棉花学报 ›› 2022, Vol. 34 ›› Issue (3): 235-246.doi: 10.11963/cs20210064
王亚茹1,2(),杨北方2,雷亚平2,熊世武2,韩迎春2,王占彪1,2,冯璐1,2,李小飞2,邢芳芳2,辛明华2,吴沣槭1,2,陈家乐2,李亚兵1,2,*(
)
收稿日期:
2021-11-16
出版日期:
2022-05-15
发布日期:
2022-08-08
通讯作者:
李亚兵
E-mail:wangyaru19990526@163.com;criliyabing@163.com
作者简介:
王亚茹(1999―),女,硕士研究生, 基金资助:
Wang Yaru1,2(),Yang Beifang2,Lei Yaping2,Xiong Shiwu2,Han Yingchun2,Wang Zhanbiao1,2,Feng Lu1,2,Li Xiaofei2,Xing Fangfang2,Xin Minghua2,Wu Fengqi1,2,Chen Jiale2,Li Yabing1,2,*(
)
Received:
2021-11-16
Online:
2022-05-15
Published:
2022-08-08
Contact:
Li Yabing
E-mail:wangyaru19990526@163.com;criliyabing@163.com
摘要:
【目的】叶片是对环境变化较敏感的植物器官,叶片温度是植物重要的生理指标。探究棉花叶片温度的昼夜变化特性、明确环境因子对叶片温度的影响。【方法】基于红外温度传感器对棉花叶片温度进行全自动实时监测,进而探究不同生育时期和不同天气条件下棉花叶片温度的昼夜变化特征,并通过相关性分析、逐步回归分析及通径分析方法探究叶片温度、叶气温差与环境因子的关系。【结果】不同天气条件和不同生育时期叶片温度的昼夜变化存在差异,叶片温度的变化幅度小于气温。环境因子(降水量除外)与棉花叶片温度、环境因子(水汽压除外)和叶气温差均显著相关(P<0.05),气温与叶片温度的相关性最高(r=0.890),空气相对湿度与叶气温差的相关性最高(r=0.825)。通径分析结果表明,对叶片温度的影响因子按决策系数排序依次为:气温>光合有效辐射>水汽压;光合有效辐射和水汽压均主要通过气温间接影响叶片温度的变化。对叶气温差的影响因子按决策系数排序依次为空气相对湿度>日照时间>水汽压;日照时间、水汽压都主要通过空气相对湿度间接影响叶气温差的变化。【结论】探究了棉花叶片温度的昼夜动态变化,初步分析了环境因素对叶片温度和叶气温差的综合影响,研究结果可以为棉花生产和智能化管理提供参考。
王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246.
Wang Yaru,Yang Beifang,Lei Yaping,Xiong Shiwu,Han Yingchun,Wang Zhanbiao,Feng Lu,Li Xiaofei,Xing Fangfang,Xin Minghua,Wu Fengqi,Chen Jiale,Li Yabing. Analysis of variation of cotton leaf temperature and its influencing factors based on infrared sensors[J]. Cotton Science, 2022, 34(3): 235-246.
