棉花学报 ›› 2022, Vol. 34 ›› Issue (1): 33-47.doi: 10.11963/cs20210076
收稿日期:
2021-12-28
出版日期:
2022-01-15
发布日期:
2022-05-31
通讯作者:
上官小霞
E-mail:sgxx74@126.com
作者简介:
上官小霞(1974―),女,副研究员, 基金资助:
Shangguan Xiaoxia1,*(),Cao Junfeng2,Yang Qinli1,Wu Xia1
Received:
2021-12-28
Online:
2022-01-15
Published:
2022-05-31
Contact:
Shangguan Xiaoxia
E-mail:sgxx74@126.com
摘要:
棉纤维不仅是最重要的纺织工业原料,也是研究植物细胞分化、伸长以及细胞壁合成的理想模型。棉纤维细胞的分化和发育受复杂的、相互关联的调控网络所控制。转录因子、功能基因、植物激素、非编码RNA以及表观遗传修饰在棉纤维发育过程中皆起重要的调控作用。随着不同棉花基因组的组装和重测序及关联分析工作的展开,越来越多的调控棉纤维发育的关键因子被挖掘,对进一步解析棉花纤维发育的分子调控机制及助力棉花生物育种具有重要的意义。
上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47.
Shangguan Xiaoxia,Cao Junfeng,Yang Qinli,Wu Xia. Research progress on the molecular mechanism of cotton fiber development[J]. Cotton Science, 2022, 34(1): 33-47.
表1
调控棉花纤维发育的关键转录因子"
基因家族 Gene family | 基因 Gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
MYB | GaMYB2 | 正调控表皮毛发育和纤维起始 Positively regulate trichome development and fiber initiation | [ |
GhMYB3 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ | |
GhMYB109 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ | |
GhCPC | 负调控纤维起始和伸长 Negativly regulate fiber initiation and elongation | [ | |
GhMYB7 | 正调控纤维次生壁加厚 Positively regulate fiber secondary wall deposition | [ | |
GhMYB25 | 正调控叶表皮毛发育和纤维起始 Positively regulate leaf trichome development and fiber initiation | [ | |
GhMYB25-like | 正调控纤维起始 Positively regulate fiber initiation | [ | |
GhMML3 | 正调控纤维起始 Positively regulate fiber initiation | [ | |
GhMML4 | 正调控纤维起始 Positively regulate fiber initiation | [ | |
GhMYB46 | 可能正调控纤维次生壁加厚 May positively regulate fiber secondary wall deposition | [ | |
GhMYB212 | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
bHLH | GhDEL65 | 正调控纤维伸长 Positively regulate fiber elongation | [ |
GhPRE1 | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
WD repeat | GhTTG1 | 正调控纤维起始 Positively regulate fiber initiation | [ |
GhTTG3 | 正调控纤维起始 Positively regulate fiber initiation | [ | |
HD-ZIP | GaHOX1 | 正调控表皮毛发育和纤维起始 Positively regulate trichome development and fiber initiation | [ |
GhHOX3 | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
GhHD-1 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ | |
TCP | GhTCP4 | 正调控纤维次生壁加厚 Positively regulate secondary cell wall deposition | [ |
NAC | GhFSN1 | 正调控纤维次生壁加厚 Positively regulate fiber secondary cell wall deposition | [ |
WRKY | GhWRKY16 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ |
表2
调控棉花纤维发育的主要功能基因"
基因类型 Gene types | 基因 Gene | 基因功能 Gene function | 参考文献 Reference |
---|---|---|---|
细胞骨架相关基因 Cytoskeleton-related genes | GhTUA9 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ |
GhTUB1 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ | |
GhACT1 | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
GhACT17D | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
GhADF1 | 负调控纤维伸长和次生壁加厚 Negativly regulate fiber elongation and secondary wall deposition | [ | |
GhPFN2 | 负调控纤维伸长 Negativly regulate fiber elongation | [ | |
细胞壁松弛相关基因 Cell wall relaxation- related genes | GhEXP1 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ |
GhEXP2 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ | |
GhRDL1 | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
GhEXPA1 | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
蔗糖合酶基因 Sucrose synthase genes | Sus | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ |
GhsusA1 | 正调控纤维伸长和次生壁加厚 Positively regulate fiber elongation and secondary wall deposition | [ | |
糖转运蛋白基因 Sucrose transporter genes | GhSWEET12 | 正调控纤维伸长 Positively regulate fiber elongation | [ |
GhSCP2D | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
液泡转化酶基因 Vacuolar invertase gene | GhVIN1 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ |
