棉花学报 ›› 2022, Vol. 34 ›› Issue (2): 107-119.doi: 10.11963/cs20210060
张雪(),孙瑞斌(
),马聪聪,马丹,张晓睿,刘志红,刘传亮*(
)
收稿日期:
2021-10-13
出版日期:
2022-03-15
发布日期:
2022-05-30
通讯作者:
刘传亮
E-mail:liucl1971@126.com
作者简介:
张雪(1994―),女,硕士研究生, 基金资助:
Zhang Xue(), Sun Ruibin(
), Ma Congcong, Ma Dan, Zhang Xiaorui, Liu Zhihong, Liu Chuanliang*(
)
Received:
2021-10-13
Online:
2022-03-15
Published:
2022-05-30
Contact:
Liu Chuanliang
E-mail:liucl1971@126.com
摘要:
【目的】 短链相关序列(SHI-related sequence, SRS)家族是一类植物特有的转录因子,在调节植物生长发育和逆境胁迫反应中发挥重要作用。鉴定和分析棉花SRS基因家族成员。【方法】 结合拟南芥相关信息,以陆地棉和海岛棉为主要研究对象,对棉花SRS基因进行全基因组鉴定和系统进化研究,并分析其在不同器官、不同发育时期的胚珠和纤维、以及在非生物胁迫下棉苗中的表达模式。【结果】 在陆地棉和海岛棉中分别鉴定出27个和26个SRS基因,系统进化分析将棉花SRS基因家族成员划分为3个分支,不同分支都具有相似的保守基序。每个分支都存在多对同源基因。一些SRS基因在胚珠发育时期表达量较高,并响应多种非生物胁迫。【结论】 分析预测了棉花SRS基因的家族成员进化关系与潜在功能,为棉花SRS基因的功能研究提供初步的理论基础。
张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119.
Zhang Xue, Sun Ruibin, Ma Congcong, Ma Dan, Zhang Xiaorui, Liu Zhihong, Liu Chuanliang. Genome-wide identification and bioinformatic analysis of SRS gene family in cotton[J]. Cotton Science, 2022, 34(2): 107-119.
表1
qRT-PCR 反应引物列表"
基因编号 Gene ID | 正向引物 Forward primer | 反向引物 Reverse primer |
---|---|---|
Ghir_A02G018470 | GGCGGTGAACATTGGTGGA | AACGGTGTCGTAGATGAAGGAGAAG |
Ghir_A05G007390 | ATCAAACGGCTGTAAACATCGC | TGTGCCTGGATTGCTGGAAG |
Ghir_A08G001440 | CCCACTCCTAACAGCGTCTCCTT | GCTACCTCCACCCATTCCACC |
Ghir_D03G001140 | GGCGGTGAACATTGGTGGA | AACGGTGTCGTAGATGAAGGAGAAG |
Ghir_D05G019290 | GAACCAGCTGGCAAGGTAACCA | GGGGTGATCTCATCTCACGAAGC |
Ghir_D06G000460 | GGTGCGTGAAAGTAAGTGCTATGGA | GAGATTCAGGTCCTTGGTCATAGAGTA |
GhHis3 | TCAAGACTGATTTGCGTTTCCA | GCGCAAAGGTTGGTGTCTTC |
表2
陆地棉和海岛棉中SRS基因家族成员鉴定"
基因编号 Gene ID | 染色体 Chromosome | 氨基酸数量 Number of amino acid | 蛋白质分子质量 Protein molecular weight/ku | 等电点 Isoelectric point | ||||
---|---|---|---|---|---|---|---|---|
Ghir_A01G010130 | A01 | 306 | 33.886 | 6.501 | ||||
Ghir_A02G018470 | A02 | 269 | 29.042 | 5.197 | ||||
Ghir_A03G009170 | A03 | 194 | 22.116 | 5.630 | ||||
Ghir_A03G021640 | A03 | 213 | 23.519 | 8.560 | ||||
Ghir_A05G007390 | A05 | 341 | 36.219 | 8.568 | ||||
Ghir_A05G019280 | A05 | 309 | 34.127 | 8.249 | ||||
Ghir_A06G000610 | A06 | 296 | 32.807 | 6.503 | ||||
Ghir_A07G012780 | A07 | 352 | 37.128 | 8.086 | ||||
Ghir_A08G001440 | A08 | 337 | 34.887 | 8.349 | ||||
Ghir_A09G011760 | A09 | 356 | 37.006 | 7.970 | ||||
Ghir_A10G019020 | A10 | 278 | 29.951 | 6.946 | ||||
Ghir_A11G018900 | A11 | 391 | 42.601 | 5.407 | ||||
Ghir_A13G002830 | A13 | 197 | 22.333 | 8.894 | ||||
Ghir_D01G010870 | D01 | 218 | 23.826 | 8.018 | ||||
Ghir_D02G009920 | D02 | 204 | 23.303 | 6.758 | ||||
Ghir_D02G023130 | D02 | 213 | 23.485 | 8.488 | ||||
Ghir_D03G001140 | D03 | 286 | 31.235 | 6.234 | ||||
Ghir_D05G007440 | D05 | 339 | 35.881 | 8.568 | ||||
Ghir_D05G019290 | D05 | 314 | 34.751 | 8.309 | ||||
Ghir_D06G000460 | D06 | 307 | 34.094 | 8.136 | ||||