表1
2021年棉花生长季节每月天气总结"
月份 Month | 最高温度 Maximum temperature/℃ | 最低温度 Minimum temperature/℃ | 平均温度 Average temperature/℃ | 降水量 Precipitation/ mm | 日照时间 Sunshine time/h | 风速 Wind speed/ (m·s-1) |
---|---|---|---|---|---|---|
4月April | 20.36 | 8.74 | 14.65 | 23 | 208.62 | 3.45 |
5月May | 27.97 | 13.57 | 20.96 | 31 | 286.61 | 2.58 |
6月June | 33.86 | 20.94 | 27.15 | 61 | 231.70 | 1.99 |
7月July | 32.07 | 22.90 | 27.26 | 653 | 201.32 | 2.20 |
8月August | 29.62 | 21.34 | 25.33 | 166 | 213.74 | 2.20 |
9月September | 25.85 | 18.27 | 22.20 | 331 | 186.56 | 2.32 |
表2
棉花叶片温度、叶气温差与环境因子的相关性分析"
因子 Factor | Y1 | Y2 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y2 | -0.628* | 1.000 | |||||||||||
X1 | 0.890** | -0.763** | 1.000 | ||||||||||
X2 | -0.630** | 0.825** | -0.696** | 1.000 | |||||||||
X3 | 0.721** | -0.730** | 0.682** | -0.670** | 1.000 | ||||||||
X4 | -0.253 | 0.412** | -0.294 | 0.349* | -0.319* | 1.000 | |||||||
X5 | -0.351* | 0.395** | -0.340* | 0.332* | -0.257 | 0.270* | 1.000 | ||||||
X6 | 0.735** | -0.704** | 0.689** | -0.694** | 0.968** | -0.272* | -0.256 | 1.000 | |||||
X7 | 0.726** | -0.717** | 0.689** | -0.703** | 0.970** | -0.273* | -0.250 | 0.998** | 1.000 | ||||
X8 | 0.372* | 0.038 | 0.24 | 0.434* | -0.044 | 0.037 | 0.004 | -0.080 | -0.099 | 1.000 | |||
X9 | 0.717** | -0.576** | 0.723** | -0.893** | 0.511** | -0.313* | -0.303* | 0.536** | 0.542** | -0.179 | 1.000 | ||
X10 | 0.741** | -0.557** | 0.743 | -0.848** | 0.478* | -0.320* | -0.280* | 0.503* | 0.507** | -0.074 | 0.984** | 1.000 | |
X11 | 0.642** | -0.420** | 0.647 | -0.730** | 0.307* | -0.282* | -0.204 | 0.336* | 0.339* | -0.018 | 0.913** | 0.964** | 1.000 |
X12 | -0.460* | 0.426* | -0.514 | 0.776** | -0.282* | 0.247 | 0.224 | -0.282* | -0.300* | 0.296* | -0.893** | -0.899** | -0.902** |
表3
棉花叶片温度和叶气温差与其主要影响因子间的通径分析"
因变量Dependent variable | 自变量Independent variable | 直接通径系数 Direct path coefficient | 相关系数Correlation coefficient | 间接通径系数Indirect path coefficient | 决策系数Decision coefficient (R2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X6 | X8 | Total | |||||
Y1 | X1 | 0.584 | 0.890 | - | - | - | 0.402 | 0.140 | 0.542 | 0.890 |
X6 | 0.354 | 0.735 | 0.243 | - | - | - | -0.030 | 0.240 | 0.736 | |
X8 | 0.260 | 0.372 | 0.060 | - | - | -0.020 | - | 0.040 | 0.372 | |
Y2 | X2 | 0.603 | 0.825 | - | - | 0.226 | - | -0.103 | 0.123 | 0.631 |
X3 | -0.337 | -0.730 | - | -0.404 | - | - | 0.010 | -0.394 | 0.378 | |
X8 | -0.238 | 0.038 | - | 0.262 | 0.015 | - | - | 0.277 | -0.075 |
[1] | Zahid K R, Ali F, Shah F, et al. Response and tolerance mechanism of cotton Gossypium hirsutum L. to elevated temperature stress: A review[J/OL]. Frontier in Plant Science, 2016, 7: 937[2021-10-20]. https://doi.org/10.3389/fpls.2016.00937. |
[2] | Burke J J, Wanjura D F. Plant responses to temperature extremes[M/OL]//Stewart J M, Oosterhuis D M, Heitholt J J, et al. Physio-logy of Cotton. Dordrecht: Springer, 2010: 123-128[2021-10-20]. https://doi.org/10.1007/978-90-481-3195-2_12. |
