棉花学报 ›› 2022, Vol. 34 ›› Issue (1): 69-78.doi: 10.11963/cs20210055
• 研究简报 • 上一篇
陈凯丽(),田秋恒,刘志洋,王海,熊杰,雷勇辉,孙燕飞*(
)
收稿日期:
2021-09-03
出版日期:
2022-01-15
发布日期:
2022-05-31
通讯作者:
孙燕飞
E-mail:1343873397@qq.com;81711308@qq.com
作者简介:
陈凯丽(1996―),女,研究生, 基金资助:
Chen Kaili(),Tian Qiuheng,Liu Zhiyang,Wang Hai,Xiong Jie,Lei Yonghui,Sun Yanfei*(
)
Received:
2021-09-03
Online:
2022-01-15
Published:
2022-05-31
Contact:
Sun Yanfei
E-mail:1343873397@qq.com;81711308@qq.com
摘要:
【目的】丛枝菌根是陆地生态系统中普遍存在的植物根系与丛枝菌根真菌的共生体,能有效提高植物的抗逆性。棉花是新疆盐碱地种植的主要经济作物。为研究和利用新疆丛枝菌根资源,对新疆石河子及其周边棉花种植区丛枝菌根真菌的种类和数量进行了普查。【方法】采集新疆维吾尔自治区石河子市(北泉镇)及其周边的塔城地区沙湾县(柳毛湾镇、老沙湾镇、钟家庄镇)和昌吉回族自治州玛纳斯县(十户滩镇)共50份土样,通过单个孢子的形态学鉴定和分子鉴定(巢式聚合酶链式反应)对丛枝菌根真菌多样性进行分析。【结果】从新疆石河子及周边地区棉花根际土壤中分离出4属6种丛枝菌根真菌,以类球囊霉属(Paraglomus)为优势属。石河子市北泉镇的丛枝菌根真菌物种丰富度最高,沙湾县柳毛湾镇和钟家庄镇的种类组成和结构相似。【结论】明确了新疆石河子以及周边地区棉花根际土壤中丛枝菌根真菌的种类。该研究为充分利用和开发特色丛枝菌根资源奠定了基础。
陈凯丽,田秋恒,刘志洋,王海,熊杰,雷勇辉,孙燕飞. 新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性[J]. 棉花学报, 2022, 34(1): 69-78.
Chen Kaili,Tian Qiuheng,Liu Zhiyang,Wang Hai,Xiong Jie,Lei Yonghui,Sun Yanfei. Diversity of arbuscular mycorrhizal fungi in cotton rhizosphere soil in Shihezi and surrounding areas, Xinjiang[J]. Cotton Science, 2022, 34(1): 69-78.
表1
采样地信息"
样品编号 Sample number | 采样地 Sampling sites | 经纬度 Latitude and longitude |
---|---|---|
SHZ1~SHZ10 | 石河子市北泉镇新疆生产建设兵团第八师145团 145th Regiment, 8th Division, Xinjiang Production and Construction Corps, Shihezi City, Beiquan Town | 86°2′14″E,44°33′79″N |
LMW1~LMW10 | 塔城地区沙湾县柳毛湾镇 Liumaowan Town, Shawan County, Tacheng Prefecture | 85°89′26″E,44°55′63″N |
CJ1~CJ10 | 昌吉回族自治州玛纳斯县十户滩镇新疆生产建设兵团第八师147团 147th Regiment, 8th Division, Xinjiang Production and Construction Corps, Shihutan Town, Manas County, Changji Hui Autonomous Prefecture | 86°8′57″E,44°58′95″N |
LSW1~LSW10 | 塔城地区沙湾县老沙湾镇 Laoshawan Town, Shawan County, Tacheng Prefecture | 85°75′82″E,44°69′95″N |
ZJZ1~ZJZ8 | 塔城地区沙湾县钟家庄镇新疆生产建设兵团第八师144团 144th Regiment, 8th Division, Xinjiang Production and Construction Corps, Zhongjiazhuang Town, Shawan County, Tacheng Prefecture | 85°68′52″E,44°52′87″N |
SYL1~SYL2 | 塔城地区沙湾县新疆生产建设兵团第八师144团十一连 11th Company, 144th Regiment, 8th Division, Xinjiang Production and Construction Corps, Shawan County, Tacheng Prefecture | 85°71′79″E,44°52′94″N |
