GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应

周雪慧, 高二林, 王钰静, 李焱龙, 袁道军, 朱龙付

PDF(15032 KB)
PDF(15032 KB)
棉花学报 ›› 2022, Vol. 34 ›› Issue (2) : 79-92. DOI: 10.11963/cs20210047
研究与进展

GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应

作者信息 +

GhROP6 involved in cotton resistance to Verticillium wilt through regulating jasmonic acid synthesis and lignin metabolism

Author information +
History +

摘要

【目的】 克隆抗病相关基因GhROP6,解析其作用机制,为开展棉花抗病分子育种提供理论基础。【方法】 利用生物信息学方法系统分析了陆地棉Rho鸟苷三磷酸酶基因(Rho-related guanosine triphosphatase from plants, ROP)家族成员在染色体上的分布及组织表达模式。克隆了GhROP6 Gh_A01G1392.1)基因,通过实时荧光定量聚合酶链式反应、病毒诱导的基因沉默(virus-induced gene silencing, VIGS)技术、拟南芥遗传转化技术及代谢物测定等对该基因进行功能分析。【结果】 在陆地棉中鉴定到28个ROP,其编码的多肽均含有ROP结构,包括4个GTP/GDP结合域、与下游靶蛋白结合的效应结构域和C末端的可变区域。染色体定位分析发现陆地棉ROP家族中24个基因对称分布在A亚基因组和D亚基因组中,另有3个基因分布在D亚基因组。实时荧光定量聚合酶链式反应分析发现,GhROP6在棉花不同器官表达量不同,在花瓣、柱头、开花后10 d的纤维中表达量较高,并受茉莉酸甲酯诱导上调表达。抑制GhROP6表达会降低茉莉酸生物合成相关基因GhLOX1GhOPR3-1GhOPR3-3GhAOC1GhAOS和茉莉酸信号通路相关基因GhMYC2的表达水平,削弱木质素合成相关基因GhCCR-1GhF5H-1GhCCoAOMT-2GhCCoAOMT-3的表达,从而降低棉花对黄萎病的抗性;超表达组成型激活的GhROP6能增加转基因拟南芥茉莉酸-异亮氨酸含量和木质素含量,增强其对黄萎病菌抗性。【结论】 GhROP6可能通过茉莉酸合成和信号通路以及木质素合成代谢参与棉花抗黄萎病反应。

Abstract

[Objective] This study aims to characterize the GhROP6 and study its roles of resistance to Verticillium wiltin upland cotton (Gossypium hirsutum L.). [Method] The bioinformatics analysis was used to identify Rho-related guanosine triphosphatase from plants (ROP) genes in upland cotton. The chromosome distributions, expression pattern analysis of GhROP genes were investigated. The function of GhROP6 gene was studied by quantitative real-time polymerase chain reaction (qRT-PCR), virus-induced gene silencing (VIGS), plant genetic transformation and metabolism analysis. [Result] Totally, 28 ROP genes were identified in upland cotton. And the corresponding amino acid sequence contained the ROP protein specific structures, including four GTP/GDP binding domains, effector domain binding to downstream target proteins and variable C-terminal regions. Chromosomal mapping analysis showed that 24 ROP genes were symmetrically distributed in subgenome A and subgenome D, and 3 genes specifically distributed in subgenome D. qRT-PCR analysis showed that the transcript levels of GhROP6 varied in different organs, and showed higher expression level in petals, stigma, fiber of 10 days post anthesis. Meanwhile, the transcript level of GhROP6 was upregulated in cotton by methyl jasmonate (MeJA). Knock-down of GhROP6 through VIGS weakened the cotton resistance to Verticillium wilt, and reduced the expression of GhLOX1, GhOPR3-1, GhOPR3-3, GhAOC1, GhAOS involved in jasmonic acid (JA) synthesis, and the expression of GhMYC2 involved in JA signaling pathway, and the expression of GhCCR-1, GhF5H-1, GhCCoAOMT-2, and GhCCoAOMT-3 genes involved in lignin synthesis. However, constitutively activated GhROP6 in Arabidopsis enhanced the plants resistantce to V. dahliae. Further analysis showed that the contents of JA-isoleucine and lignin in transgenic Arabidopsis were higher than those of wild type. [Conclusion] GhROP6 may involve in the resistance of cotton to Verticillium wilt through JA synthesis and signaling pathway and lignin synthesis.