Ghir_D07G012950 | D07 | 344 | 35.953 | 8.132 | ||||
Ghir_D08G001480 | D08 | 433 | 45.074 | 8.522 | ||||
Ghir_D09G011300 | D09 | 356 | 36.994 | 7.786 | ||||
Ghir_D10G020600 | D10 | 219 | 23.916 | 8.562 | ||||
Ghir_D11G019050 | D11 | 341 | 36.511 | 5.393 | ||||
Ghir_D13G003130 | D13 | 195 | 21.959 | 8.933 | ||||
Ghir_Scaffold3053G000010 | Scaffold3053 | 312 | 33.111 | 8.437 | ||||
Gbar_A01G010490 | A01 | 306 | 33.904 | 6.501 | ||||
Gbar_A02G018040 | A02 | 283 | 30.919 | 7.050 | ||||
Gbar_A03G009180 | A03 | 204 | 23.289 | 6.758 | ||||
Gbar_A03G021720 | A03 | 214 | 23.742 | 8.416 | ||||
Gbar_A05G006860 | A05 | 536 | 57.555 | 8.358 | ||||
Gbar_A05G043260 | Scaffold372 | 312 | 34.495 | 8.309 | ||||
Gbar_A06G000430 | A06 | 307 | 34.108 | 7.690 | ||||
Gbar_A07G012670 | A07 | 344 | 35.807 | 8.429 | ||||
Gbar_A08G001400 | A08 | 336 | 34.750 | 8.347 | ||||
Gbar_A09G011810 | A09 | 353 | 36.639 | 8.137 | ||||
Gbar_A10G019930 | A10 | 278 | 29.951 | 6.946 | ||||
Gbar_A11G018450 | A11 | 341 | 36.738 | 6.722 | ||||
Gbar_A13G003030 | A13 | 203 | 23.149 | 9.095 | ||||
Gbar_D01G010960 | D01 | 308 | 34.303 | 6.976 | ||||
Gbar_D02G010370 | D02 | 209 | 23.798 | 7.660 | ||||
Gbar_D02G023660 | D02 | 207 | 22.898 | 8.485 | ||||
Gbar_D03G001180 | D03 | 287 | 31.304 | 6.758 | ||||
Gbar_D05G019300 | D05 | 311 | 34.402 | 8.467 | ||||
Gbar_D05G007350 | D05 | 339 | 35.881 | 8.568 | ||||
Gbar_D06G000550 | D06 | 307 | 34.080 | 8.136 | ||||
Gbar_D07G013070 | D07 | 378 | 40.550 | 7.727 | ||||
Gbar_D08G001380 | D08 | 428 | 44.348 | 8.545 | ||||
Gbar_D09G011580 | D09 | 356 | 36.978 | 7.786 | ||||
Gbar_D10G020120 | D10 | 277 | 29.809 | 7.578 | ||||
Gbar_D11G019330 | D11 | 341 | 36.573 | 6.267 | ||||
Gbar_D13G025970 | Scaffold1673 | 195 | 21.944 | 8.933 |
[1] | Fridborg I, Kuusk S, Robertson M, et al. The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley[J/OL]. Plant Physiology, 2001, 127(3): 937-948[2021-10-01]. https://doi.org/10.1104/pp.127.3.937. |
[2] | Kuusk S, Sohlberg J J, Eklund D M, et al. Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner[J/OL]. The Plant Journal, 2006, 47(1): 99-111[2021-10-01]. https://doi.org/10.1111/j.1365-313X.2006.02774.x. |
[3] | Eklund D M, Stldal V, Valsecchi I, et al. The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis[J/OL]. The Plant Cell, 2010, 22(2): 349-363[2021-10-01]. https://doi.org/10.1105/tpc.108.064816. |
[4] | Smith D L, Fedoroff N V. LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis[J/OL]. The Plant Cell, 1995, 7(6): 735-745[2021-10-01]. https://doi.org/10.1105/tpc.7.6.735. |
[5] | Singh S, Yadav S, Singh A, et al. Auxin signaling modulates LATERAL ROOT PRIMORDIUM1 (LRP1) expression during lateral root development in Arabidopsis[J/OL]. The Plant Journal, 2020, 101(1): 87-100[2021-10-01]. https://doi.org/10.1111/tpj.14520. |