表2
评价丛枝菌根真菌群落结构多样性的生态学参数"
参数 Parameters | 公式和定义 Formula and definition |
---|---|
孢子密度Spore density (SD) | 每50 g风干土壤中的孢子数 Number of spores per 50 g of dried soil |
物种丰富度Species richness (SR) | 每个土壤样品中的AMF种类数 Number of AMF species in each soil sample |
分离频率Isolation frequency (IF) | 某种出现次数占所有物种出现次数的比例 Proportion of occurrences of a species to the sum of occurrences of all species |
相对多度Relative abundance (RA) | 某采样点AMF某种的孢子数占总孢子数的比例 The proportion of spore number of some kinds of AMF at a sampling site to the total number of spores |
重要值Importance value (IV) | IV=(IF+RA)/2 |
香农-维纳多样性指数 Shannon-Wiener’s diversity index (H) | H=-$\sum$PilnPi |
均匀度指数Pielou evenness index (E) | E=H/lnSR |
表3
巢式PCR所用AMF引物"
引物名称 Primer name | 引物序列 Primer sequence(5′-3′) | 片段大小 Fragment size/bp | 目标区域 Target region | 参考文献 Reference |
---|---|---|---|---|
NS1 | GTAGTCATATGCTTGTCTC | 1 100 | SSU | [ |
NS4 | CTTCCGTCAATTCCTTTAAG | SSU | [ | |
AML1 | ATCAACTTTCGATGGTAGGATAGA | 800 | SSU | [ |
AML2 | GAACCCAAACACTTTGGTTTCC | SSU | [ | |
AMV4.5NF | AAGCTCGTAGTTGAATTTCG | 300 | SSU | [ |
AMDGR | CCCAACTATCCCTATTAATCAT | SSU | [ |
表4
新疆石河子及周边地区棉花根际土壤丛枝菌根真菌种类"
属 Genus | 种 Species | 分离频率 Isolation frequency/% | 相对多度 Relative abundance/% | 重要值 Important value/% | 优势度 Advantageousness |
---|---|---|---|---|---|
球囊霉属 Glomus | 单孢球囊霉 G. monosporum | 88.00 | 18.08 | 53.04 | 常见种 Common species |
明球囊霉 G. clarum | 88.00 | 17.65 | 52.82 | 常见种 Common species | |
卷曲球囊霉 G. convolutum | 18.00 | 3.67 | 10.84 | 偶见种 Occasional species | |
无梗囊霉属 Acaulospora | 凹坑无梗囊霉 A. excavata | 94.00 | 35.77 | 64.89 | 最常见种 The most common species |
类球囊霉属 Paraglomus | 巴西类球囊霉 P. brasilianum | 52.00 | 12.65 | 32.32 | 少见种 Rare species |
双型囊霉属 Ambispora | 薄壁双型囊霉 A. leptoticha | 84.00 | 12.18 | 48.09 | 常见种 Common species |
表5
新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性"
样品 编号 Sample number | 孢子密度 Spore density | 物种 丰富度 Species richness | 香农-维纳 多样性指数Shannon- Wiener 's diversity index | 均匀度指数 Pielou evenness index | 样品 编号 Sample number | 孢子密度 Spore density | 物种 丰富度 Species richness | 香农-维纳 多样性指数Shannon- Wiener 's diversity index | 均匀度指数 Pielou evenness index |
---|---|---|---|---|---|---|---|---|---|
SHZ1 | 609 | 5 | 1.45±0.14 | 0.90±0.09 | CJ6 | 427 | 3 | 1.03±0.03 | 0.94±0.03 |
