棉花学报 ›› 2022, Vol. 34 ›› Issue (3): 215-226.doi: 10.11963/cs20220012
收稿日期:
2022-03-15
出版日期:
2022-05-15
发布日期:
2022-08-08
通讯作者:
刘志
E-mail:1984684981@qq.com;tigerzhiliu@126.com
作者简介:
田一波(1998―),男,硕士研究生, 基金资助:
Tian Yibo(),Pan Ao,Chen Jin,Zhou Zhonghua,Yuan Xiaoling,Liu Zhi*(
)
Received:
2022-03-15
Online:
2022-05-15
Published:
2022-08-08
Contact:
Liu Zhi
E-mail:1984684981@qq.com;tigerzhiliu@126.com
摘要:
【目的】通过对陆地棉酰基辅酶A氧化酶(acyl coenzyme A oxidase, ACX)基因家族进行鉴定和表达分析,为后续研究ACX基因的功能奠定基础。【方法】采用生物信息学方法对陆地棉基因组中ACX基因家族成员进行鉴定,并系统分析其理化性质、基因结构、进化关系、基因复制、启动子区顺式作用元件和表达模式等。利用病毒诱导的基因沉默技术初步探究GhACX16基因的功能。【结果】陆地棉基因组中鉴定到20个ACX基因,分布在13条染色体上,聚类分析将其分为4个亚族。非同义突变率/同义突变率(Ka/Ks)分析结果表明陆地棉ACX家族基因经历了较强烈的纯化选择。ACX基因的启动子区含有热应激、干旱、植物激素响应等相关的顺式作用元件。非生物胁迫下的表达模式分析结果显示,陆地棉ACX基因明显响应高温、低温、盐和模拟干旱胁迫;分析高温胁迫下耐高温与高温敏感棉花材料不同发育时期的花药中ACX基因的表达模式,发现GhACX5和GhACX16基因的表达量变化明显。与阴性对照相比,高温胁迫下GhACX16基因沉默的棉苗表现出明显的耐高温特征,且叶片中脯氨酸含量、叶绿素含量和过氧化氢酶活性显著升高,而丙二醛含量显著降低。【结论】陆地棉ACX基因的鉴定及表达模式分析表明,ACX基因广泛参与非生物胁迫响应;经基因沉默试验和生理生化分析初步推测其中的GhACX16基因可能在高温胁迫响应中发挥重要的功能。
田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226.
Tian Yibo,Pan Ao,Chen Jin,Zhou Zhonghua,Yuan Xiaoling,Liu Zhi. Identification and functional analysis of the ACX gene family in Gossypium hirsutum L.[J]. Cotton Science, 2022, 34(3): 215-226.
附表1
本研究所用引物"
引物名称 Primer name | 序列 Sequence | 用途 Purpose |
---|---|---|
GhACX16-F | ATGCTAACATGCGCCAAGG | CDS扩增 |
GhACX16-R | GAACCCAATATGGTGCGTGTACT | Amplification of CDS |
VIGS-F | AAGGTTACCGAATTCTCTAGACCCCGCTAAGTATTTCGCCA | VIGS载体构建 |
VIGS-R | GAGCTCGGTACCGGATCCCCAATCCACCATTTGATGGC | Vector construction for VIGS |
GhACX16-QF | GCAAATTCGCAACGGTTTTCGC | qRT-PCR |
GhACX16-QR | AACTGAACGGAATCGCAGTGCT | |
Actin9-F | CCTCCGTCTAGACCTTGCTG | qRT-PCR |
Actin9-R | TCATTCGGTCAGCAATACCA |
附表2
陆地棉ACX基因家族成员基本信息 Table S2 Basic information of ACX gene family members in G. hirsutum"
基因名称 Gene name | 基因ID Gene ID | CDS 长度 CDS length/bp | 染色体定位 Chromosome location | 氨基酸 数量 Amino acid number | 等电点 Isoelectric point | 蛋白质 分子质量 Molecular weight/ku | 亚细胞 定位 Subcellular localization |
---|---|---|---|---|---|---|---|
GhACX1 | Gh_A01G0206 | 2 013 | A01: 1 796 359-1 800 867 | 670 | 8.22 | 75.50 | Pero |
GhACX2 | Gh_A01G0207 | 2 019 | A01: 1 804 843-1 816 831 | 672 | 8.78 | 75.90 | Pero |
GhACX3 | Gh_A03G1765 | 1 920 | A03: 103 416 142-103 419 599 | 639 | 9.02 | 72.00 | Pero |
GhACX4 | Gh_A09G2126 | 1 995 | A09: 78 122 816-78 129 033 | 664 | 6.77 | 74.50 | Pero |
GhACX5 | Gh_A10G0856 | 2 070 | A10: 14 797 765-14 800 475 | 689 | 8.47 | 77.20 | Pero |
GhACX6 | Gh_A11G0258 | 1 995 | A11: 2 261 306-2 266 347 | 664 | 7.06 | 74.70 | Pero |
GhACX7 | Gh_A11G2090 | 2 067 | A11: 40 858 218-40 862 134 | 688 | 8.70 | 77.30 | Pero |
GhACX8 | Gh_A12G1588 | 2 067 | A12: 87 695 524-87 703 039 | 688 | 8.52 | 77.30 | Pero |
GhACX9 | Gh_A12G2360 | 1 995 | A12: 101 992 043-101 997 823 | 664 | 7.29 | 74.90 | Pero |
