棉花学报 ›› 2022, Vol. 34 ›› Issue (2): 162-172.doi: 10.11963/cs20210062
• 研究与进展 • 上一篇
苏星1,2(),苏振贺2,宣立锋3,李社增2,王培培2,郭庆港2,马平2,*(
)
收稿日期:
2021-10-28
出版日期:
2022-03-15
发布日期:
2022-05-30
通讯作者:
马平
E-mail:pingma88@126.com
作者简介:
苏星(1999―),女,硕士, 基金资助:
Su Xing1, 2(), Su Zhenhe2, Xuan Lifeng3, Li Shezeng2, Wang Peipei2, Guo Qinggang2, Ma Ping2, *(
)
Received:
2021-10-28
Online:
2022-03-15
Published:
2022-05-30
Contact:
Ma Ping
E-mail:pingma88@126.com
摘要:
【目的】 建立生防枯草芽孢杆菌NCD-2菌株的定量检测体系,明确生防菌在棉花根际土壤中的定植情况。【方法】 根据NCD-2菌株全基因组序列设计特异性引物;利用聚合酶链式反应(polymerase chain reaction, PCR)技术,构建NCD-2菌株的实时PCR检测体系,并检测NCD-2菌株在棉花根际的定植情况。【结果】 所构建的NCD-2菌株实时PCR检测体系能够特异性地定量检测土壤中NCD-2菌株的数量。用有效活菌数109 mL-1的NCD-2菌液处理棉种,在灭菌土中播种后8 d和16 d,用实时PCR检测其在棉花根际土壤中的定植数量分别为1.14×105 g-1和9.5×104 g-1,与传统计数法检测的结果(2.15×105 g-1和2.45×105 g-1)高度相关,2种方法结果的相关系数在播种后8 d时为0.99,在播种后16 d时为0.95。而将NCD-2菌株处理后的棉种播种于含有立枯丝核菌的土壤中后16 d,用实时PCR检测其在根际土壤中的定植数量为7.6×105 g-1,此时NCD-2菌株对棉花立枯病防治效果达到67.9%。【结论】 所构建的实时PCR检测体系能够准确检测NCD-2菌株在根际土壤中的定植情况,为高效使用NCD-2菌株防控病害奠定了基础。
苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172.
Su Xing, Su Zhenhe, Xuan Lifeng, Li Shezeng, Wang Peipei, Guo Qinggang, Ma Ping. Development of quantitative detection system for biocontrol strain NCD-2 and its application in rhizosphere colonization of cotton[J]. Cotton Science, 2022, 34(2): 162-172.
表1
本研究所用标准型芽孢杆菌菌株"
菌株名称 Strains name | 菌株分类 Species | 来源 Source | 登录号 GenBank accession no. |
---|---|---|---|
NCD-2 | B. subtilis | Lab stock | CP023755.1 |
168 | B. subtilis | BGSC | NC_000964.3 |
BSn5 | B. subtilis | - | NC_014976.1 |
RO-NN-1 | B. subtilis | - | NC_017195 |
MAS88 | B. subtilis | BGSC | |
ATCC21332 | B. subtilis | BGSC | |
NDH03 | B. subtilis | BGSC | |
BD170 | B. subtilis | BGSC | |
pY143 | B. subtilis | CAU | |
ISW1214 | B. subtilis | TaKaRa | |
W23 | B. subtilis subsp. spizizenii | - | NC_014479 |
TU-B-10 | B. subtilis subsp. spizizenii | - | NC_016047 |
RO-C-2 | B. mojavensis | UCLA | |
CU8004 | B. amyloliquefaciens | BGSC | |
FZB42 | B. velezensis | BGSC | NC_009725 |
DSM7 | B. amyloliquefaciens | - | NC_014551 |
1942 | B. atrophaeus | - | NC_014639 |
SB512 | B. atrophaeus | BGSC | |
NRS-213T | B. atrophaeus | BGSC | |
ATCC8480 | B. licheniformis | BGSC | |
ATCC11946 | B. licheniformis | BGSC | |
ATCC14580 | B. licheniformis | - | NC_006322 |
ATCC7061 | B. pumilus | BGSC | |
Biosubtyl | B. pumilus | BGSC | |
SAFR-032 | B. pumilus | - | NC_009848 |
899 | B. megaterium | BGSC | |
ATCC14581 | B. megaterium | BGSC | |
ATCC10792 | B. thuringiensis | - | NZ_CM000753 |
HD2 | B. thuringiensis | BGSC | |
T01246 | B. thuringiensis | BGSC | |
NRS854 | B. firmus | BGSC | |
NRS613 | B. firmus | BGSC |
表2
野生型芽孢杆菌菌株phoR、gyrB和16S rDNA登录号"
菌株名称 Strains | 来源 Source | GenBank登录号GenBank accession No. | ||
---|---|---|---|---|
phoR | gyrB | 16S rDNA | ||
70A-7 | Lab stock | JN580923 | JQ916067 | GU269571 |
BDT-14 | Lab stock | JN580935 | JQ916072 | GU269574 |
BZT-34 | Lab stock | JN580929 | JQ769378 | GU269577 |
CJT-2 | Lab stock | JN580931 | JQ769379 | GU269578 |
DHT-12 | Lab stock | JN580932 | JQ916074 | GU269579 |
DHT-13 | Lab stock | JN580933 | JQ916075 | GU269580 |
DHT-27 | Lab stock | JN580944 | JQ916076 | GU269581 |
DHT-33 | Lab stock | JN580936 | JQ916077 | GU269582 |
LBT-338 | Lab stock | JN580934 | JQ916078 | GU269611 |
NZT-14-84 | Lab stock | JN580963 | JQ916081 | GU269614 |
BAB-1 | Lab stock | JQ916089 | JQ916082 | JQ916087 |