SHZ2 | 1 380 | 5 | 1.42±0.05 | 0.88±0.03 | CJ7 | 764 | 5 | 1.41±0.01 | 0.88±0.01 |
SHZ3 | 748 | 5 | 1.31±0.07 | 0.81±0.04 | CJ8 | 520 | 3 | 0.91±0.07 | 0.83±0.07 |
SHZ4 | 1 278 | 5 | 1.34±0.08 | 0.84±0.05 | CJ9 | 597 | 3 | 0.73±0.17 | 0.67±0.16 |
SHZ5 | 1 163 | 4 | 1.24±0.08 | 0.89±0.06 | CJ10 | 615 | 3 | 0.98±0.06 | 0.89±0.05 |
SHZ6 | 1 123 | 5 | 1.45±0.07 | 0.90±0.04 | LSW1 | 757 | 5 | 1.43±0.05 | 0.89±0.03 |
SHZ7 | 677 | 5 | 1.36±0.13 | 0.85±0.08 | LSW2 | 737 | 4 | 1.21±0.08 | 0.87±0.06 |
SHZ8 | 543 | 5 | 1.33±0.15 | 0.83±0.09 | LSW3 | 656 | 4 | 1.11±0.15 | 0.80±0.11 |
SHZ9 | 398 | 5 | 1.01±0.42 | 0.63±0.26 | LSW4 | 972 | 4 | 1.15±0.07 | 0.83±0.05 |
SHZ10 | 433 | 4 | 1.02±0.19 | 0.74±0.13 | LSW5 | 1 466 | 4 | 1.24±0.02 | 0.90±0.01 |
LMW1 | 284 | 4 | 0.89±0.13 | 0.64±0.10 | LSW6 | 1 280 | 4 | 1.28±0.05 | 0.92±0.03 |
LMW2 | 669 | 5 | 1.15±0.26 | 0.72±0.16 | LSW7 | 1 854 | 5 | 1.50±0.01 | 0.93±0.04 |
LMW3 | 453 | 3 | 0.99±0.03 | 0.90±0.03 | LSW8 | 981 | 5 | 1.14±0.29 | 0.71±0.18 |
LMW4 | 453 | 3 | 0.86±0.14 | 0.78±0.12 | LSW9 | 617 | 5 | 0.95±0.21 | 0.59±0.13 |
LMW5 | 613 | 5 | 1.07±0.20 | 0.67±0.12 | LSW10 | 513 | 3 | 0.98±0.04 | 0.90±0.04 |
LMW6 | 628 | 5 | 1.06±0.17 | 0.66±0.10 | ZJZ1 | 727 | 4 | 1.25±0.05 | 0.90±0.04 |
LMW7 | 1 023 | 5 | 1.35±0.06 | 0.84±0.04 | ZJZ2 | 557 | 3 | 0.99±0.06 | 0.90±0.05 |
LMW8 | 871 | 5 | 1.36±0.02 | 0.85±0.01 | ZJZ3 | 762 | 4 | 1.21±0.05 | 0.88±0.04 |
LMW9 | 761 | 5 | 1.25±0.14 | 0.78±0.09 | ZJZ4 | 1 633 | 4 | 1.27±0.02 | 0.92±0.02 |
LMW10 | 567 | 4 | 1.26±0.09 | 0.91±0.07 | ZJZ5 | 653 | 5 | 1.22±0.10 | 0.76±0.07 |
CJ1 | 573 | 5 | 1.37±0.09 | 0.85±0.05 | ZJZ6 | 357 | 3 | 0.91±0.07 | 0.83±0.06 |
CJ2 | 508 | 5 | 1.34±0.09 | 0.83±0.06 | ZJZ7 | 546 | 3 | 0.93±0.08 | 0.85±0.07 |
CJ3 | 632 | 3 | 0.90±0.06 | 0.82±0.05 | ZJZ8 | 718 | 3 | 1.05±0.06 | 0.96±0.05 |
CJ4 | 737 | 4 | 1.19±0.04 | 0.86±0.03 | SYL1 | 1 973 | 5 | 1.33±0.05 | 0.83±0.03 |
CJ5 | 377 | 3 | 0.94±0.03 | 0.86±0.03 | SYL2 | 854 | 4 | 1.13±0.15 | 0.82±0.11 |
[1] |
Eroğlu Ç G, Cabral C, Ravnskov S, et al. Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre-and post-anthesis salinity stress[J/OL]. Plant Biology, 2020, 22(5): 863-871(2020-04-16)[2021-10-15]. https://doi.org/10.1111/plb.13123.