GhACX10 | Gh_A13G0968 | 1 302 | A13: 42 022 635-42 026 136 | 433 | 8.59 | 47.70 | Pero |
GhACX11 | Gh_D01G0200 | 2 013 | A13: 1 529 855-1 534 363 | 670 | 8.35 | 75.60 | Pero |
GhACX12 | Gh_D01G0201 | 2 019 | D01: 1 536 500-1 543 312 | 672 | 8.79 | 75.80 | Pero |
GhACX13 | Gh_D02G1922 | 2 025 | D02: 62 830 071-62 833 541 | 674 | 8.68 | 75.80 | Pero |
GhACX14 | Gh_D09G1772 | 1 317 | D09: 44 714 315-44 717 800 | 438 | 8.62 | 47.90 | Pero |
GhACX15 | Gh_D09G2062 | 1 995 | D09: 47 571 769-47 578 007 | 664 | 6.57 | 74.50 | Pero |
GhACX16 | Gh_D10G1120 | 1 944 | D10: 14 327 876-14 330 493 | 647 | 8.34 | 72.50 | Pero |
GhACX17 | Gh_D11G0268 | 1 995 | D11: 2 179 426-2 184 528 | 664 | 7.05 | 74.60 | Pero |
GhACX18 | Gh_D11G2339 | 2 067 | D11: 35 740 424-35 744 350 | 688 | 8.75 | 77.20 | Pero |
GhACX19 | Gh_D12G1589 | 2 031 | D12: 45 479 502-45 485 010 | 676 | 8.24 | 75.90 | Pero |
GhACX20 | Gh_D12G2375 | 1 995 | D12: 56 200 689-56 206 438 | 664 | 6.89 | 74.90 | Pero |
附表3
陆地棉ACX基因家族同源基因对Ka/Ks分析"
同源基因对 | 非同义突变率 | 同义突变率 | 非同义突变率/同义突变率 |
---|---|---|---|
Homologous gene pair | Ka | Ks | Ka/Ks |
GhACX1/GhACX11 | 0.009 | 0.025 | 0.358 |
GhACX3/GhACX8 | 0.103 | 0.468 | 0.220 |
GhACX3/GhACX12 | 0.130 | 0.582 | 0.224 |
GhACX3/GhACX13 | 0.010 | 0.033 | 0.303 |
GhACX3/GhACX19 | 0.100 | 0.487 | 0.206 |
GhACX4/GhACX6 | 0.082 | 0.408 | 0.200 |
GhACX4/GhACX9 | 0.075 | 0.396 | 0.189 |
GhACX4/GhACX15 | 0.004 | 0.049 | 0.092 |
GhACX4/GhACX17 | 0.083 | 0.392 | 0.211 |
GhACX5/GhACX16 | 0.009 | 0.048 | 0.178 |
GhACX6/GhACX9 | 0.055 | 0.325 | 0.168 |
GhACX6/GhACX17 | 0.007 | 0.057 | 0.125 |
GhACX7/GhACX18 | 0.009 | 0.042 | 0.205 |
GhACX8/GhACX13 | 0.098 | 0.472 | 0.207 |
GhACX8/GhACX19 | 0.010 | 0.024 | 0.411 |
GhACX9/GhACX15 | 0.077 | 0.403 | 0.190 |
GhACX9/GhACX17 | 0.056 | 0.330 | 0.169 |
GhACX11/GhACX13 | 0.116 | 0.548 | 0.211 |
GhACX13/GhACX19 | 0.095 | 0.493 | 0.193 |
GhACX15/GhACX17 | 0.085 | 0.392 | 0.216 |
[1] | Seneviratne S I, Rogelj J, Seferian R, et al. The many possible climates from the Paris Agreement's aim of 1.5 ℃ warming[J/OL]. Nature, 2018, 558(7708): 41-49[2022-03-15]. https://doi.org/10.1038/s41586-018-0181-4. |
[2] | Khan A H, Min L, Ma Y, et al. High day and night temperatures distinctively disrupt fatty acid and jasmonic acid metabolism, inducing male sterility in cotton[J/OL]. Journal of Experimental Botany, 2020, 71(19): 6128-6141[2022-03-15]. https://doi.org/10.1093/jxb/eraa319. |
[3] | Yang X T, Ye J L, Zhang L L, et al. Blocked synthesis of sporopollenin and jasmonic acid leads to pollen wall defects and anther indehiscence in genic male sterile wheat line 4110S at high temperatures[J/OL]. Functional & Integrative Genomics, 2020, 20(3): 383-396[2022-03-15]. https://doi.org/10.1007/s10142-019-00722-y. |