脂类代谢基因 Lipid metabolism gene | GhCER6 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ |
其他基因 Other genes | GhFLA1 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ |
GhGRAM31 | 正调控纤维伸长 Positively regulate fiber elongation | [ |
表3
植物激素相关基因在棉纤维发育中的功能"
激素种类 Hormone types | 基因 Gene | 基因功能 Gene function | 参考文献 Reference |
---|---|---|---|
生长素 Auxin | iaaM | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ |
GhPIN3a | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ | |
GhARF2 | 可能正调控纤维起始 May positively regulate fiber initiation | [ | |
GhARF18 | 可能正调控纤维起始 May positively regulate fiber initiation | [ | |
GhARF2b | 正调控纤维起始 Positively regulate fiber initiation | [ | |
赤霉素 GA | GhGA20ox1 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ |
GhSLR1 | 可能负调控纤维伸长 May negativly regulate fiber elongation | [ | |
油菜素内酯 BR | GhDET2 | 正调控纤维起始和伸长 Positively regulate fiber initiation and elongation | [ |
GhPAG1 | 正调控纤维伸长 Positively regulate fiber elongation | [ | |
GhBRI1 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ | |
GhBZR1 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ | |
乙烯 ET | GhACO1-3 | 可能正调控纤维伸长 May positively regulate fiber elongation | [ |
茉莉酸 JA | GhJAZ2 | 负调控纤维起始 Negatively regulate fiber initiation | [ |
[1] |
Mansoor S, Paterson A H. Genomes for jeans: cotton genomics for engineering superior fiber[J/OL]. Trends in Biotechnology, 2012, 30(10): 521-527[2021-12-20]. https://doi.org/10.1016/j.tibtech. 2012.06.003.
doi: 10.1016/j.tibtech.2012.06.003 pmid: 22831638 |
[2] |
Qin Y M, Zhu Y X. How cotton fibers elongate: a tale of linear cell-growth mode[J/OL]. Current Opinion in Plant Biology, 2011, 14(1): 106-111[2021-12-20]. https://doi.org/10.1016/j.pbi.2010.09.010.
doi: 10.1016/j.pbi.2010.09.010 |
[3] |
Yu Y, Wu S, Nowak J, et al. Live-cell imaging of the cytoskeleton in elongating cotton fibres[J/OL]. Nature Plants, 2019, 5(5): 498-504[2021-12-20]. https://doi.org/10.1038/s41477-019-0418-8.
doi: 10.1038/s41477-019-0418-8 |
[4] |
Liu Y. Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers[J/OL]. Materials (Basel), 2013, 6(1): 299-313[2021-12-20]. https://doi.org/10.3390/ma6010299.
doi: 10.3390/ma6010299 |
[5] |
Ramsay N A, Glover B J. MYB-bHLH-WD 40 protein complex and the evolution of cellular diversity[J/OL]. Trends in Plant Science, 2005, 10(2): 63-70[2021-12-20]. https://doi.org/10.1016/j.tplants.2004.12.011.
doi: 10.1016/j.tplants.2004.12.011 |
[6] | Digiuni S, Schellmann S, Geier F, et al. A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves[J/OL]. Molecular Systems Biology, 2008, 4: 4217[2021-12-20]. https://doi.org/10.1038/msb.2008.54. |
[7] |
Gan L, Xia K, Chen J G, et al. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis[J/OL]. BMC Plant Biology, 2011, 11(1): 176[2021-12-20]. https://doi.org/10.1186/1471-2229-11-176.
doi: 10.1186/1471-2229-11-176 |
[8] |
Wang S, Hubbard L, Chang Y, et al. Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis[J/OL]. BMC Plant Biology, 2008, 8(1): 81[2021-12-20]. https://doi.org/10.1186/1471-2229-8-81.
doi: 10.1186/1471-2229-8-81 |
[9] |
Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene[J/OL]. The Plant Cell, 2004, 16(9): 2323-2334[2021-12-20]. https://doi.org/10.1105/tpc.104.024844.
doi: 10.1105/tpc.104.024844 |
[10] |
Shangguan X X, Yang Q L, Wu X, et al. Function analysis of a cotton R2R3 MYB transcription factor GhMYB3 in regulating plant trichome development[J/OL]. Plant Biology, 2021, 23(6): 1118-1127[2021-12-20]. https://doi.org/10.1111/plb.13299.
doi: 10.1111/plb.13299 pmid: 34396658 |
[11] |
Pu L, Li Q, Fan X, et al. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development[J/OL]. Genetics, 2008, 180(2): 811-820[2021-12-20]. https://doi.org/10.1534/genetics.108. 093070.