关键词

棉花 / 黄萎病 / GhROP6 / 抗病性 / 茉莉酸 / 木质素 / 信号通路

Keywords

cotton / Verticillium wilt / GhROP6 / disease resistance / jasmonic acid / lignin / signaling pathway

引用本文

导出引用
周雪慧 , 高二林 , 王钰静 , 李焱龙 , 袁道军 , 朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. https://doi.org/10.11963/cs20210047
Zhou Xuehui , Gao Erlin , Wang Yujing , Li Yanlong , Yuan Daojun , Zhu Longfu. GhROP6 involved in cotton resistance to Verticillium wilt through regulating jasmonic acid synthesis and lignin metabolism[J]. Cotton Science, 2022, 34(2): 79-92. https://doi.org/10.11963/cs20210047
棉花(Gossypium)作为一种重要的经济作物,是纺织品行业的重要原料来源,在各主产棉国家和地区的国民经济中占据重要地位。然而,棉花在生长过程中往往受到各种生物胁迫和非生物胁迫,如虫害、病害、干旱等,严重影响其产量和品质。黄萎病是影响我国棉花产量和品质的主要病害之一,大丽轮枝菌(Verticillium dahliae)是我国棉花黄萎病的主要致病菌[1],也入侵马铃薯、辣椒、橄榄等多种粮食和经济作物[2]。黄萎病导致植物叶片失绿黄化、维管束褐变,甚至整株坏死[3-4]。但棉花抗黄萎病的分子机制仍不清楚。
小G蛋白是具有鸟苷三磷酸酶(guanosine triphosphatase, GTPase)活性的GTP结合蛋白。根据功能的差异,小G蛋白可以划分为5个家族,即Ras、Rho、Rab、Ran和Arf。素有植物“分子开关”之称的Rho GTPase(Rho-related guanosine triphosphatase from plants, ROP),广泛参与植物生长发育及多种信号转导过程[5-6]。高度保守的小G蛋白有4个GTP/GDP结合结构域和1个与下游效应蛋白结合的结构域[5,7 -8]。小G蛋白活性由一些调控因子控制,即鸟嘌呤核苷酸交换因子(guanine nucleotide exchange factor, GEF)、GTPase激活蛋白(GTPase-activating protein, GAP)以及鸟嘌呤核苷酸解离抑制剂(GDP dissociation inhibitor, GDI)等。GEF与结合GDP的GTPase形成低亲和力复合物,在核苷酸裂解后,转化为高亲和力的无核苷酸复合物。GTP的结合使复合物回到低亲和状态,GEF被释放,生成激活态的GTPase。激活状态下的小G蛋白与GAP相互作用,促使ROP失活[9-11]。GDI抑制GDP与GTP的交换,是ROP活性的负调节因子[10]。小GTP结合蛋白有组成型结合GDP的非激活形式(dominant negative, DN)突变体以及组成型结合GTP的激活形式(constitutively active, CA)突变体[9-10]。研究表明,ROP的N端第15位甘氨酸突变为缬氨酸导致ROP被锁定在结合GTP的组成型激活形式,即形成CA突变体,第20位苏氨酸突变为谷氨酰胺产生抑制GDP结合的DN突变体[10]
研究证实ROP参与包括调控花粉管生长、根毛生长、植物生长发育、响应生物和非生物胁迫在内的多种信号转导过程[7,12 -16]。激活ROP2可以促进盐胁迫下拟南芥(Arabidopsis thaliana)微管细胞的重新聚集及幼苗的存活[17]。水稻(Oryza sativa)中超表达OsRac1能增加粒宽和粒重,推测OsRac1通过影响细胞分裂来调节水稻的粒宽和产量[18]。激活OsRac1还可增强水稻对细菌疫病和稻瘟病的抗性,影响相关防御基因的表达[16],进一步研究发现,OsRac1和转录激活因子RAI1共同作用参与水稻对稻瘟病抗性[19]。超表达组成型StRac1显著增加马铃薯细胞中过氧化氢含量,增强马铃薯对晚疫病菌的抗性;抑制StRac1表达则削弱马铃薯对晚疫病菌的抗性[20]。棉花Rac13能激发活性氧(reactive oxygen species,ROS)产生,参与棉花次生壁形成过程,影响纤维品质[21]。目前,尚未见关于ROP参与棉花抗病的报道。
前期棉花转录组分析发现Gh_A01G1392.1基因的编码产物与拟南芥ROP6高度同源,抑制Gh_A01G1392.1的表达会削弱棉花对黄萎病的抗性。本研究拟对棉花ROP家族进行生物信息学分析,对Gh_A01G1392.1在棉花抗黄萎病中的功能进行初步鉴定,为棉花抗黄萎病的分子育种提供理论基础。