doi: 10.1111/plb.13123 |
[2] |
Yang A N, Lu L, Zhang N. The diversity of arbuscular mycorrhizal fungi in the subtropical forest of Huangshan (Yellow Mountain), East-Central China[J/OL]. World Journal of Microbiology & Biotechnology, 2011, 27(10): 2351-2358(2011-03-04)[2021-10-15]. https://doi.org/10.1007/s11274-011-0702-x.
doi: 10.1007/s11274-011-0702-x |
[3] | Gao X P, Guo H H, Zhang Q, et al. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.)[J/OL]. Scientific Reports, 2020, 10(1): 2084(2020-02-07)[2021-10-15]. https://doi.org/10.1038/s41598-020-59180-3. |
[4] |
Chen J, Zhang H Q, Zhang X L, et al. Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defence of the plant[J/OL]. Environmental and Experimental Botany, 2020, 175: 104034(2020-04-02)[2021-10-15]. https://doi.org/10.1016/j.envexpbot.2020.104034.
doi: 10.1016/j.envexpbot.2020.104034 |
[5] |
Hadian-Deljou M, Esna-Ashari M, Mirzaie-asl A. Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings[J/OL]. Scientia Horticulturae, 2020, 268: 109373(2020-06-27)[2021-10-15]. https://doi.org/10.1016/j.scienta.2020.109373.
doi: 10.1016/j.scienta.2020.109373 |
[6] |
Zhang Q, Gao X P, Ren Y Y, et al. Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions[J/OL]. International Journal of Molecular Sciences, 2018, 19(1): 241 (2018-01-13)[2021-10-15]. https://doi.org/10.3390/ijms19010241.
doi: 10.3390/ijms19010241 |
[7] | Jiang H, Tian Y Q, Chen J J, et al. Enhanced uptake of drip applied flonicamid by arbuscular mycorrhizal fungi and improved control of cotton aphid[J]. Pest Management Science, 2020, 76(12): 5979 (2020-06-28)[2021-10-15]. http://dx.doi.org/10.1002/ps.5979. |
[8] | 国秀丽, 白灯莎·买买提艾力, 张少民, 等. AM真菌对苗期棉花根系形态特征的影响[J/OL]. 棉花学报, 2017, 29(5): 476-486(2017-09-15)[2021-10-15]. https://doi.org/10.11963/1002-7807.gxlfg.20170706. |
Guo Xiuli, Baidengsha Maimaiti’aili, Zhang Shaomin, et al. Effect of indigenous arbuscular mycorrhizae fungi on the root morphological characteristics of cotton at the seedling stage[J/OL]. Cotton Science, 2017, 29(5): 476-486(2017-09-15)[2021-10-15]. https://doi.org/10.11963/1002-7807.gxlfg.20170706. | |
[9] | 刘润进. 菌根学[M]. 北京: 科学出版社, 2007. |
Liu Runjin. Mycorrhizology[M]. Beijing: Science Press, 2007. | |
[10] | 龙良鲲, 羊宋贞, 姚青, 等. AM真菌DNA的提取与PCR-DGGE分析[J]. 菌物学报, 2005, 24(4): 564-569. |
Long Liangkun, Yang Songzhen, Yao Qing, et al. DNA extraction from arbuscular mycorrhizal fungi and analysis by PCR-denaturing gradient gel electrophoresis[J]. Mycosystema, 2005, 24(4): 564-569. | |
[11] |
Lee J, Lee S, Young J P W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi[J/OL]. Fems Microbiology Ecology, 2008, 65(2): 339-349 (2008-08-01)[2021-10-15]. https://doi.org/10.1111/j.1574-6941.2008.00531.x.
doi: 10.1111/j.1574-6941.2008.00531.x |
[12] |
Sato H, Wada Y, Itabashi T, et al. Mutations in the pre-mRNA splicing gene, PRPF31, in Japanese families with autosomal dominant retinitis pigmentosa[J/OL]. American Journal of Ophthalmology, 2005, 140(3): 537-540 [2021-10-15]. https://doi.org/10.1016/j.ajo.2005.02.050.