doi: 10.1534/genetics.108.093070 pmid: 18780729 |
[12] | Liu B, Zhu Y, Zhang T. The R3-MYB gene GhCPC negatively regulates cotton fiber elongation[J/OL]. PLoS ONE, 2015, 10(2): e0116272[2021-12-20]. https://doi.org/10.1371/journal.pone.0116272. |
[13] |
Shangguan X X, Yang C Q, Zhang X F, et al. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum)[J/OL]. Physiologia Plantarum, 2016, 158(2): 200-212[2021-12-20]. https://doi.org/10.1111/ppl.12450.
doi: 10.1111/ppl.12450 |
[14] |
Humphries J A, Walker A R, Timmis J N, et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene[J/OL]. Plant Molecular Biology, 2005, 57(1): 67-81[2021-12-20]. https://doi.org/10.1007/s11103-004-6768-1.
pmid: 15821869 |
[15] | 杜静静, 田岳, 冯昊, 等. 陆地棉基因GhMYB52的克隆及特征分析[J/OL]. 棉花学报, 2019, 31(6): 505-514[2021-10-18]. https://doi.org/10.11963/1002-7807.djjhy.20191106. |
Du Jingjing, Tian Yue, Feng Hao, et al. Cloning and characterization of the transcription factor gene GhMYB52 in Gossypium hirsutum L.[J/OL]. Cotton Science, 2019, 31(6): 505-514[2021-10-18]. https://doi.org/10.11963/1002-7807.djjhy.20191106. | |
[16] |
Guan X Y, Li Q J, Shan C M, et al. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2[J/OL]. Physiologia Plantarum, 2008, 134(1): 174-182[2021-12-20]. https://doi.org/10.1111/j.1399-3054.2008.01115.x.
doi: 10.1111/j.1399-3054.2008.01115.x |
[17] |
Shan C M, Shangguan X X, Zhao B, et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3[J/OL]. Nature Communications, 2014, 5: 5519[2021-12-20]. https://doi.org/10.1038/ncomms6519.
doi: 10.1038/ncomms6519 |
[18] | Walford S A, Wu Y, Llewellyn D J, et al. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1[J/OL]. The Plant Journal, 2012, 71(3): 464-478[2021-12-20]. https://doi.org/10.1111/j.1365-313X.2012.05003.x. |
[19] |
Zhao B, Cao J F, Hu G J, et al. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation[J/OL]. The New Phytologist, 2018, 218(3): 1061-1075[2021-12-20]. https://doi.org/10.1111/nph.15063.
doi: 10.1111/nph.15063 |
[20] |
Hou J, Xu H, Fan D, et al. MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa[J/OL]. The New Phytologist, 2020, 228(4): 1354-1368[2021-12-20]. https://doi.org/10.1111/nph.16782.
doi: 10.1111/nph.16782 |
[21] |
Sun X, Wang C, Xiang N, et al. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor[J/OL]. Plant Biotechnology Journal, 2017, 15(10): 1284-1294[2021-12-20]. https://doi.org/10.1111/pbi.12715.
doi: 10.1111/pbi.12715 |
[22] |
Cao J F, Zhao B, Huang C C, et al. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber[J/OL]. Molecular Plant, 2020, 13(7): 1063-1077[2021-12-20]. https://doi.org/10.1016/j.molp.2020.05.006.
doi: 10.1016/j.molp.2020.05.006 |
[23] |
Huang J, Chen F, Guo Y, et al. GhMYB 7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements[J/OL]. The New Phytologist, 2021, 232(4): 1718-1737[2021-12-20]. https://doi.org/10.1111/nph.17612.
doi: 10.1111/nph.17612 |
[24] |
Serna L, Martin C. Trichomes: different regulatory networks lead to convergent structures[J/OL]. Trends in Plant Science, 2006, 11(6): 274-280[2021-12-20]. https://doi.org/10.1016/j.tplants.2006.04.008.
doi: 10.1016/j.tplants.2006.04.008 |
[25] |
Machado A, Wu Y, Yang Y, et al. The MYB transcription factor GhMYB25 regulates early fibre and trichome development[J/OL]. The Plant Journal, 2009, 59(1): 52-62[2021-12-20]. https://doi.org/10.1111/j.1365-313X.2009.03847.x.
doi: 10.1111/j.1365-313X.2009.03847.x |
[26] |
Walford S A, Wu Y, Llewellyn D J, et al. GhMYB25-like: a key regulator of early cotton fiber development[J/OL]. The Plant Journal, 2011, 65(5): 785-797[2021-12-20]. https://doi.org/10.1111/j.1365-313X. 2010.04464.x.