1 材料与方法

1.1 植物材料

供试植物材料为陆地棉(G. hirsutum)品系Jin668、拟南芥哥伦比亚生态型(Columbia-0)、本氏烟(Nicotiana benthamiana)。

1.2 基因克隆和生物信息学分析

从Cotton FGD(http://cottonfgd.org/)网站下载GhROP6Gh_A01G1392.1)基因的全长序列,从Jin668叶片中扩增克隆GhROP6基因。
通过blast获得棉花基因组中所有ROP基因,使用DNAMAN软件进行序列相似性分析。利用MEGA 5软件对GhROP基因和AtROP基因进行系统进化分析,自展值(bootstrap value)设为1 000,其他参数为系统默认值[22]
根据陆地棉基因组信息找到每个基因在染色体上的位置,利用Mapchart软件绘制GhROP基因的染色体分布图。从Cotton FGD网站下载棉花转录组数据,利用MEV软件绘制热图,分析GhROP家族基因组织表达模式。

1.3 基因表达分析

取正常生长4周的棉花幼苗根、茎、叶,开花期的花瓣、花药、柱头及开花当天、开花后1 d(1 day post anthesis, 1 DPA)、5 DPA和10 DPA的胚珠和纤维,迅速在液氮中冷冻,-70 ℃保存备用[23],用于分析GhROP6在棉花不同组织中表达水平。
利用Jin668的4周龄叶片,研究不同激素处理下GhROP6的表达变化。分别用100 mmol·L-1茉莉酸甲酯(methyl jasmonate, MeJA)和1 mmol·L-1水杨酸(salicylic acid, SA)喷施叶片,以清水作为对照(mock),于处理后0、1、3、6、12 h取棉花根系并迅速在液氮中冷冻,-70 ℃保存备用[23]
采用异硫氰酸胍法[24]从Jin668组织器官中提取总RNA,通过1.5%(质量分数)琼脂糖凝胶电泳检测其完整性后,参考Gao等[23]方法进行反转录聚合酶链式反应(reverse transcription polymerase chain reaction, RT-PCR)。以反转录得到的cDNA为模板,在ABI 7500 Real-Time PCR仪(Applied Biosystems,美国)上进行实时荧光定量聚合酶链式反应(quantitative real-time PCR, qRT-PCR),程序为95 ℃ 5 min,95 ℃ 30 s、55~60 ℃ 30 s、72 ℃ 20 s、扩增28~35个循环,以GhUBQ7Gh_A11G0969.1)作为内参基因,每个样本设3次生物学重复。所用引物及本研究中其他引物信息见附表1

1.4 载体构建和遗传转化

通过病毒介导的基因沉默(virus-induced gene silencing, VIGS)试验研究GhROP6基因功能。参考Gao等[23]的方法,利用烟草脆裂病毒(tobacco rattle virus, TRV)VIGS载体,扩增GhROP6的保守片段,构建包含TRV:GhROP6载体、阴性对照空载体TRV:00、阳性对照GhCLA1Cloroplastos alterados 1)载体TRV:GhCLA1分别转化农杆菌。将农杆菌重悬液分别注射到生长10 d左右的棉花子叶,对应的植株分别记为TRV:GhROP,TRV:00及TRV:CLA1,2周后利用RT-PCR检测GhROP6基因的沉默效果。
GhROP6突变位点设计2对引物,进行重叠PCR分别获得组成型激活的CA-GhROP6突变体序列和组成型非激活的DN-GhROP6突变体序列,将GhROP6及其2个突变体序列分别构建到超表达载体pMDC83,并转化农杆菌GV3101。通过叶片注射法[25]转化烟草叶片,以注射含绿色荧光蛋白(green fluorescent protein, GFP)基因的空载体作为对照。侵染后48 h,取转化烟草叶片在激光共聚焦显微镜(徕卡,德国)下观察绿色荧光蛋白的分布情况,研究GhROP6蛋白及其突变体的亚细胞定位。
利用蘸花法[27]将CA-GhROP6和DN-GhROP6超表达载体分别转化拟南芥,获得转基因拟南芥材料,经阳性筛选和表达量检测选取T2植株进行后续试验。