doi: 10.1016/j.ajo.2005.02.050 |
[13] | Rawat R, Mukerji K G. Vesicular arbuscular mycorrhizal association in sugarcane[J]. Phytomorph, 1998, 48: 309-316. |
[14] | Khadge B R, Ilag L L, Mew T W. Effect of vesicular-arbuscular mycorrhiza fungal inoculation on corn and mungbean[J]. Philippine Phytpathology, 1988, 24(1/2): 58. |
[15] | 吴强盛, 邹英宁. 柑橘丛枝菌根的研究新进展[J]. 江西农业大学学报, 2014, 36(2): 279-284. |
Wu Qiangsheng, Zou Yingning. New advances in the research of arbuscular mycorrhizas in citrus[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(2): 279-284. | |
[16] |
Takács T, Radimszky L, Németh T. The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals[J]. Zeitschrift Für Naturforschung C, 2005, 60(3/4): 357-361.
doi: 10.1515/znc-2005-3-420 |
[17] | 王幼珊, 陈理, 张淑彬, 等. 新疆天然胡杨林和野生骆驼刺丛枝菌根真菌多样性研究初报[J]. 干旱区研究, 2010, 27(6): 927-932. |
Wang Youshan, Chen Li, Zhang Shubin, et al. Biodiversity of arbuscular mycorrhizal fungi in the natural forests of Populus euphratica and Alhagi sparsifolia in Xinjiang[J]. Arid Zone Research, 2010, 27(6): 927-932. | |
[18] |
Xu X H, Chen C, Zhang Z, et al. The influence of environmental factors on communities of arbuscular mycorrhizal fungi asso-ciated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation[J/OL]. Scientific Reports, 2017, 7: 45134 (2017-03-22)[2021-10-15]. https://doi.org/10.1038/srep45134.
doi: 10.1038/srep45134 |
[19] |
Luo Y F, Wang Z K, He Y L, et al. High-throughput sequencing analysis of the rhizosphere arbuscular mycorrhizal fungi (AMF) community composition associated with Ferula sinkiangensis[J/OL]. BMC Microbiology, 2020, 20(1): 335 (2020-11-03)[2021-10-15]. https://doi.org/10.1186/s12866-020-02024-x.
doi: 10.1186/s12866-020-02024-x |
[20] |
Jiang S T, Hu X X, Kang Y L, et al. Arbuscular mycorrhizal fungal communities in the rhizospheric soil of litchi and mango orchards as affected by geographic distance, soil properties and manure input[J/OL]. Applied Soil Ecology, 2020, 152: 103593(2020-08-01)[2021-10-15]. https://doi.org/10.1016/j.apsoil.2020.103593.
doi: 10.1016/j.apsoil.2020.103593 |
[21] | 毛树春, 邢金松, 宋美珍, 等. 棉花对两种VA菌根真菌的反应[J]. 棉花学报, 1994, 6(4): 237-242. |
Mao Shuchun, Xing Jinsong, Song Meizhen, et al. Reaction of two indigenous strains of VAMF on cotton[J]. Acta Gossypii Sinica, 1994, 6(4): 237-242. | |
[22] | 王幼珊, 张淑彬, 张美庆. 中国丛枝菌根真菌资源与种质资源[M]. 北京: 中国农业出版社, 2012. |
Wang Youshan, Zhang Shubin, Zhang Meiqing. Mycorrhizal fungal resources and germplasm resources of China[M]. Beijing: China Agricuture Press, 2012. | |
[23] |
Davison J, Moora M pik M, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism[J/OL]. Science, 2015, 349(6251): 970-973 (2015-08-28)[2021-10-15]. https://doi.org/10.1126/science.aab1161.
doi: 10.1126/science.aab1161 pmid: 26315436 |
[24] | 袁腾. 梵净山五种森林类型的土壤丛枝菌根真菌多样性[D]. 贵阳: 贵州大学, 2019. |
Yuan Teng. Diversity analysis of arbuscular mycorrhizal fungi in the rhizospheric soil of five forest types in Fanjingshan National Nature Reserve[D]. Guiyang: Guizhou University, 2019. | |
[25] |
蒋胜竞, 石国玺, 毛琳, 等. 不同PCR引物在根系丛枝菌根真菌群落研究中的应用比较[J]. 微生物学报, 2015, 55(7): 916-925.