[4] | Chen J, Pan A, He S, et al. Different microRNA families involved in regulating high temperature stress response during cotton (Gossypium hirsutum L.) anther development[J/OL]. International Journal of Molecular Sciences, 2020, 21(4): 1280[2022-03-15]. https://doi.org/10.3390/ijms21041280. |
[5] | 陈劲. 棉花花药发育时期基因表达特征及其高温逆境响应分析[D]. 长沙: 湖南农业大学, 2020. |
Chen Jin. The analysis of the characteristics of gene expression and their responding to high temperature stress during cotton anther development[D]. Changsha: Hunan Agricultural University, 2020. | |
[6] | Froman B E, Edwards P C, Bursch A G, et al. ACX3, a novel medium-chain acyl-coenzyme A oxidase from Arabidopsis[J/OL]. Plant Physiology, 2000, 123(2): 733-742[2022-03-15]. https://doi.org/10.1104/pp.123.2.733. |
[7] | Rinaldi M A, Patel A B, Park J, et al. The roles of beta-oxidation and cofactor homeostasis in peroxisome distribution and function in Arabidopsis thaliana[J/OL]. Genetics, 2016, 204(3): 1089-1115[2022-03-15]. https://doi.org/10.1534/genetics.116.193169. |
[8] |
Poirier Y, Antonenkov V D, Glumoff T, et al. Peroxisomal β-oxidation—A metabolic pathway with multiple functions[J/OL]. Biochimica et Biophysica Acta, 2006, 1763(12): 1413-1426[2022-03-15]. https://doi.org/10.1016/j.bbamcr.2006.08.034.
pmid: 17028011 |
[9] | Hooks M A, Bode K, Couée I. Higher-plant medium- and short-chain acyl-CoA oxidases: identification, purification and characterization of two novel enzymes of eukaryotic peroxisomal beta-oxidation[J/OL]. The Biochemical Journal, 1996, 320(Pt 2): 607-614[2022-03-15]. https://doi.org/10.1042/bj3200607. |
[10] | Arent S, Pye V E, Henriksen A. Structure and function of plant acyl-CoA oxidases[J/OL]. Physiology and Biochemistry, 2008, 46(3): 292-301[2022-03-15]. https://doi.org/10.1016/j.plaphy.2007.12.014. |
[11] | Adham A R, Zolman B K, Millius A, et al. Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in beta-oxidation[J/OL]. The Plant Journal, 2005, 41(6): 859-874[2022-03-15]. https://doi.org/10.1111/j.1365-313X.2005.02343.x. |
[12] | Wang L, Wang C, Liu X, et al. Peroxisomal beta-oxidation regulates histone acetylation and DNA methylation in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10576-10585[2022-03-15]. https://doi.org/10.1073/pnas.1904143116. |
[13] | Kim M C, Kim T H, Park J H, et al. Expression of rice acyl-CoA oxidase isoenzymes in response to wounding[J/OL]. Journal of Plant Physiology, 2007, 164(5): 665-668[2022-03-15]. https://doi.org/10.1016/j.jplph.2006.08.003. |
[14] | Li C, Schilmiller A L, Liu G, et al. Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato[J/OL]. The Plant Cell, 2005, 17(3): 971-986[2022-03-15]. https://doi.org/10.1105/tpc.104.029108. |
[15] |
Chen S, Lu X, Ge L, et al. Wound- and pathogen-activated de novo JA synthesis using different ACX isozymes in tea plant (Camellia sinensis)[J/OL]. Journal of Plant Physiology, 2019, 243: 153047[2022-03-15]. https://doi.org/10.1016/j.jplph.2019.153047.