1.5 黄萎病抗性鉴定

棉花接种。VIGS处理后15 d,选取长势一致的棉花幼苗接种强致病力落叶型黄萎病菌V991,接种后7~10 d观察植株发病情况。按植株黄萎病发生程度分为5个病级[28],根据Xu等[29]方法统计接种后15 d的病情指数并进行真菌恢复培养试验[28]。真菌恢复培养:将棉株茎段置于马铃薯葡萄糖琼脂(potato dextrose agar, PDA)培养基上,于25 ℃培养箱中培养4 d左右,观察表型并拍照。在接种V991后24 h取棉花叶片和根系、接种后16 d取棉花根系迅速在液氮中冷冻,-70 ℃保存用于后续研究。
拟南芥接种实验:拟南芥生长4周左右开始接种黄萎病菌V991,取接种后24 h拟南芥叶片和根系、接种后18 d的拟南芥根系迅速在液氮中冷冻,-70 ℃保存用于后续研究。

1.6 JA含量测定及相关基因的表达

利用1.5中接种V991后24 h的棉花和拟南芥叶片,参考Liu等[30]方法提取和检测茉莉酸-异亮氨酸(jasmonic acid-isoleucine, JA-Ile)含量。以1.5中接种V991后24 h的棉花和拟南芥根系为材料,通过qRT-PCR进行JA合成及信号转导通路相关基因的表达分析。

1.7 木质素含量测定及相关基因的表达

取1.5中接种后16 d的棉花根系和接种后18 d的拟南芥根系,参照Bubna等[31]的巯基乙酸法测定木质素含量(以鲜物质质量计)。以1.5中接种后24 h的棉花和拟南芥根系为材料,利用qRT-PCR检测木质素合成相关基因的表达。
采用间苯三酚染色法观察木质素在棉花茎中的沉积情况。选取接种V991后16 d长势一致棉花同一部位的茎秆,用双面刀片进行徒手切片,选取切片厚薄一致的切片进行染色。将选好的切片在4%(质量分数,下同)间苯三酚溶液中浸泡10 min,转移至18%盐酸溶液中反应5 min,取出切片在DM2500显微镜(徕卡,德国)下观察并拍照。

1.8 数据处理

利用Microsoft Excel 2019软件进行数据处理及作图,采用t检验分析处理与对照间的差异显著性。

2 结果与分析

2.1 陆地棉ROP基因家族成员鉴定及表达分析

根据拟南芥11个AtROP序列,通过序列比对和结构分析,在陆地棉中鉴定出28个同源基因(附表2)。对拟南芥和陆地棉ROP的氨基酸序列的系统发育分析表明,Gh_A01G1392.1与AtROP6同源性最高(图1A),相似性达到93.4%(附图1),将其编码基因命名为GhROP6GhROP6编码区共597 bp,编码198个氨基酸残基,氨基酸序列比对发现GhROP蛋白都含有ROP结构,包括4个GTP/GDP结合域、与下游靶蛋白结合的效应域和碳末端的可变区域(附图2)。染色体分布研究发现,24个基因对称分布在A亚基因组和D亚基因组,3个基因特异性地分布在D亚基因组,另外1个基因分布在未分配染色体的scaffold上(附图3)。
图1 棉花ROP基因的系统进化分析及转录水平分析
A:28个陆地棉ROP蛋白和11个拟南芥ROP蛋白的系统进化分析;B:ROP基因在陆地棉不同器官中的表达热图,其中DPA表示开花后时间(d)。

Fig. 1 Phylogenetic analysis and transcript level profiles of ROP genes in upland cotton

A: Phylogenetic analysis of 28 ROP proteins in upland cotton and 11 ROP proteins in A. thaliana; B: Heatmap of ROP genes transcript level profiles in different organs in upland cotton, DPA: day post anthesis.

