Wei, et al. The relationship between jasmonates and fertility of the photoperiod-sensitive genic male-sterile rice N5088S[J/OL]. Acta Agriculturae Universitatis Jiangxiensis, 2007, 29(1): 6-10[2022-09-20]. https://doi.org/10.3969/j.issn.1000-2286.2007.01.002.
[28]
刘晨. 茉莉酸参与光周期诱导光敏核不育水稻育性转换的研究[D]. 武汉: 华中农业大学, 2018.
Liu Chen. The study of jasmonic acid involved in photoperiod induced photoperiod-sensitive genic male sterile rice fertility transformation[D]. Wuhan: Huazhong Agricultural University, 2018.
[29]
许阳东. 开花期高温胁迫下茉莉酸甲酯对水稻光温敏核不育系开花结实的调节作用[D]. 扬州: 扬州大学, 2019.
Xu Yangdong. Regulating of methyl jasmonate to spikelet-opening and seed-setting of photo-thermo-sensitive genic male sterile rice lines subjected to high temperature stress during anthesis[D]. Yangzhou: Yangzhou University, 2019.
[30]
费柯琦. 开花期高温胁迫下茉莉酸类对水稻光温敏核不育系开颖的调控作用[D]. 扬州: 扬州大学, 2021.
Fei Keqi. Jasmonates mediate spikelet-opening under high temperature stress during anthesis of photo-thermo-sensitive genic male sterile rice lines[D]. Yangzhou: Yangzhou University, 2021.
[31]
马骅, 张立平, 赵昌平, 等. 外源茉莉酸甲脂(MeJA)对光温敏不育小麦花药开裂率及结实率的影响[J/OL]. 麦类作物学报, 2011, 31(4): 648-652[2022-09-20]. https://doi.org/10.7606/j.issn.1009-1041.2011.04.012.
Ma Hua, Zhang Liping, Zhao Changping, et al. Effects of methyl jasmonic acid on the percentage of anther dehiscence and seed set rate of photo-thermo-sensitive male sterile wheat[J/OL]. Journal of Triticeae Crops, 2011, 31(4): 648-652[2022-09-20]. https://doi.org/10.7606/j.issn.1009-1041.2011.04.012.
[32]
Fu W, Shen Y, Hao J, et al. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton[J/OL]. Scientific Reports, 2015, 5: 11790[2022-09-20]. https://doi.org/10.1038/srep11790.
[33]
Khan A H, Min L, Ma Y, et al. High day and night temperatures distinctively disrupt fatty acid and jasmonic acid metabolism, inducing male sterility in cotton[J/OL]. Journal of Experimental Botany, 2020, 71(19): 6128-6141[2022-09-20]. https://doi.org/10.1093/jxb/eraa319.
[34]
王苗苗. 高温逆境对陆地棉雄性生殖系统的影响[D]. 南京: 南京农业大学, 2009.
Wang Miaomiao. High temperature stress effects on the male reproductive system of the upland cotton (Gossypium hirsutum L.)[D]. Nanjing: Nanjing Agricultural University, 2009.
[35]
洪继仁. 高温对棉花花器官发育和棉铃生长的影响[J]. 中国棉花, 1982(5): 36-37.
Hong Jiren. Effects of high temperature on the development of cotton flower organs and the growth of cotton bolls[J]. China Cotton, 1982(5): 36-37.
[36]
闵玲. 高温胁迫下棉花花药发育表达谱分析及GhCKI基因功能鉴定[D]. 武汉: 华中农业大学, 2013.
Min Ling. Transcriptome profiling of anther development under high-temperature stress and characterization of GhCKI in cotton[D]. Wuhan: Huazhong Agricultural University, 2013.
[37]
张占芳, 李睿, 仲天庭, 等. 水稻细胞质雄性不育系和保持系对外源茉莉酸响应以及内源茉莉酸合成的差异[J/OL]. 南京农业大学学报, 2014, 37(6): 7-12[2022-09-20]. https://doi.org/10.7685/j.issn.1000-2030.2014.06.002.
Zhang Zhanfang, Li Rui, Zhong Tianting, et al. Differences of jasmonic acid sensitivity and endogenous jasmonicacid synthesis between cytoplasmic male sterile line and its maintainer line in rice[J/OL]. Journal of Nanjing Agricultural University, 2014, 37(6): 7-12[2022-09-20]. https://doi.org/10.7685/j.issn.1000-2030.2014.06.002.
[38]
Khan A H, Ma Y Z, Wu Y L, et al. High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling[J/OL]. The Crop Journal, 2022, 11(1): 33-45[2023-05-16]. https://doi.org/10.1016/j.cj.2022.05.009.
[39]
张玉屏, 朱德峰, 林贤青, 等. 高温对水稻剑叶生长和气孔导度影响[J/OL]. 江西农业大学学报, 2012, 34(1): 1-4[2022-09-20]. https://doi.org/10.13836/j.jjau.2012001.
Zhang Yuping, Zhu Defeng, Lin Xianqing, et al. Effect of high temperature stress on leaf growth and stomatal conductance in rice[J/OL]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(1): 1-4[2022-09-20]. https://doi.org/10.13836/j.jjau.2012001.