[3] | Echer F R, Oosterhuis D M, Loka D A, et al. High night temperatures during the floral bud stage increase the abscission of reproductive structures in cotton[J/OL]. Journal of Agronomy and Crop Science, 2014, 200(3): 191-198[2021-10-20]. https://doi.org/10.1111/jac.12056. |
[4] | 刘涛, 仲晓春, 孙成明. 作物温度及其监测技术研究进展[J/OL]. 中国农业科技导报, 2017, 19(12): 59-66[2021-10-20]. https://doi.org/10.13304/j.nykjdb.2017.0565. |
Liu Tao, Zhong Xiaochun, Sun Chengming. Review on crop temperature and its monitoring technologies[J/OL]. Journal of Agricultural Science and Technology, 2017, 19(12): 59-66[2021-10-20]. https://doi.org/10.13304/j.nykjdb.2017.0565. | |
[5] | 江陵杰, 范鹏, 郭柯凡, 等. 水稻冠层温度研究进展[J/OL]. 江苏农业学报, 2020, 36(1): 234-242[2021-10-20]. https://doi.org/10.3969/j.issn.1000-4440.2020.01.033. |
Jiang Lingjie, Fan Peng, Guo Kefan, et al. Research progress on the factors affecting canopy temperature of rice[J/OL]. Jiangsu Agricultural Sciences, 2020, 36(1): 234-242[2021-10-20]. https://doi.org/10.3969/j.issn.1000-4440.2020.01.033. | |
[6] | 冯璐, 邢芳芳, 杨北方, 等. 基于红外热成像的棉花叶片温度分布量化方法研究[J/OL]. 棉花学报, 2020, 32(6): 569-576[2021-10-20]. https://doi.org/10.11963/1002-7807.fllyb.20201105. |
Feng Lu, Xing Fangfang, Yang Beifang, et al. The quantitative method for temperature distribution of cotton leaves based on infrared thermal images[J/OL]. Cotton Science, 2020, 32(6): 569-576[2021-10-20]. https://doi.org/10.11963/1002-7807.fllyb.20201105. | |
[7] | 王佩舒, 王威红, 陈景玲, 等. 栓皮栎幼苗叶气温差随太阳辐射和风速变化的列线研究[J]. 中国农业气象, 2016, 37(2): 213-221[2021-10-20]. https://doi.org/10.3969/j.issn.1000-6362.2016.02.011. |
Wang Peishu, Wang Weihong, Chen Jingling, et al. Series lines on change of leaf temperature difference of Quercus variabilis with solar radiation and wind speed[J/OL]. Chinese Journal of Agrometeorology, 2016, 37(2): 213-221[2021-10-20]. https://doi.org/10.3969/j.issn.1000-6362.2016.02.011. | |
[8] | Lindroth A, Mölder M, Lagergren F. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions[J/OL]. Biogeosciences, 2010, 7(1): 301-313[2021-10-20]. https://doi.org/10.5194/bg-7-301-2010. |
[9] | Adams H D, Guardiola-Claramonte M, Barron-Gafford G A, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(17): 7063-7066[2021-10-20]. https://doi.org/10.1073/pnas.0901438106. |
[10] | Woods H A, Saudreau M, Pincebourde S. Structure is more important than physiology for estimating intracanopy distributions of leaf temperatures[J/OL]. Ecology and Evolution, 2018, 8(10): 5206-5218[2021-10-20]. https://doi.org/10.1002/ece3.4046. |
[11] | Still C J, Rastogi B, Page G F M, et al. Imaging canopy tempera-ture: shedding (thermal) light on ecosystem processes[J/OL]. New Phytologist, 2021, 230(5): 1746-1753[2021-10-20]. https://doi.org/10.1111/nph.17321. |
[12] | 梁金晨, 江晓东, 杨沈斌, 等. 基于高光谱遥感数据的水稻叶温反演[J/OL]. 南方农业学报, 2020, 51(1): 230-236[2021-10-20]. https://doi.org/10.3969/j.issn.2095-1191.2020.01.030 |
Liang Jinchen, Jiang Xiaodong, Yang Shenbin, et al. Rice leaf temperature inversion based on hyperspectral remote sensing data[J/OL]. Journal of Southern Agriculture, 2020, 51(1): 230-236[2021-10-20]. https://doi.org/10.3969/j.issn.2095-1191.2020.01.030. | |