Full size|PPT slide

根据棉花转录组数据对GhROP进行组织表达模式分析,结果(图1B)显示,GhROP在胚珠、柱头、开花后10 d和20 d的种子中表达量较高,在根、茎、花瓣、花药和开花后20 d的纤维中表达量较低;qRT-PCR分析发现GhROP6在花瓣、柱头和开花后10 d的纤维中高水平表达(图2A),表明GhROP可能存在功能分化。与清水对照相比,GhROP6的表达量在SA处理1 h后显著下调,在MeJA处理6 h、12 h后显著上调(图2B),推测其可能参与JA抗病信号通路的调控。
图2 GhROP6在不同器官和不同激素处理下的表达模式分析
A:GhROP6在棉花不同器官中的表达分析;B:SA和MeJA处理后GhROP6的表达分析。*和**分别表示激素处理与清水处理(mock)相比在0.05和0.01水平上差异显著。

Fig. 2 Expression profile analysis of GhROP6 in cotton organs and different phytohormone treatments

A: Expression analysis of GhROP6 in different organs; B: Expression analysis of GhROP6 after SA and MeJA treatments. * and **: Significant difference compared with water treatmen (mock) at the 0.05 and 0.01 probability level, respectively.

Full size|PPT slide

2.2 GhROP6的亚细胞定位分析

激光共聚焦显微镜观察发现,GhROP6-GFP、CA-GhROP6-GFP和DN-GhROP6-GFP 3个融合蛋白的荧光均分布在烟草叶表皮细胞质膜,单独表达GFP的对照处理荧光则分布在细胞质和细胞核中(图3),这表明GhROP6及其2个突变蛋白均定位于细胞质膜且其亚细胞定位不依赖于其活性。
图3 GhROP6及其突变型的亚细胞定位
标尺为20 μm。

Fig. 3 Subcellular localization of GhROP6 and its mutants

Scale bar: 20 μm.

Full size|PPT slide

2.3 抑制GhROP6表达降低棉花对黄萎病抗性

注射后14 d,阳性对照TRV:CLA1植株出现叶片白化表型,表明 VIGS体系正常(图4A),RT-PCR检测发现,沉默棉花植株根中GhROP6的表达水平降低(图4B)。水处理后,GhROP6沉默植株植株与对照植株无明显差异(图4C);接种V991后,GhROP6沉默植株萎蔫、黄化、发病、坏死的叶片比对照植株更多(图4C),GhROP6沉默植株的病情指数极显著高于对照植株(图4D)。棉花剖秆试验与真菌恢复培养可以看出,GhROP6沉默植株体内病菌数量更多(图4E~F)。上述结果表明,抑制GhROP6表达会削弱棉花对黄萎病的抗性。
图4 抑制GhROP6表达削弱棉花对黄萎病菌的抗性
A:农杆菌侵染后14 d,注射TRV:CLA1植株出现叶片白化表型;B:RT-PCR分析棉花根中GhROP6的表达水平。 C:接种V991后12 d的TRV:00和TRV:GhROP6幼苗表型,以水处理为对照。D:接种V991后15 d统计的病情指数, **表示在0.01水平上差异显著。E:接种V991后15 d,TRV:00和TRV:GhROP6植株茎秆纵切面。F:真菌恢复培养试验。

Fig. 4 Silencing of GhROP6 impairs cotton resistance to V. dahlia

A: The plants showed leaf albinism phenotype inoculated with TRV:CLA at 14 days post inoculation; B: The expression level of GhROP6 in cotton roots by RT-PCR; C: The phenotypes of TRV:00 and TRV:GhROP6 seedlings 12 days after inoculation with V991, with water as mock; D: The disease index determined at 15 d after inoculated with V991, **: Significant diffe-rence at the 0.01 probability level; E: Longitudinal cross-section of darkened vascular tissues dissected at 15 d after inoculation; F: The fungal recovery assay.