doi: 10.1016/j.jplph.2019.153047 |
[16] | Eastmond P, Hooks M, Graham I. The Arabidopsis acyl-CoA oxidase gene family[J/OL]. Biochemical Society Transactions. 2000, 28(6): 755-757[2022-03-15]. https://doi.org/10.1042/bst0280755. |
[17] | Finn R D, Bateman A, Clements J, et al. Pfam: the protein families database[J/OL]. Nucleic Acids Research, 2014, 42(Database issue): D222-D230[2022-03-15]. https://doi.org/10.1093/nar/gkt1223. |
[18] | Hu Y, Chen J, Fang L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J/OL]. Nature Genetics, 2019, 51(4): 739-748[2022-03-15]. https://doi.org/10.1038/s41588-019-0371-5. |
[19] | Li F G, Fan G Y, Wang K B, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J/OL]. Nature Genetics, 2014, 46(6): 567-572[2022-03-15]. https://doi.org/10.1038/ng.2987. |
[20] | Wang K B, Wang Z W, Li F G, et al. The draft genome of a diploid cotton Gossypium raimondii[J/OL]. Nature Genetics, 2012, 44(10): 1098-1103[2022-03-15]. https://doi.org/10.1038/ng.2371. |
[21] | Prakash A, Jeffryes M, Bateman A, et al. The HMMER web server for protein sequence similarity search[J/OL]. Current Protocols in Bioinformatics, 2017, 60(1): 3.15. 11-3.15.23[2022-03-15]. https://doi.org/10.1002/cpbi.40. |
[22] | Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J/OL]. Nucleic Acids Research, 2020, 48(D1): D265-D268[2022-03-15]. https://doi.org/10.1093/nar/gkz991. |
[23] | Garcia-Hernandez M, Berardini T, Chen G, et al. TAIR: a resource for integrated Arabidopsis data[J/OL]. Functional & Integrative Genomics, 2002, 2(6): 239-253[2022-03-15]. https://doi.org/10.1007/s10142-002-0077-z. |
[24] | Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J/OL]. Nature, 2000, 408(6814): 796-815[2022-03-15]. https://doi.org/10.1038/35048692. |
[25] | Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis[J/OL]. Nucleic Acids Research, 2003, 31(13): 3784-3788[2022-03-15]. https://doi.org/10.1093/nar/gkg563. |
[26] | Bailey T L, Boden M, Buske F A, et al. MEME suite: tools for motif discovery and searching[J/OL]. Nucleic Acids Research, 2009, 37(Web server issue): W202-W208[2022-03-15]. https://doi.org/10.1093/nar/gkp335. |
[27] | Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J/OL]. Molecular Plant, 2020, 13(8): 1194-1202[2022-03-15]. https://doi.org/10.1016/j.molp.2020.06.009. |
[28] | Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0[J/OL]. Bioinformatics, 2007, 23(21): 2947-2948[2022-03-15]. https://doi.org/10.1093/bioinformatics/btm404. |
[29] | Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J/OL]. Molecular Biology and Evolution, 2015, 32(1): 268-274[2022-03-15]. https://doi.org/10.1093/molbev/msu300. |
[30] | Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs[J/OL]. Journal of Heredity, 2002, 93(1): 77-78[2022-03-15]. https://doi.org/10.1093/jhered/93.1.77. |
[31] | Wang Y, Tang H, Debarry J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J/OL]. Nucleic Acids Research, 2012, 40(7): e49-e49[2022-03-15]. https://doi.org/10.1093/nar/gkr1293. |
[32] | Wang D, Zhang Y, Zhang Z, et al. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies[J/OL]. Genomics, Proteomics & Bioinformatics, 2010, 8(1): 77-80[2022-03-15]. https://doi.org/10.1016/s1672-0229(10)60008-3. |
[33] | Rombauts S, Déhais P, Van Montagu M, et al. PlantCARE, a plant cis-acting regulatory element database[J/OL]. Nucleic Acids Research, 1999, 27(1): 295-296[2022-03-15]. https://doi.org/10.1093/nar/27.1.295. |