CAB-1 | Lab stock | JN580930 | JQ361766 | JN571112 |
XJT-7 | Lab stock | JN580926 | JQ769380 | GU269615 |
NZT-59 | Lab stock | JN580965 | JQ916079 | GU269617 |
BDT-26 | Lab stock | JN580928 | JQ916073 | GU269619 |
HMB6313 | Lab stock | JN580945 | JQ916069 | GU269597 |
HMB6336 | Lab stock | JN580962 | JQ916068 | GU269601 |
HMB15054 | Lab stock | JN580967 | JQ916070 | - |
HMB19198 | Lab stock | JN580968 | JQ916071 | - |
HMB20199 | Lab stock | JN580969 | JQ916083 | - |
HMB22277 | Lab stock | JQ916088 | JQ916084 | JQ916086 |
Y2 | Lab stock | JN580941 | JQ916080 | - |
[1] | Montesinos E. Development, registration and commercialization of microbial pesticides for plant protection[J/OL]. International Microbiology, 2003, 6(4): 245-252 [2021-10-27]. https://doi.org/10.1007/s10123-003-0144-x. |
[2] | Niu B, Wang W, Yuan Z, et al. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease[J/OL]. Frontiers in Microbiology, 2020, 11: 585404 [2021-10-27]. https://doi.org/10.3389/fmicb.2020.585404. |
[3] | Pérez-García A, Romero D, de Vicente A, et al. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture[J/OL]. Current Opinion in Biotechnology, 2011(4): 187-193[2021-10-27]. https://doi.org/10.1016/j.copbio.2010.12.003. |
[4] | Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria(PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review[J/OL]. African Journal of Microbiology Research, 2014, 9(16): 1265-1277 [2021-10-27]. https://doi.org/10.5897/AJAR2013.7914. |
[5] | Saraf M, Pandya U, Thakkar A. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens[J/OL]. Microbiological Research, 2014, 169(1): 18-29 [2021-10-27]. https://doi.org/10.1016/j.micres.2013.08.009. |
[6] | Shyam K, Pierre J, Sharon D. Bacterial endophyte colonization and distribution within plants[J/OL]. Microorganisms, 2017, 5(4): 77[2021-10-27]. https://doi.org/10.3390/microorganisms5040077. |
[7] | Blake C, Christensen M N, Kovács T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis[J/OL]. Molecular Plant-Microbe Interactions, 2021, 34(1): 15-25 [2021-10-27]. https://doi.org/10.1094/MPMI-08-20-0225-CR. |
[8] | Cho I H, Irudayaraj J. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection[J/OL]. International Journal of Food Microbiology, 2013, 164(1): 70-75 [2021-10-27]. https://doi.org/10.1016/j.ijfoodmicro.2013.02.025. |
[9] | Badosa E, Moreno C, Montesinos E. Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions[J/OL]. FEMS Microbiology Ecology, 2004, 48(2): 169-178 [2021-10-27]. https://doi.org/10.1016/j.femsec.2004.01.005. |
[10] | Zhen B, Li J Y, Guo Y B, et al. A plating-PCR technique for detection and quantification of the biological control agent Agrobacterium vitis strain E26 in soil under controlled conditions[J/OL]. Journal of Phytopathology, 2012, 160(9): 496-499 [2021-10-27]. https://doi.org/10.1111/j.1439-0434.2012.01929.x. |
[11] | Gharbi Y, Barkallah M, Bouazizi E, et al. Development and validation of a new real-time assay for the quantification of Verticillium dahliae in the soil: a comparison with conventional soil plating[J/OL]. Mycological Progress, 2016, 15(6): 1-13 [2021-10-27]. https://doi.org/10.1007/s11557-016-1196-6. |
[12] | 张冬冬, 刘涛, 高同国, 等. 棉花黄萎病拮抗细菌Z-5菌株的定殖能力检测[J/OL]. 棉花学报, 2013, 25(6):510-516 [2021-10-27]. https://doi.org/10.3969/j.issn.1002-7807.2013.06.006. |