[6] | Rybel B D, Audenaert D, Xuan W, et al. A role for the root cap in root branching revealed by the non-auxin probe naxillin[J/OL]. Nature Chemical Biology, 2012, 8(9): 798-805[2021-10-01]. https://doi.org/10.1038/nchembio.1044. |
[7] | Eklund D M, Cierlik I, Stldal V, et al. Expression of Arabidopsis SHORT INTERNODES/STYLISH family genes in auxin biosynthesis zones of aerial organs is dependent on a GCC box-like regulatory element[J/OL]. Plant Physiology, 2011, 157(4): 2069-2080[2021-10-01]. https://doi.org/10.1104/pp.111.182253. |
[8] | Stldal V, Cierlik I, Song C, et al. The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering[J/OL]. Plant Molecular Biology, 2012, 78(6): 545-559[2021-10-01]. https://doi.org/10.1007/s11103-012-9888-z. |
[9] | Fridborg I, Kuusk S, Moritz T, et al. The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein[J/OL]. The Plant Cell, 1999, 11(6): 1019-1032[2021-10-01]. https://doi.org/10.2307/3870795. |
[10] | Baylis T, Cierlik I, Sundberg E, et al. SHORT INTERNODES/STYLISH genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana[J/OL]. New Phytologist, 2013, 197(3): 737-750[2021-10-01]. https://doi.org/10.1111/nph.12084. |
[11] | Kuusk S, Sohlberg J J, Long J A, et al. STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development[J/OL]. Development, 2002, 129(20): 4707-4717[2021-10-01]. https://doi.org/10.1242/dev.129.20.4707. |
[12] | Gomariz-Fernández A, Sánchez-Gerschon V, Fourquin C, et al. The role of SHI/STY/SRS genes in organ growth and carpel development is conserved in the distant eudicot species Arabidopsis thaliana and Nicotiana benthamiana[J/OL]. Frontiers in Plant Science, 2017, 8: 814[2021-10-01]. https://doi.org/10.3389/fpls.2017.00814. |
[13] | Yuan T T, Xu H H, Zhang Q, et al. The COP1 target SHI-RELATED SEQUENCE 5 directly activates photomorphogenesis-promoting genes[J/OL]. The Plant Cell, 2018, 30(10): 2368-2382[2021-10-01]. https://doi.org/10.1105/tpc.18.00455. |
[14] | Zhang Y X, von Behrens I, Zimmermann R, et al. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signaling downstream of the Aux/IAA gene rootless with undetectable meristem 1[J/OL]. Journal of Experimental Botany, 2015, 66(13): 3855-3863[2021-10-01]. https://doi.org/10.1093/jxb/erv187. |
[15] | Sohlberg J J, Myrens M, Kuusk S, et al. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium[J/OL]. The Plant Journal, 2006, 47(1): 112-123[2021-10-01]. https://doi.org/10.1111/j.1365-313X.2006.02775.x. |
[16] | Lütken H, Jensen L S, Topp S H, et al. Production of compact plants by overexpression of AtSHI in the ornamental Kalancho[J/OL]. Plant Biotechnology Journal, 2010, 8(2): 211-222[2021-10-01]. https://doi.org/10.1111/j.1467-7652.2009.00478.x. |
[17] | Islam M A, Lütken H, Haugslien S, et al. Overexpression of the AtSHI gene in poinsettia, Euphorbia pulcherrima, results in compact plants[J/OL]. PLoS One, 2013, 8(1): e53377[2021-10-01]. https://doi.org/10.1371/journal.pone.0053377. |