doi: 10.1111/j.1365-313X.2010.04464.x |
[27] |
Wan Q, Guan X, Yang N, et al. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development[J/OL]. The New Phytologist, 2016, 210(4): 1298-1310[2021-12-20]. https://doi.org/10.1111/nph.13860.
doi: 10.1111/nph.13860 |
[28] |
Wu H, Tian Y, Wan Q, et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development[J/OL]. The New Phytologist, 2018, 217(2): 883-895[2021-12-20]. https://doi.org/10.1111/nph.14844.
doi: 10.1111/nph.14844 |
[29] |
Huang D, Wang S, Zhang B, et al. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice[J/OL]. The Plant Cell, 2015, 27(6): 1681-1696[2021-12-20]. https://doi.org/10.1105/tpc.15.00015.
doi: 10.1105/tpc.15.00015 |
[30] |
Zhang Q, Luo F, Zhong Y, et al. Modulation of NAC transcription factor NST1 activity by XYLEM NAC DOMAIN1 regulates secondary cell wall formation in Arabidopsis[J/OL]. Journal of Experimental Botany, 2020, 71(4): 1449-1458[2021-12-20]. https://doi.org/10.1093/jxb/erz513.
doi: 10.1093/jxb/erz513 pmid: 31740956 |
[31] |
Zhang J, Huang G Q, Zou D, et al. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers[J/OL]. The New Phytologist, 2018, 217(2): 625-640[2021-12-20]. https://doi.org/10.1111/nph.14864.
doi: 10.1111/nph.14864 |
[32] |
Huang C, Nie X, Shen C, et al. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs[J/OL]. Plant Biotechnology Journal, 2017, 15(11): 1374-1386[2021-12-20]. https://doi.org/10.1111/pbi.12722.
doi: 10.1111/pbi.12722 pmid: 28301713 |
[33] |
Sun W, Gao Z, Wang J, et al. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers[J/OL]. The New Phytologist, 2019, 222(2): 864-881[2021-12-20]. https://doi.org/10.1111/nph.15620.
doi: 10.1111/nph.15620 |
[34] |
Wang N N, Li Y, Chen Y H, et al. Phosphorylation of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber initiation and elongation in cotton (Gossypium hirsutum)[J/OL]. The Plant Cell, 2021, 33(8): 2736-2752[2021-12-20]. https://doi.org/10.1093/plcell/koab153.
doi: 10.1093/plcell/koab153 |
[35] |
Li L, Wang X L, Huang G Q, et al. Molecular characterization of cotton GhTUA9 gene specifically expressed in fibre and involved in cell elongation[J/OL]. Journal of Experimental Botany, 2007, 58(12): 3227-3238[2021-12-20]. https://doi.org/10.1093/jxb/erm167.
pmid: 17761728 |
[36] |
Li X B, Cai L, Cheng N H, et al. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber[J/OL]. Plant Physiology, 2002, 130(2): 666-674[2021-12-20]. https://doi.org/10.1104/pp.005538.
doi: 10.1104/pp.005538 |
[37] |
Li X B, Fan X P, Wang X L, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation[J/OL]. The Plant Cell, 2005, 17(3): 859-875[2021-12-20]. https://doi.org/10.1105/tpc.104.029629.
doi: 10.1105/tpc.104.029629 |
[38] | Cao Y, Huang H, Yu Y, et al. A modified actin (Gly65Val substitution) expressed in cotton disrupts polymerization of actin filaments leading to the phenotype of Ligon Lintless-1 (Li1) mutant[J/OL]. International Journal of Molecular Sciences, 2021, 22(6): 3000[2021-12-20]. https://doi.org/10.3390/ijms22063000. |
[39] |
Wang H Y, Wang J, Gao P, et al. Down-regulation of GhADF1 gene expression affects cotton fibre properties[J/OL]. Plant Biotechnology Journal, 2009, 7(1): 13-23[2021-12-20]. https://doi.org/10.1111/j.1467-7652.2008.00367.x.
doi: 10.1111/j.1467-7652.2008.00367.x |
[40] | Wang J, Wang H Y, Zhao P M, et al. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers[J/OL]. Plant & Cell Physiology, 2010, 51(8): 1276-1290[2021-12-20]. https://doi.org/10.1093/pcp/pcq086. |
[41] | Harmer S E, Orford S J, Timmis J N. Characterisation of six α-expansin genes in Gossypium hirsutum (upland cotton)[J/OL]. Molecular Genetics & Genomics, 2002, 268(1):1-9[2021-12-20]. https://doi.org/10.1007/s00438-002-0721-2. |
[42] | 吕丽敏, 左东云, 王省芬, 等. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J/OL]. 棉花学报, 2021, 33(3): 280-290[2021-10-24]. https://doi.org/10.11963/1002-7807.llmmzy.20210411. |
Lü Limin, Zuo Dongyun, Wang Xingfen, et al. Analysis and expression of GhEXPs related to fiber development in Gossypium hirsutum L.[J/OL]. Cotton Science, 2021, 33(3): 280-290[2021-10-24]. https://doi.org/10.11963/1002-7807.llmmzy.20210411. | |
[43] |
Xu B, Gou J Y, Li F G, et al. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production[J/OL]. Molecular Plant, 2013, 6(3): 945-958[2021-12-20]. https://doi.org/10.1093/mp/sss112.