Zhang Dongdong, Liu Tao, Gao Tongguo, et al. Detection of the colonization ability of antagonistic bacteria strain Z-5 against cotton Verticillium wilt[J/OL]. Cotton Science, 2013, 25(6): 510-516[2021-10-27]. https://doi.org/10.3969/j.issn.1002-7807.2013.06.006. | |
[13] | Kim T G, Knudsen G R. Comparison of plate count microscopy, and DNA quantification methods to quantify a biocontrol fungus[J/OL]. Applied Soil Ecology, 2016, 98: 285-288 [2021-10-27]. https://doi.org/10.1016/j.apsoil.2015.10.010. |
[14] | 程承, 李石力, 刘颖, 等. 试验土壤中烟草青枯病菌的RT-qPCR检测分析[J/OL]. 烟草科技, 2017, 50(1): 12-16[2021-10-27]. https://doi.org/10.16135/j.issn1002-0861.2015.0668. |
Li Shili, Liu Ying, et al. RT-qPCR detection and quantitative analysis of Ralstonia solanacearum in soil[J/OL]. Tobacco Science & Technology, 2017, 50(1): 12-16[2021-10-27]. https://doi.org/10.16135/j.issn1002-0861.2015.0668. | |
[15] | 王川, 董莉, 邱慧珍, 等. 马铃薯立枯丝核菌拮抗菌QHZ11的实时荧光定量PCR快速检测与应用[J/OL]. 微生物学通报, 2020, 47(12): 393-403[2021-10-27]. https://doi.org/10.13344/j.microbiol.china.200100. |
Wang Chuan, Dong Li, Qiu Huizhen, et al. Rapid detection and application of antagonistic bacterium QHZ11 against Rhizoctonia solani in potato by real-time fluorescence quantitative PCR[J/OL]. Microbiology China, 2020, 47(12): 393-403 [2021-10-27]. https://doi.org/10.13344/j.microbiol.china.200100. | |
[16] | Sa R B, Zhang J L, Sun J Z, et al. Colonization characteristics of poplar fungal disease biocontrol bacteria N6-34 and the inhibitory effect on pathogenic fungi by real-time fluorescence quantitative PCR detection[J/OL]. Current Microbiology, 2021, 78: 2916-2925 [2021-10-27]. https://doi.org/10.1007/s00284-021-02529-2. |
[17] | 李社增, 鹿秀云, 马平, 等. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J]. 植物病理学报, 2005, 35(5): 451-455. |
Li Shezeng, Lu Xiuyun, Ma Ping, et al. Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton Verticillium wilt in field trials[J]. Acta Phytopathologica Sinica, 2005, 35(5): 451-455. | |
[18] | Guo S, Zhang J W, Dong L H, et al. Fengycin produced by Bacillus subtilis NCD-2 is involved in suppression of clubroot on Chinese cabbage[J/OL]. Biological Control, 2019, 136: 104001 [2021-10-27]. https://doi.org/10.1016/j.biocontrol.2019.104001. |
[19] | Savazzini F, Longa C, Pertot I, et al. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil[J/OL]. Journal of Microbiological Methods, 2008, 73(2): 185-194[2021-10-27]. https://doi.org/10.1016/j.mimet.2008.02.004. |
[20] | Manyi-Loh C, Mamphweli S, Meyer E, et al. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications[J/OL]. Molecules, 2018, 23(4): 795[2021-10-27]. https://doi.org/10.3390/molecules23040795. |
[21] | Compeau G B, Al-Achi B J, Platsouka E, et al. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil system[J/OL]. Applied and Environmental Microbiology, 1988, 54(10): 2432-2438 [2021-10-27]. https://doi.org/10.1128/AEM.54.10.2432-2438.1988. |
[22] | Wang J, Jacobs J L, Byrne J M, et al. Improved diagnoses and quantification of Fusarium virguliforme, causal agent of soybean sudden death syndrome[J/OL]. Phytopathology, 2015, 105(3): 378-387 [2021-10-27]. https://doi.org/10.1094/PHYTO-06-14-0177-R. |
[23] | Knudsen G R, Kim T G, Bae Y S, et al. Use of quantitative real-time PCR to unravel ecological complexity in a biological control system[J/OL]. Advances in Bioscience & Biotechnology, 2015, 6(4): 237-244 [2021-10-27]. https://doi.org/10.4236/abb.2015.64023. |