[13] | Wanjura D, Maas S, Winslow J, et al. Scanned and spot measured canopy temperatures of cotton and corn[J/OL]. Computers and Electronics in Agriculture, 2004, 1(44): 33-48[2021-10-20]. https://doi.org/10.1016/j.compag.2004.02.005. |
[14] | Jones H G. Irrigation scheduling: advantages and pitfalls of plant-based methods[J/OL]. Journal of Experimental Botany, 2004, 55(407): 2427-2436[2021-10-20]. https://doi.org/10.1093/jxb/erh213. |
[15] | Naor A. Irrigation scheduling and evaluation of tree water status in deciduous orchards[M]//Janick J. Horticultural reviews. New York: John Wiley & Sons, 2006: 111. |
[16] | 于明含, 高广磊, 丁国栋, 等. 植物体温研究综述[J/OL]. 生态学杂志, 2015, 34(12): 3533-3541[2021-10-20]. https://doi.org/10.13292/j.1000-4890.2015.0332. |
Yu Minghan, Gao Guanglei, Ding Guodong, et al. A review on body temperature of plants[J/OL]. Chinese Journal of Ecology, 2015, 34(12): 3533-3541[2021-10-20]. https://doi.org/10.13292/j.1000-4890.2015.0332. | |
[17] | Mahan J R, Yeater K M. Agricultural applications of a low-cost infrared thermometer[J/OL]. Computers and Electronics in Agriculture, 2008, 64(2): 262-267[2021-10-20]. https://doi.org/10.1016/j.compag.2008.05.017. |
[18] | 史长丽, 郭家选, 梅旭荣, 等. 夏玉米农田表面温度影响因素分析[J/OL]. 中国农业科学, 2006(1): 48-56[2021-10-20]. https://doi.org/10.3321/j.issn:0578-1752.2006.01.007. |
Shi Changli, Guo Jiaxuan, Mei Xurong, et al. Analysis of the factors influencing surface temperature in summer maize field[J/OL]. Scientia Agricultura Sinica, 2006(1): 48-56[2021-10-20]. https://doi.org/10.3321/j.issn:0578-1752.2006.01.007. | |
[19] | 张宏鸣, 王佳佳, 韩文霆, 等. 基于热红外遥感影像的作物冠层温度提取[J/OL]. 农业机械学报, 2019, 50(4): 203-210[2021-10-20]. https://doi.org/10.6041/j.issn.1000-1298.2019.04.023. |
Zhang Hongming, Wang Jiajia, Han Wenting, et al. Crop canopy temperature extraction based on thermal infrared remote sensing images[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 203-210[2021-10-20]. https://doi.org/10.6041/j.issn.1000-1298.2019.04.023. | |
[20] | Kuenzer C, Dech S. Thermal infrared remote sensing: sensors, methods, applications[J/OL]. Photogrammetric Engineering & Remote Sensing, 2015, 81(5): 359-360[2021-10-20]. https://doi.org/10.1016/S0099-1112(15)30104-X. |
[21] | Pou A, Diago M P, Medrano H, et al. Validation of thermal indices for water status identification in grapevine[J/OL]. Agricultural Water Management, 2014, 134: 60-72[2021-10-20]. https://doi.org/10.1016/j.agwat.2013.11.010. |
[22] | 马黎华, 胡笑涛, 王平, 等. 滴灌玉米叶温的数据驱动模型与不确定性分析[J/OL]. 灌溉排水学报, 2018, 37(6): 1-8[2021-10-20]. https://doi.org/10.13522/j.cnki.ggps.2017.0201. |
Ma Lihua, Hu Xiaotao, Wang Ping, et al. A data-driven model and its uncertainty analysis for estimating leaf temperature of maize under drip irrigation[J/OL]. Journal of Irrigation and Drainage, 2018, 37(6): 1-8[2021-10-20]. https://doi.org/10.13522/j.cnki.ggps.2017.0201. | |
[23] | Zhang R, Zhou Y, Yue Z, et al. The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions[J/OL]. PLoS ONE, 2019, 14(7): e0219209[2021-10-20]. https://doi.org/10.1371/journal.pone.0219209. |