doi: 10.1093/mp/sss112 |
[44] |
Huang G Q, Gong S Y, Xu W L, et al. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton[J/OL]. Plant Physiology, 2013, 161(3): 1278-1290[2021-12-20]. https://doi.org/10.1104/pp.112.203760.
doi: 10.1104/pp.112.203760 |
[45] |
Ruan Y L, Llewellyn D J, Furbank R T, et al. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton[J/OL]. Journal of Experimental Botany, 2005, 56(413): 977-984[2021-12-20]. https://doi.org/10.1093/jxb/eri091.
doi: 10.1093/jxb/eri091 |
[46] |
Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development[J/OL]. The Plant Cell, 2003, 15(4): 952-964[2021-12-20]. https://doi.org/10.1105/tpc.010108.
doi: 10.1105/tpc.010108 |
[47] |
Jiang Y. Guo W, Zhu H, et al. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality[J/OL]. Plant Biotechnology Journal, 2012, 10(3): 301-312[2021-12-20]. https://doi.org/10.1111/j.1467-7652.2011.00662.x.
doi: 10.1111/j.1467-7652.2011.00662.x |
[48] |
Zhang Z, Ruan Y L, Zhou N, et al. Suppressing a putative sterol carrier gene reduces plasmodesmal permeability and activates sucrose transporter genes during cotton fiber elongation[J/OL]. The Plant Cell, 2017, 29(8): 2027-2046[2021-12-20]. https://doi.org/10.1105/tpc.17.00358.
doi: 10.1105/tpc.17.00358 |
[49] |
Wang L, Cook A, Patrick J W, et al. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling[J/OL]. The Plant Journal, 2014, 78(4): 686-696[2021-12-20]. https://doi.org/10.1111/tpj.12512.
doi: 10.1111/tpj.12512 pmid: 24654806 |
[50] |
Shi Y H, Zhu S W, Mao X Z, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J/OL]. The Plant Cell, 2006, 18(3): 651-664[2021-12-20]. https://doi.org/10.1105/tpc.105.040303.
doi: 10.1105/tpc.105.040303 |
[51] |
Qin Y M, Pujol F M, Hu C Y, et al. Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation[J/OL]. Journal of Experimental Botany, 2007, 58(3): 473-481[2021-12-20]. https://doi.org/10.1093/jxb/erl218.
doi: 10.1093/jxb/erl218 |
[52] |
Qin Y M, Hu C Y, Pang Y, et al. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis[J/OL]. The Plant Cell, 2007, 19(11): 3692-3704[2021-12-20]. https://doi.org/10.1105/tpc.107.054437.
doi: 10.1105/tpc.107.054437 |
[53] |
Ye Z, Qiao L, Luo X, et al. Genome-wide identification of cotton GRAM family proteins reveals that GRAM31 regulates fiber length[J/OL]. Journal of Experimental Botany, 2021, 72(7): 2477-2490[2021-12-20]. https://doi.org/10.1093/jxb/eraa597.
doi: 10.1093/jxb/eraa597 |
[54] |
Huang G, Huang J Q, Chen X Y, et al. Recent advances and future perspectives in cotton research[J/OL]. Annual Review of Plant Biology, 2021, 72: 437-462[2021-12-20]. https://doi.org/10.1146/annurev-arplant-080720-113241.
doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477 |
[55] |
Hu Y, Chen J, Fang L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J/OL]. Nature Genetics, 2019, 51(4): 739-748[2021-12-20]. https://doi.org/10.1038/s41588-019-0371-5.
doi: 10.1038/s41588-019-0371-5 |
[56] |
Wang M, Tu L, Yuan D, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense[J/OL]. Nature Genetics, 2019, 51(2): 224-229[2021-12-20]. https://doi.org/10.1038/s41588-018-0282-x.
doi: 10.1038/s41588-018-0282-x |
[57] |
Du X, Huang G, He S, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits[J/OL]. Nature Genetics, 2018. 50(6): 796-802[2021-12-20]. https://doi.org/10.1038/s41588-018-0116-x.