pmid: 26710610 |
Jiang Shengjing, Shi Guoxi, Mao Lin, et al. Comparison of different PCR primers on detecting arbuscular mycorrhizal communities inside plant roots[J]. Acta Microbiologica Sinica, 2015, 55(7): 916-925.
pmid: 26710610 |
|
[26] |
Kolaíková Z, Slavíková R, Krüger C, et al. PacBio sequencing of Glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi[J/OL]. New Phytologist, 2021, 231(1): 490-499 (2021-03-29)[2021-10-15]. https://doi.org/10.1111/nph.17372.
doi: 10.1111/nph.17372 |
[27] | 王永明, 范洁群, 石兆勇. 中国丛枝菌根真菌分子多样性[J]. 微生物学通报, 2018, 45(11): 2399-2408. |
Wang Yongming, Fan Jiequn, Shi Zhaoyong. Molecular diversity of arbuscular mycorrhizal fungi in China[J]. Microbiology China, 2018, 45(11): 2399-2408. | |
[28] |
刘永俊, 冯虎元. 丛枝菌根真菌系统分类及群落研究技术进展[J]. 应用生态学报, 2010, 21(6): 1573-1580.
pmid: 20873637 |
Liu Yongjun, Feng Huyuan. Systematic classification and community research techniques of arbuscular mycorrhizal fungi: a review[J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1573-1580.
pmid: 20873637 |
|
[29] | 乔红权, 张英, 郭良栋, 等. 新疆北部地区常见植物根围的丛枝菌根真菌[J]. 菌物学报, 2005, 24(1): 130-136. |
Qiao Hongquan, Zhang Ying, Guo Liangdong, et al. Arbuscular mycorrhizal fungi associated with most common plants in north Xinjiang[J]. Mycosystema, 2005, 24(1): 130-136. | |
[30] | 孟晓燕. 塔里木河下游地区丛枝菌根植物多样性及侵染特点[D]. 乌鲁木齐: 新疆农业大学, 2007. |
Meng Xiaoyan. Diversity and infestation characteristics of mycorrhizal plants in the lower Tarim River[D]. Urumqi: Xinjiang Agricultural University, 2007. | |
[31] | 石兆勇, 陈志超, 张立运, 等. 天山北坡丛枝菌根真菌多样性及地带分布[J]. 中国科学: D辑地球科学, 2006, 36(S2): 126-132. |
Shi Zhaoyong, Chen Zhichao, Zhang Liyun, et al. Diversity and zonal distribution of mycorrhizal fungi on the northern slopes of Tianshan[J]. Science in China: Series D Earth Sciences, 2006, 36(S2): 126-132. |
[1] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[2] | 王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246. |
[3] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[4] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[5] | 卢合全,唐薇,张冬梅,罗振,孔祥强,李振怀,徐士振,代建龙,李维江,辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[6] | 史庆雨,李东阳,王丽,高雪珂,张开心,朱香镇,姬继超,雒珺瑜. 不同翅型棉蚜体内细菌群落组成和多样性分析[J]. 棉花学报, 2022, 34(2): 151-161. |
[7] | 周雪慧,高二林,王钰静,李焱龙,袁道军,朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[8] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[9] | 苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172. |
[10] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[11] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[12] | 席凯鹏,席吉龙,杨苏龙,张建诚. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48-59. |
[13] | 李世梅,李自良,冯旭飞,向导,杨明凤,张旺锋,张亚黎. 棉花盛铃期不同器官氮磷化学计量特征及异速关系[J]. 棉花学报, 2022, 34(1): 60-68. |
[14] | 王艳情, 郑杰, 许艳超, 蔡小彦, 周忠丽, 侯宇清, 王坤波, 王玉红, 陈浩东, 刘方, 李志坤. 棉花HDAC基因家族鉴定及其在黄萎病菌侵染下的表达分析[J]. 棉花学报, 2021, 33(6): 469-481. |
[15] | 李秋琳,李燕,陈伟,姚金波,朱守鸿,袁黎,张永山. 基于广泛靶向代谢组学的不同颜色棉花花瓣中类黄酮成分差异分析[J]. 棉花学报, 2021, 33(6): 482-492. |
|