[24] | 刘婧然, 张婷, 王喆, 等. 膜下滴灌棉花叶温变化规律及其与气象因素关系的研究[J]. 干旱地区农业研究, 2014, 32(5): 18-24. |
Liu Jingran, Zhang Ting, Wang Zhe, et al. Research on the change rule of cotton leaf temperature by drip irrigation under film and relationship with the meteorological factors[J]. Agricultural Research in the Arid Areas, 2014, 32(5): 18-24. | |
[25] | Apogee Instruments Inc. Infrared radiometers SI-400 series manual[EB/OL]. (2016-05-20)[2021-09-22]. https://www.apogeeinstruments.com/content/SI-400-manual.pdf. |
[26] | 常国权, 冯贺, 李亚兵. 棉花叶面温度采集系统的设计与测试[J/OL]. 江苏农业科学, 2018, 46(2): 162-166[2021-10-20]. https://doi.org/10.15889/j.issn.1002-1302.2018.02.043. |
Chang Guoquan, Feng He, Li Yabing. Design and test of cotton leaf temperature acquisition system[J/OL]. Jiangsu Agricultural Sciences, 2018, 46(2): 162-166[2021-10-20]. https://doi.org/10.15889/j.issn.1002-1302.2018.02.043. | |
[27] | 赵立新, 荆家海, 王韶唐. 陕西渭北旱塬土壤-植物-大气连续体中水分运转规律的研究——Ⅰ.生态环境对植物叶温的影响[J/OL]. 西北植物学报, 1996(4): 345-350[2021-10-20]. https://doi.org/10.3321/j.issn:1000-4025.1996.04.002. |
Zhao Lixin, Jing Jiahai, Wang Shaotang. Studies on water transports in the soil-plant-atmosphere continuum on Weibei rainfed highland, Shaanxi province—I. Effects of ecological environment on leaf temperature of winter wheat[J/OL]. Acta Botanica Sinica of Northwest China, 1996(4): 345-350[2021-10-20]. https://doi.org/10.3321/j.issn:1000-4025.1996.04.002. | |
[28] | 李强征, 李国臣, 于海业, 等. 温室内黄瓜叶温变化特性的试验研究[J/OL]. 农机化研究, 2006(8): 144-146, 152[2021-10-20]. https://doi.org/10.3969/j.issn.1003-188X.2006.08.049. |
Li Qiangzheng, Li Guochen, Yu Haiye, et al. Experimental study on variation of cucumber leaf temperature in greenhouse[J/OL]. Journal of Agricultural Mechanization Research, 2006(8): 144-146, 152[2021-10-20]. https://doi.org/10.3969/j.issn.1003-188X.2006.08.049. | |
[29] | 赵扬搏, 仝道斌, 王景才, 等. 基于冠层温度的水稻关键生育期缺水诊断[J]. 排灌机械工程学报, 2018, 36(10): 931-936. |
Zhao Yangbo, Tong Daobin, Wang Jingcai, et al. Diagnosis of water shortage in key growth period of rice based on canopy temperature[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(10): 931-936. | |
[30] | 杨景, 张玉雪, 姚梦浩, 等. 小麦不同生育期大气温度与冠层温度关系研究[J/OL]. 金陵科技学院学报, 2017, 33(1): 64-67[2021-10-20]. https://doi.org/10.16515/j.cnki.32-1722/n.2017.01.015. |
Yang Jing, Zhang Yuxue, Yao Menghao, et al. Preliminary study on the relationship between atmospheric temperature and canopy temperature at different stages of wheat growth[J/OL]. Journal of Jinling Institute of Technology, 2017, 33(1): 64-67[2021-10-20]. https://doi.org/10.16515/j.cnki.32-1722/n.2017.01.015. | |
[31] | 高继平, 韩亚东, 王晓通, 等. 水稻齐穗期冠层温度分异及其相关特性的研究[J/OL]. 沈阳农业大学学报, 2011, 42(4): 399-405[2021-10-20]. https://doi.org/10.3969/j.issn.1000-1700.2011.04.003 |
Gao Jiping, Han Yadong, Wang Xiaotong, et al. Canopy temperature difference and the related characteristics at heading stage in rice[J/OL]. Journal of Shenyang Agricultural University, 2011, 42(4): 399-405[2021-10-20]. https://doi.org/10.3969/j.issn.1000-1700.2011.04.003. | |
[32] | 安杰, 韩迎春, 张正贵, 等. 不同熟性棉花品种冠层温度分布特点[J/OL]. 棉花学报, 2021, 33(2): 134-143[2021-10-20]. https://doi.org/10.11963/1002-7807.ajlyb.20210113. |