[24] | Noris E, Miozzi L. Real-time PCR protocols for the quantification of the Begomovirus Tomato Yellow Leaf Curl Sardinia Virus in tomato plants and in its insect vector[M/OL]// UyedaI, MasutaC. Plant virology protocols. New York: Humana Press, 2014: 61-72 [2021-10-27]. https://doi.org/10.1007/978-1-4939-1743-3_6. |
[25] | Johansson A H, Bejai S, Niazi A, et al. Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays[J/OL]. Antonie van Leeuwenhoek, 2014, 106(6): 1247-1257[2021-10-27]. https://doi.org/10.1007/s10482-014-0295-0. |
[26] | Zhang Y, Wang X, Pang G, et al. Two-step genomic sequence comparison strategy to design trichoderma strain-specific primers for quantitative PCR[J/OL]. AMB Express, 2019, 9: 179[2021-10-27]. https://doi.org/10.1186/s13568-019-0904-4. |
[27] | Case R J, Boucher Y, Dahllof I, et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies[J/OL]. Applied and Environmental Microbiology, 2007, 73(1): 278-288 [2021-10-27]. https://doi.org/10.1128/AEM.01177-06. |
[28] | Schrader C, Schielke A, Ellerbroek L, et al. PCR inhibitors-occurrence, properties and removal[J/OL]. Journal of Applied Microbiology, 2012, 113(5): 1014-1026 [2021-10-27]. https://doi.org/10.1111/j.1365-2672.2012.05384.x. |
[29] | Opel K L, Chung D, Mccord B R. A study of PCR inhibition mechanisms using real time PCR[J/OL]. Journal of Forensic Sciences, 2010, 55(1): 25-33 [2021-10-27]. https://doi.org/10.1111/j.1556-4029.2009.01245.x. |
[30] | 任海英, 戚行江, 梁森苗, 等. 利用常规PCR和实时荧光定量PCR检测杨梅凋萎病菌[J/OL]. 植物病理学报, 2016, 46(1): 1-10 [2021-10-27]. https://doi.org/10.13926/j.cnki.apps.2016.01.001. |
Ren Haiying, Qi Xingjiang, Liang Senmiao, et al. Use of conventional and real-time quantitative PCR to detect Pestalotiopsis, the cause of bayberry twig blight[J/OL]. Acta Phytopathology Sinica, 2016, 46(1): 1-10[2021-10-27]. https://doi.org/10.13926/j.cnki.apps.2016.01.001. | |
[31] | Samaras A, Nikolaidis M, Antequera-Gómez M L, et al. Whole genome sequencing and root colonization studies reveal novel insights in the biocontrol potential and growth promotion by Bacillus subtilis MBI 600 on cucumber[J/OL]. Frontiers in Microbiology, 2021, 11:600393[2021-10-27]. https://doi.org/10.3389/fmicb.2020.600393. |
[1] | 祁佳峰, 刘笑, 杜文玲, 郭鹏. 基于无人机高清影像的棉花单产预测[J]. 棉花学报, 2022, 34(4): 286-298. |
[2] | 蒲丹丹, 张亚林, 白红燕, 魏峰, 冯鸿杰, 赵丽红, 顾爱星, 朱荷琴, 彭军, 冯自力. 内生真菌简青霉CEF-818对棉花黄萎病的防治效果及机理[J]. 棉花学报, 2022, 34(4): 313-324. |
[3] | 白岩, 彭军, 赵素琴, 付小琼, 许乃银. 我国棉花大品种的历史沿革与发展趋势分析[J]. 棉花学报, 2022, 34(4): 325-337. |
[4] | 韩建文, 冯春晖, 彭杰, 王彦宇, 史舟. 不同分辨率无人机多光谱影像的棉花叶面积指数估测研究[J]. 棉花学报, 2022, 34(4): 338-349. |
[5] | 韩阳, 臧榕, 张梦, 陈亮亮, 张学贤, 郭立平, 戚廷香, 唐会妮, 王海林, 乔秀琴, 邢朝柱, 张艳, 吴建勇. 棉花雄性不育细胞质对ATP和H2O2含量的影响分析[J]. 棉花学报, 2022, 34(4): 350-360. |
[6] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[7] | 王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246. |
[8] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[9] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[10] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[11] | 卢合全, 唐薇, 张冬梅, 罗振, 孔祥强, 李振怀, 徐士振, 代建龙, 李维江, 辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[12] | 周雪慧, 高二林, 王钰静, 李焱龙, 袁道军, 朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[13] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[14] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[15] | 席凯鹏,席吉龙,杨苏龙,张建诚. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48-59. |
|