[18] | Kim S G, Lee S, Kim Y S, et al. Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development[J/OL]. Plant Molecular Biology, 2010, 74(4/5): 337-351[2021-10-01]. https://doi.org/10.1007/s11103-010-9677-5. |
[19] | Duan E, Wang Y, Li X, et al. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice[J/OL]. The Plant Cell, 2019, 31(5): 1026-1042[2021-10-01]. https://doi.org/10.1105/tpc.19.00023. |
[20] | Zhao S P, Song X Y, Guo L L, et al. Genome-wide analysis of the Shi-Related Sequence family and functional identification of GmSRS18 involving in drought and salt stresses in soybean[J/OL]. International Journal of Molecular Sciences, 2020, 21(5): 1810[2021-10-01]. https://doi.org/10.3390/ijms21051810. |
[21] | Youssef H M, Eggert K, Koppolu R, et al. VRS2 regulates hormone-mediated inflorescence patterning in barley[J/OL]. Nature Genetics, 2016, 49(1): 157-161[2021-10-01]. https://doi.org/10.1038/ng.3717. |
[22] | Yuo T, Yamashita Y, Kanamori H, et al. A SHORT INTERNODES(SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley[J/OL]. Journal of Experimental Botany, 2012, 63(14): 5223-5232[2021-10-01]. https://doi.org/10.1093/jxb/ers182. |
[23] | Zawaski C, Kadmiel M, Ma C, et al. SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus[J/OL]. New Phytologist, 2011, 191(3): 678-691[2021-10-01]. https://doi.org/10.1111/j.1469-8137.2011.03742.x. |
[24] |
Li F G, Fan G Y, Lu C R, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530[2021-10-01]. https://doi.org/10.1038/nbt.3208.
doi: 10.1038/nbt.3208 |
[25] | Zhu T, Liang C Z, Meng Z G, et al. CottonFGD: an integrated functional genomics database for cotton[J/OL]. BMC Plant Biology, 2017, 17: 101[2021-10-01]. https://doi.org/10.1186/s12870-017-1039-x. |
[26] | Wang M J, Tu L L, Yuan D, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense[J/OL]. Nature Genetics, 2019, 51(2): 224-229[2021-10-01]. https://doi.org/10.1038/s41588-018-0282-x. |
[27] | El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019[J/OL]. Nucleic Acids Research, 2019(D1):D427-D432 [2021-10-01]. https://doi.org/10.1093/nar/gky995. |
[28] | Finn R D, Clements J, Eddy S R. HMMER web server: interactive sequence similarity searching[J/OL]. Nucleic Acids Research, 2011, 39:W29-W37 [2021-10-01]. https://doi.org/10.1093/nar/gkr367. |
[29] | Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications[J/OL]. BMC Bioinformatics, 2009, 10(1): 421[2021-10-01]. https://doi.org/10.1186/1471-2105-10-421. |
[30] | Jones P, Binns D, Chang H Y, et al. InterProScan 5: genome-scale protein function classification[J/OL]. Bioinformatics, 2014, 30(9): 1236-1240[2021-10-01]. https://doi.org/10.1093/bioinformatics/btu031. |
[31] |
Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792-1797[2021-10-01]. https://doi.org/10.1093/nar/gkh340.