An Jie, Han Yingchun, Zhang Zhenggui, et al. Characterization of canopy temperature distribution in different maturity types of cotton varieties[J/OL]. Cotton Science, 2021, 33(2): 134-143[2021-10-20]. https://doi.org/10.11963/1002-7807.ajlyb.20210113. | |
[33] | 吴强, 须晖, 韩亚东. 日光温室番茄叶温变化特性研究[J/OL]. 沈阳农业大学学报, 2008(5): 618-620[2021-10-20]. https://doi.org/10.3969/j.issn.1000-1700.2008.05.024. |
Wu Qiang, Xu Hui, Han Yadong. Study on temperature change of tomato leaf in facility cultivation[J/OL]. Journal of Shenyang Agricultural University, 2008(5): 618-620[2021-10-20]. https://doi.org/10.3969/j.issn.1000-1700.2008.05.024. | |
[34] | 贾正茂, 崔远来, 刘方平, 等. 不同水分条件下棉花茎流、叶温及茎粗变化规律[J]. 中国农村水利水电, 2012(6): 73-77. |
Jia Zhengmao, Cui Yuanlai, Liu Fangping, et al. Changes of stem flow, leaf temperature and stem diameter of cotton under different water conditions[J]. Journal of China Rural Water and Hydropower, 2012(6): 73-77. | |
[35] | 张芳, 张建丰, 乔晓军, 等. 环境因子对负水头供液下温室番茄耗液量影响的通径分析[J/OL]. 干旱地区农业研究, 2018, 36(3): 9-16[2021-10-20]. https://doi.org/10.7606/j.issn.1000-7601.2018.03.02. |
Zhang Fang, Zhang Jianfeng, Qiao Xiaojun, et al. Path analysis of the impact of environmental factors on daily consumption of tomato of supplying nutrient solution using negative pressure in greenhouse[J/OL]. Agricultural Research in the Arid Areas, 2018, 36(3): 9-16[2021-10-20]. https://doi.org/10.7606/j.issn.1000-7601.2018.03.02. | |
[36] | 吴自明, 赵伟, 石庆华, 等. 双季水稻叶片温度变化规律及其与产量关系的研究[J/OL]. 中国农学通报, 2012, 28(18): 86-92[2021-10-20]. https://doi.org/10.3969/j.issn.1000-6850.2012.18.016. |
Wu Ziming, Zhao Wei, Shi Qinghua, et al. The study on double-season rice leaves temperature change law and its relationship with yield[J/OL]. Chinese Agricultural Science Bulletin, 2012, 28(18): 86-92[2021-10-20]. https://doi.org/10.3969/j.issn.1000-6850.2012.18.016. |
[1] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[2] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[3] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[4] | 卢合全,唐薇,张冬梅,罗振,孔祥强,李振怀,徐士振,代建龙,李维江,辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[5] | 周雪慧,高二林,王钰静,李焱龙,袁道军,朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[6] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[7] | 苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172. |
[8] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[9] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[10] | 席凯鹏,席吉龙,杨苏龙,张建诚. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48-59. |
[11] | 李世梅,李自良,冯旭飞,向导,杨明凤,张旺锋,张亚黎. 棉花盛铃期不同器官氮磷化学计量特征及异速关系[J]. 棉花学报, 2022, 34(1): 60-68. |
[12] | 陈凯丽,田秋恒,刘志洋,王海,熊杰,雷勇辉,孙燕飞. 新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性[J]. 棉花学报, 2022, 34(1): 69-78. |
[13] | 王艳情, 郑杰, 许艳超, 蔡小彦, 周忠丽, 侯宇清, 王坤波, 王玉红, 陈浩东, 刘方, 李志坤. 棉花HDAC基因家族鉴定及其在黄萎病菌侵染下的表达分析[J]. 棉花学报, 2021, 33(6): 469-481. |
[14] | 李秋琳,李燕,陈伟,姚金波,朱守鸿,袁黎,张永山. 基于广泛靶向代谢组学的不同颜色棉花花瓣中类黄酮成分差异分析[J]. 棉花学报, 2021, 33(6): 482-492. |
[15] | 王玉贤, 董莹莹, 李芳军, 杜明伟, 田晓莉, 李召虎. 甲哌鎓通过调节棉花叶片水分平衡和光合性能提高苗期耐旱性的生理机制[J]. 棉花学报, 2021, 33(6): 493-503. |
|