doi: 10.1038/s41588-018-0116-x |
[58] |
Ma Z, He S, Wang X, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield[J/OL]. Nature Genetics, 2018, 50(6): 803-813[2021-12-20]. https://doi.org/10.1038/s41588-018-0119-7.
doi: 10.1038/s41588-018-0119-7 |
[59] |
Ma Z, Zhang Y, Wu L, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement[J/OL]. Nature Genetics, 2021, 53(9): 1385-1391[2021-12-20]. https://doi.org/10.1038/s41588-021-00910-2.
doi: 10.1038/s41588-021-00910-2 |
[60] |
Chen Z J, Guan X. Auxin boost for cotton[J/OL]. Nature Biotechnology, 2011, 29(5): 407-409[2021-12-20]. https://doi.org/10.1038/nbt.1858.
doi: 10.1038/nbt.1858 |
[61] |
Zhang M, Zheng X, Song S, et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality[J/OL]. Nature Biotechnology, 2011, 29(5): 453-458[2021-12-20]. https://doi.org/10.1038/nbt.1843.
doi: 10.1038/nbt.1843 pmid: 21478877 |
[62] | 程成, 李斌, 王雅丽, 等. 转FBP7::iaaM基因陆地棉育种应用初报[J/OL]. 棉花学报, 2021, 33(4): 368-376[2021-11-08]. https://doi.org/10.11963/cs20200060. |
Li Bin, Wang Yali, et al. Evaluation on the genetic effects of FBP7::iaaM gene in upland cotton[J/OL]. Cotton Science, 2021, 33(4): 368-376[2021-11-08]. https://doi.org/10.11963/cs20200060. | |
[63] | Zhang M, Zeng J Y, Long H, et al. Auxin regulates cotton fiber initiation via GhPIN-mediated auxin transport[J/OL]. Plant & Cell Physiology, 2017, 58 (2): 385-397[2021-12-20]. https://doi.org/10.1093/pcp/pcw203. |
[64] |
Xiao G, He P, Zhao P, et al. Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation[J/OL]. Journal of Experimental Botany, 2018, 69(18): 4323-4337[2021-12-20]. https://doi.org/10.1093/jxb/ery219.
doi: 10.1093/jxb/ery219 |
[65] |
Zhang X, Cao J, Huang C, et al. Characterization of cotton ARF factors and the role of GhARF2b in fiber development[J/OL]. BMC Genomics, 2021, 22(1): 202[2021-12-20]. https://doi.org/10.1186/s12864-021-07504-6.
doi: 10.1186/s12864-021-07504-6 |
[66] |
Liao W B, Ruan M B, Cui B M, et al. Isolation and characterization of a GAI/RGA-like gene from Gossypium hirsutum[J/OL]. Plant Growth Regulation, 2009, 58(1): 35-45[2021-12-20]. https://doi.org/10.1007/s10725-008-9350-z.
doi: 10.1007/s10725-008-9350-z |
[67] |
Xiao Y H, Li D M, Yin M H, et al. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis[J/OL]. Journal of Plant Physiology, 2010, 167(10): 829-837[2021-12-20]. https://doi.org/10.1016/j.jplph.2010.01.003.
doi: 10.1016/j.jplph.2010.01.003 |
[68] | Sun Y, Veerabomma S, Abdel-Mageed H A, et al. Brassinosteroid regulates fiber development on cultured cotton ovules[J/OL]. Plant & Cell Physiology, 2005, 46(8): 1384-1391[2021-12-20]. https://doi.org/10.1093/pcp/pci150. |
[69] |
Luo M, Xiao Y, Li X, et al. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation[J/OL]. The Plant Journal, 2007, 51(3): 419-430[2021-12-20]. https://doi.org/10.1111/j.1365-313X.2007.03144.x.
doi: 10.1111/j.1365-313X.2007.03144.x |
[70] |
Yang Z, Zhang C, Yang X, et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation[J/OL]. The New Phytologist, 2014, 203(2): 437-448[2021-12-20]. https://doi.org/10.1111/nph.12824.
doi: 10.1111/nph.12824 |
[71] |
Sun Y, Fokar M, Asami T, et al. Characterization of the brassinosteroid insensitive 1 genes of cotton[J/OL]. Plant Molecular Biology, 2004, 54(2): 221-232[2021-12-20]. https://doi.org/0.1023/B:PLAN.0000028788.96381.47.
doi: 10.1023/B:PLAN.0000028788.96381.47 |
[72] |
Zhou Y, Zhang Z T, Li M, et al. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signaling[J/OL]. Plant Biotechnology Journal, 2015, 13(2): 269-280[2021-12-20]. https://doi.org/10.1111/pbi.12275.