doi: 10.1093/nar/gkh340 |
[32] | Trifinopoulos J, Nguyen L T, von Haeseler A, et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis[J/OL]. Nucleic Acids Research, 2016(W1):W232-W235[2021-10-01]. https://doi.org/10.1093/nar/gkw256. |
[33] | Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching[J/OL]. Nucleic Acids Research, 2009, 37:W202-W208 [2021-10-01]. https://doi.org/10.1093/nar/gkp335. |
[34] | Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J/OL]. Molecular Plant, 2020, 13(8): 1194-1202[2021-10-01]. https://doi.org/10.1016/j.molp.2020.06.009. |
[35] | Hao Z, Lv D, Ge Y, et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms[J/OL]. PeerJ. Computer Science, 2020, 6:e251 [2021-10-01]. https://doi.org/10.7717/peerj-cs.251. |
[36] | Wang Y, Tang H, Debarry J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J/OL]. Nucleic Acids Research, 2012, 40(7):e49 [2021-10-01]. https://doi.org/10.1093/nar/gkr1293. |
[37] | Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics[J/OL]. Genome Research, 2009, 19: 1639-1645[2021-10-01]. https://doi.org/10.1101/gr.092759.109. |
[38] | Hao P B, Wu A M, Chen P Y, et al. GhLUX1 and GhELF3 are two components of the circadian clock that regulate flowering time of Gossypium hirsutum[J/OL]. Frontiers in Plant Science, 2021, 12: 691489[2021-10-01]. https://doi.org/10.3389/FPLS.2021.691489. |
[39] | Cheng S S, Chen P Y, Su Z Z, et al. High-resolution temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering regulatory pathway in cotton (Gossypium hirsutum L.)[J/OL]. Plant Biotechnology Journal, 2021, 19(1): 153-166[2021-10-01]. https://doi.org/10.1111/pbi.13449. |
[40] | Cai D, Liu H, Sang N, et al. Identification and characterization of CONSTANS-like (COL) gene family in upland cotton (Gossypium hirsutum L.)[J/OL]. PLoS One, 2017, 12(6):e0179038 [2021-10-01]. https://doi.org/10.1371/journal.pone.0179038. |
[41] | Lacape J M, Claverie M, Vidal R O, et al. Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton[J/OL]. PLoS One, 2012, 7(11):e48855 [2021-10-01]. https://doi.org/10.1371/journal.pone.0048855. |
[42] | Sun W J, Gao Z Y, Wang J, et al. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers[J/OL]. New Phytologist, 2019, 222(2): 864-881 [2021-10-01]. https://doi.org/10.1111/nph.15620. |
[43] | Zhao B, Cao J F, Hu G J, et al. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation[J/OL]. New Phytologist, 2018, 218(3): 1061-1075[2021-10-01]. https://doi.org/10.1111/nph.15063. |
[44] | He B, Shi P, Lv Y, et al. Gene coexpression network analysis reveals the role of SRS genes in senescence leaf of maize (Zea mays L.)[J/OL]. Journal of Genetics, 2020, 99(1): 3[2021-10-01]. https://doi.org/10.1007/s12041-019-1162-6. |
[45] | Eklund D M, Thelander M, Landberg K, et al. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens[J/OL]. Development, 2010, 137(8): 1275-1284[2021-10-01]. https://doi.org/10.1242/dev.039594. |
[46] | Liu X, Zhao B, Zheng H J, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J/OL]. Scientific Reports, 2015, 5(1): 14139[2021-10-01]. https://doi.org/10.1038/srep14139. |
[1] | 祁佳峰, 刘笑, 杜文玲, 郭鹏. 基于无人机高清影像的棉花单产预测[J]. 棉花学报, 2022, 34(4): 286-298. |
[2] | 晁毛妮, 董洁, 胡根海, 黄玲, 张金宝, 付远志, 王清连. 陆地棉AGPase基因家族的鉴定及表达分析[J]. 棉花学报, 2022, 34(4): 299-312. |
[3] | 蒲丹丹, 张亚林, 白红燕, 魏峰, 冯鸿杰, 赵丽红, 顾爱星, 朱荷琴, 彭军, 冯自力. 内生真菌简青霉CEF-818对棉花黄萎病的防治效果及机理[J]. 棉花学报, 2022, 34(4): 313-324. |
[4] | 白岩, 彭军, 赵素琴, 付小琼, 许乃银. 我国棉花大品种的历史沿革与发展趋势分析[J]. 棉花学报, 2022, 34(4): 325-337. |
[5] | 韩建文, 冯春晖, 彭杰, 王彦宇, 史舟. 不同分辨率无人机多光谱影像的棉花叶面积指数估测研究[J]. 棉花学报, 2022, 34(4): 338-349. |
[6] | 韩阳, 臧榕, 张梦, 陈亮亮, 张学贤, 郭立平, 戚廷香, 唐会妮, 王海林, 乔秀琴, 邢朝柱, 张艳, 吴建勇. 棉花雄性不育细胞质对ATP和H2O2含量的影响分析[J]. 棉花学报, 2022, 34(4): 350-360. |
[7] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[8] | 田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226. |
[9] | 王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246. |
[10] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[11] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[12] | 苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172. |
[13] | 卢合全, 唐薇, 张冬梅, 罗振, 孔祥强, 李振怀, 徐士振, 代建龙, 李维江, 辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[14] | 周雪慧, 高二林, 王钰静, 李焱龙, 袁道军, 朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[15] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
|