[34] | Schoch C L, Ciufo S, Domrachev M, et al. NCBI taxonomy: a comprehensive update on curation, resources and tools[J/OL]. Database, 2020, 2020: baaa062[2022-03-15]. https://doi.org/10.1093/database/baaa062. |
[35] | 潘奥, 王静静, 孙福来, 等. 陆地棉NF-YA基因家族的全基因组鉴定与功能分析[J/OL]. 棉花学报, 2020, 32(4): 316-328[2022-03-15]. https://doi.org/10.11963/1002-7807.palz.20200611. |
Pan Ao, Wang Jingjing, Sun Fulai, et al. Genome-wide identification and functional analysis of the NF-YA genes family in Gossypium hirsutum L[J/OL]. Cotton Science, 2020, 32(4): 316-328[2022-03-15]. https://doi.org/10.11963/1002-7807.palz.20200611. | |
[36] | Li X B, Fan X P, Wang X L, et al. The cotton Actin1 gene is functionally expressed in fibers and participates in fiber elongation[J/OL]. The Plant Cell, 2005, 17(3): 859-875[2022-03-15]. https://doi.org/10.1105/tpc.104.029629. |
[37] | Rao X, Lai D, Huang X. A new method for quantitative real-time polymerase chain reaction data analysis[J/OL]. Journal of Computational Biology, 2013, 20(9): 703-711[2022-03-15]. https://doi.org/10.1089/cmb.2012.0279. |
[38] | Glasauer S M, Neuhauss S C. Whole-genome duplication in teleost fishes and its evolutionary consequences[J/OL]. Mole-cular Genetics and Genomics, 2014, 289(6): 1045-1060[2022-03-15]. https://doi.org/10.1007/s00438-014-0889-2. |
[39] | Koralewski T E, Krutovsky K V. Evolution of exon-intron structure and alternative splicing[J/OL]. PLoS ONE, 2011, 6(3): e18055[2022-03-15]. https://doi.org/10.1371/journal.pone.0018055. |
[40] | Magadum S, Banerjee U, Murugan P, et al. Gene duplication as a major force in evolution[J/OL]. Journal of Genetics, 2013, 92(1): 155-161[2022-03-15]. https://doi.org/10.1007/s12041-013-0212-8. |
[41] | Li J, Zhang Z, Vang S, et al. Correlation between Ka/Ks and Ks is related to substitution model and evolutionary lineage[J/OL]. Journal of Molecular Evolution, 2009, 68(4): 414-423[2022-03-15]. https://doi.org/10.1007/s00239-009-9222-9. |
[42] | Dong J, Wei L B, Hu Y, et al. Molecular cloning and characterization of three novel genes related to fatty acid degradation and their responses to abiotic stresses in Gossypium hirsutum L.[J/OL]. Journal of Integrative Agriculture, 2013, 12(4): 582-588[2022-03-15]. https://doi.org/10.1016/s2095-3119(13)60275-0. |
[1] | 赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186. |
[2] | 吴健锋,樊志浩,武连杰,胡晓旺,韩知里,高巍,龙璐. 陆地棉衰老相关基因GhSAG101的克隆及抗病功能分析[J]. 棉花学报, 2022, 34(3): 187-197. |
[3] | 张素君,李兴河,王海涛,唐丽媛,蔡肖,刘存敬,张香云,张建宏. 陆地棉主要育种性状SSR关联位点的验证及优异材料鉴定[J]. 棉花学报, 2022, 34(2): 120-136. |
[4] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[5] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[6] | 陈琴,李多露,赵杰银,高文举,陈全家,曲延英. 陆地棉UDPGP基因家族的鉴定及抗旱性分析[J]. 棉花学报, 2022, 34(1): 12-22. |
[7] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[8] | 李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. |
[9] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[10] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[11] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[12] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[13] | 薛羽君,魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[14] | 吕丽敏,左东云,王省芬,张友平,程海亮,王巧连,宋国立,马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[15] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
|