doi: 10.1111/pbi.12275 |
[73] |
Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J/OL]. Nature Genetics, 2017, 49(7): 1089-1098[2021-12-20]. https://doi.org/10.1038/ng.3887.
doi: 10.1038/ng.3887 pmid: 28581501 |
[74] |
Li F, Fan G, Lu C, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J/OL]. Nature Biotechnology, 2015, 33(5): 524-530[2021-12-20]. https://doi.org/10.1038/nbt.3208.
doi: 10.1038/nbt.3208 |
[75] | Qin Y M, Hu C Y, Zhu Y X. The ascorbate peroxidase regulated by H2O2 and ethylene is involved in cotton fiber cell elongation by modulating ROS homeostasis[J/OL]. Plant Signaling & Behavior, 2008, 3(3): 194-196[2021-12-20]. https://doi.org/10.4161/psb.3.3.5208. |
[76] |
Yoshida Y, Sano R, Wada T, et al. Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis[J/OL]. Development, 2009, 136(6): 1039-1048[2021-12-20]. https://doi.org/10.1242/dev.030585.
doi: 10.1242/dev.030585 pmid: 19234066 |
[77] |
Qi T, Song S, Ren Q, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J/OL]. The Plant Cell, 2011, 23(5): 1795-1814[2021-12-20]. https://doi.org/10.1105/tpc.111.083261.
doi: 10.1105/tpc.111.083261 |
[78] | Wang L, Zhu Y, Hu W, et al. Comparative transcriptomics reveals jasmonic acid-associated metabolism related to cotton fiber initiation[J/OL]. PLoS ONE, 2015, 10(6): e0129854[2021-12-20]. https://doi.org/10.1371/journal.pone.0129854. |
[79] |
Hu H, He X, Tu L, et al. GhJAZ 2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like[J/OL]. The Plant Journal, 2016, 88(6): 921-935[2021-12-20]. https://doi.org/10.1111/tpj.13273.
doi: 10.1111/tpj.13273 |
[80] | Gilbert M K, Bland J M, Shockey J M, et al. A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.)[J/OL]. PLoS ONE, 2013, 8(9): e75268[2021-12-20]. https://doi.org/10.1371/journal.pone.0075268. |
[81] |
Li C, Zhang B. MicroRNAs in control of plant development[J/OL]. Journal of Cellular Physiology, 2016, 231(2): 303-313[2021-12-20]. https://doi.org/10.1002/jcp.25125.
doi: 10.1002/jcp.25125 |
[82] |
Wang Z M, Xue W, Dong C J, et al. A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules[J/OL]. Molecular Plant, 2012, 5(4): 889-900[2021-12-20]. https://doi.org/10.1093/mp/ssr094.
doi: 10.1093/mp/ssr094 |
[83] | Naoumkina M, Thyssen G N, Fang D D, et al. Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li-1)and -2 (Li-2) revealed a role for miRNAs and their targets in cotton fiber elongation[J/OL]. BMC Genomics, 2016, 17(1): 360[2021-12-20]. https://doi.org/10.1186/s12864-016-2715-1. |
[84] |
Liu N, Tu L, Tang W, et al. Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense[J/OL]. The Plant Journal, 2014, 80(2): 331-344[2021-12-20]. https://doi.org/10.1111/tpj.12636.
doi: 10.1111/tpj.12636 |
[85] |
Guan X, Pang M, Nah G, et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development[J/OL]. Nature Communications, 2014, 5: 3050[2021-12-20]. https://doi.org/10.1038/ncomms4050.
doi: 10.1038/ncomms4050 |
[86] |
Zhao T, Tao X, Feng S, et al. LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctiona-lization[J/OL]. Genome Biology, 2018, 19(1): 195[2021-12-20]. https://doi.org/10.1186/s13059-018-1574-2.
doi: 10.1186/s13059-018-1574-2 |
[87] |
Wang M, Yuan D, Tu L, et al. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.)[J/OL]. The New Phytologist, 2015, 207(4): 1181-1197[2021-12-20]. https://doi.org/10.1111/nph.13429.
doi: 10.1111/nph.13429 |
[88] |
Hu H, Wang M, Ding Y, et al. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.)[J/OL]. Plant Biotechnology Journal, 2018, 16(5): 1002-1012[2021-12-20]. https://doi.org/10.1111/pbi.12844.
doi: 10.1111/pbi.12844 |
[89] |
Wang M, Wang P, Lin M, et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton[J/OL]. Nature Plants, 2018, 4(2): 90-97[2021-12-20]. https://doi.org/10.1038/s41477-017-0096-3.