[40]
Han J, Lei Z, Flexas J, et al. Mesophyll conductance in cotton bracts: anatomically determined internal CO2 diffusion constraints on photosynthesis[J/OL]. Journal of Experimental Botany, 2018, 69(22): 5433-5443[2022-09-20]. https://doi.org/10.1093/jxb/ery296.
[41]
Fatma M, Iqbal N, Sehar Z, et al. Methyl jasmonate protects the PS II system by maintaining the stability of chloroplast D1 protein and accelerating enzymatic antioxidants in heat-stressed wheat plants[J/OL]. Antioxidants, 2021, 10(8): 1216[2022-09-20]. https://doi.org/10.3390/antiox10081216.
[42]
Farooq A, Shakeel A, Saeed A, et al. Genetic variability predicting breeding potential of upland cotton (Gossypium hirsutum L.) for high temperature tolerance. Journal of Cotton Research, 2023, 6: 7[2023-07-28]. https://doi.org/10.1186/s42397-023-00144-z.
[43]
Qamer Z, Chaudhary M T, Du X M, et al. Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. Journal of Cotton Research, 2021, 4: 9[2023-07-25]. https://doi.org/10.1186/s42397-021-00086-4.
[44]
邓茳明, 熊格生, 袁小玲, 等. 棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应[J/OL]. 棉花学报, 2010, 22(3): 242-247[2022-09-20]. https://doi.org/10.3969/j.issn.1002-7807.2010.03.009.
Deng Jianming, Xiong Gesheng, Yuan Xiaoling, et al. Differences in SOD, POD, CAT activities and MDA content and their responses to high temperature stress at peak flowering stage in cotton lines with different tolerance to high temperature[J/OL]. Cotton Science, 2010, 22(3): 242-247[2022-09-20]. https://doi.org/10.3969/j.issn.1002-7807.2010.03.009.
[45]
张英华, 杨佑明, 曹莲, 等. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响[J/OL]. 作物学报, 2015, 41(1): 136-144[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2015.00136.
Zhang Yinghua, Yang Youming, Cao Lian, et al. Effect of high temperature on photosynthetic capability and antioxidant enzyme activity of flag leaf and non-leaf organs in wheat[J/OL]. Acta Agronomica Sinica, 2015, 41(1): 136-144[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2015.00136.
[46]
曹云英, 段骅, 杨立年, 等. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J/OL]. 作物学报, 2009, 35(3): 512-521[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2009.00512.
Cao Yunying, Duan Hua, Yang Linian, et al. Effect of high temperature during heading and early grain filling on grain yield of indica rice cultivars differing in heat-tolerance and its physiological mechanism[J/OL]. Acta Agronomica Sinica, 2009, 35(3): 512-521[2022-09-20]. https://doi.org/10.3724/SP.J.1006.2009.00512.
[47]
甄博, 周新国, 陆红飞, 等. 高温与涝交互胁迫对水稻孕穗期生理指标的影响[J/OL]. 灌溉排水学报, 2019, 38(3): 1-7[2022-09-20]. https://doi.org/10.13522/j.cnki.ggps.20180323.
Zhen Bo, Zhou Xinguo, Lu Hongfei, et al. The effects of alternate hot wave and waterlogging on physiological traits of rice at booting stage[J/OL]. Journal of Irrigation and Drainage, 2019, 38(3): 1-7[2022-09-20]. https://doi.org/10.13522/j.cnki.ggps.20180323.
[48]
Tan J, Tu L, Deng F, et al. Exogenous jasmonic acid inhibits cotton fiber elongation[J/OL]. Journal of Plant Growth Regulation, 2012, 31(4): 599-605[2022-09-20]. https://doi.org/10.1007/s00344-012-9260-1.
[49]
Hu H, He X, Tu L, et al. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like[J/OL]. The Plant Journal, 2016, 88(6): 921-935[2022-09-20]. https://doi.org/10.1111/tpj.13273.
[50]
Kurowska M M, Daszkowska-Golec A, Gajecka M, et al. Methyl jasmonate affects photosynthesis efficiency, expression of HvTIP genes and nitrogen homeostasis in barley[J/OL]. International Journal of Molecular Sciences, 2020, 21(12): 4335[2022-09-20]. https://doi.org/10.3390/ijms21124335.

基金

国家重点研发计划(2020YFD1001002)
PDF(4688 KB)

Accesses

Citation

Detail

段落导航
相关文章

/