doi: 10.1038/s41477-017-0096-3 |
[90] |
Zheng D, Ye W, Song Q, et al. Histone modifications define expression bias of homoeologous genomes in allotetraploid cotton[J/OL]. Plant Physiology, 2016, 172(3): 1760-1771[2021-12-20]. https://doi.org/10.1104/pp.16.01210.
doi: 10.1104/pp.16.01210 |
[91] |
Kumar V, Singh B, Singh S K, et al. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum[J/OL]. The Plant Journal, 2018, 95(6): 1069-1083[2021-12-20]. https://doi.org/10.1111/tpj.14011.
doi: 10.1111/tpj.14011 |
[92] | Song Q, Guan X, Chen Z J. Dynamic roles for small RNAs and DNA methylation during ovule and fiber development in allotetraploid cotton[J/OL]. PLoS Genetics, 2015, 11(12): e1005724[2021-12-20]. https://doi.org/10.1371/journal.pgen.1005724. |
[93] |
Scutenaire J, Deragon J M, Jean V, et al. The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis[J/OL]. The Plant Cell, 2018, 30(5): 986-1005[2021-12-20]. https://doi.org/10.1105/tpc.17.00854.
doi: 10.1105/tpc.17.00854 pmid: 29618631 |
[94] |
Wei L H, Song P, Wang Y, et al. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis[J/OL]. The Plant Cell, 2018, 30(5): 968-985[2021-12-20]. https://doi.org/10.1105/tpc.17.00934.
doi: 10.1105/tpc.17.00934 |
[95] |
Chen Z J, Sreedasyam A, Ando A, et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement[J/OL]. Nature Genetics, 2020, 52(5): 525-533[2021-12-20]. https://doi.org/10.1038/s41588-020-0614-5.
doi: 10.1038/s41588-020-0614-5 |
[96] |
Huang G, Wu Z, Percy R G, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution[J/OL]. Nature Genetics, 2020, 52(5): 516-524[2021-12-20]. https://doi.org/10.1038/s41588-020-0607-4.
doi: 10.1038/s41588-020-0607-4 pmid: 32284579 |
[97] | Zhao N, Wang W, Grover C E, et al. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fiber length, lint percentage, and Fusarium wilt resistance[J/OL]. Plant Biotechnology Journal, 2021[2021-12-20]. https://doi.org/10.1111/pbi.13747. |
[98] |
Qin L, Li J, Wang Q, et al. High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system[J/OL]. Plant Biotechnology Journal, 2020, 18(1): 45-56[2021-12-20]. https://doi.org/10.1111/pbi.13168.
doi: 10.1111/pbi.13168 |
[99] |
Ellison E E, Nagalakshmi U, Gamo M E, et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs[J/OL]. Nature Plants, 2020, 6(6): 620-624[2021-12-20]. https://doi.org/10.1038/s41477-020-0670-y.
doi: 10.1038/s41477-020-0670-y pmid: 32483329 |
[100] |
Ma X, Zhang X, Liu H, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J/OL]. Nature Plants, 2020, 6(7): 773-779[2021-12-20]. https://doi.org/10.1038/s41477-020-0704-5.
doi: 10.1038/s41477-020-0704-5 |
[101] |
Lu Y, Tian Y, Shen R, et al. Targeted, efficient sequence insertion and replacement in rice[J/OL]. Nature Biotechnology, 2020, 38(12): 1402-1407[2021-12-20]. https://doi.org/10.1038/s41587-020-0581-5.
doi: 10.1038/s41587-020-0581-5 |
[1] | 赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186. |
[2] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[3] | 王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246. |
[4] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[5] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[6] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[7] | 苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172. |
[8] | 卢合全,唐薇,张冬梅,罗振,孔祥强,李振怀,徐士振,代建龙,李维江,辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[9] | 周雪慧,高二林,王钰静,李焱龙,袁道军,朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[10] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[11] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[12] | 席凯鹏,席吉龙,杨苏龙,张建诚. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48-59. |
[13] | 李世梅,李自良,冯旭飞,向导,杨明凤,张旺锋,张亚黎. 棉花盛铃期不同器官氮磷化学计量特征及异速关系[J]. 棉花学报, 2022, 34(1): 60-68. |
[14] | 陈凯丽,田秋恒,刘志洋,王海,熊杰,雷勇辉,孙燕飞. 新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性[J]. 棉花学报, 2022, 34(1): 69-78. |
[15] | 王雪慧,陈丽锦,赵若林,程海亮,张友平,王巧连,吕丽敏,宋国立,左东云. 陆地棉纤维起始期优势表达基因GhCRPK1的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 459-468. |
|