Full size|PPT slide

对JA信号通路相关基因的表达分析结果(图5A~B)显示:在接种V991后24 h,对照植株根中参与JA生物合成的GhLOX1GhAOS1GhAOS2GhAOC1GhOPR3-1GhOPR3-3基因以及参与JA信号转导的GhMYC2基因表达量均增加;同样,GhROP6沉默植株的GhLOX1GhAOS1GhAOS2GhOPR3-1GhOPR3-3以及GhMYC2在接菌后的表达量均高于水处理植株,说明GhLOX1GhAOS1GhAOS2GhOPR3-1GhOPR3-3以及GhMYC2基因受黄萎病菌诱导上调表达。未接种黄萎病菌时,GhROP6沉默植株中参与JA生物合成的基因GhLOX1GhAOS1GhAOS2GhAOC1GhOPR3-1GhOPR3-3和参与JA信号通路的基因GhMYC2的表达水平低于对照植株;接种V991后,GhROP6沉默植株中这些基因的表达水平均极显著低于其在对照植株中的表达水平。这些结果表明,接种大丽轮枝菌会诱导棉花JA信号通路相关基因的表达,抑制GhROP6的表达会降低JA信号通路相关基因表达量。检测结果(图5C)表明,抑制GhROP6表达后植株中JA-Ile含量极显著降低。这暗示GhROP6可能参与棉花JA合成及信号通路的调控,沉默GhROP6基因会抑制黄萎病菌诱导的JA的生物合成和信号转导。
图5 JA信号通路相关基因的表达量和JA-Ile含量
A:JA合成相关基因的表达分析;B:GhMYC2的表达分析;C:TRV:00和TRV:GhROP6植株接种黄萎病菌后JA-Ile含量。Mock为水处理。*和**分别表示与对照植株相比在0.05和0.01水平上差异显著。

Fig. 5 The expression level of JA-related genes and JA-Ile content

A: Expression analysis of genes involved in JA synthesis; B: Expression analysis of GhMYC2; C: The JA-Ile content in TRV:00 and TRV:GhROP6 plants inoculated with V. dahliae. Mock:water treatment. * and **: Significant difference compared with TRV:00 at the 0.05 and 0.01 probability level, respectively.

Full size|PPT slide

2.4 抑制GhROP6基因表达会减少木质素的合成

对接种V991后16 d的棉花根中的木质素含量测定结果(图6A)表明,未接种V991时,对照植株(TRV:00)和GhROP6沉默棉株(TRV:GhROP6)木质素含量无显著差异;接种V991后,对照植株和GhROP6沉默植株的木质素含量均增加;但GhROP6沉默植株木质素含量显著低于对照植株。棉花茎秆切片的组织化学染色结果(图6B)显示,GhROP6沉默植株染色较对照植株更浅。基因表达量分析结果(图6C)显示:接种V991后,对照植株中参与木质素合成的基因GhCCR-1GhF5H-1GhCCoAOMT-2GhCCoAOMT-3的表达量均增加,GhROP6沉默植株的GhCCR-1GhF5H-1表达水平上调。未接种V991时,GhROP6沉默植株植株中GhCCR-1GhF5H-1GhCCoAOMT-2GhCCoAOMT-3等基因的表达水平低于对照植株,其中仅GhF5H-1的表达量与对照差异极显著;接种V991后,这4个基因在TRV:GhROP6植株中的表达水平均极显著低于对照植株。这些结果表明,接种大丽轮枝菌会诱导棉花木质素合成,沉默GhROP6的表达会抑制V991诱导的木质素合成和积累。
图6 木质素含量及木质素合成相关基因表达量
A:TRV:00和TRV:GhROP6植株根中木质素含量;B:TRV:00和TRV:GhROP6植株茎秆中木质素的组织化学分析,图中标尺为200 μm;C:木质素合成相关基因的表达分析。Mock为水处理,TRV:00为对照,TRV:GhROP6为沉默GhROP6植株。**表示同一处理下,TRV:GhROP6植株与对照植株相比在0.01水平上差异显著。

Fig. 6 Lignin content and the expression level of genes-involved in lignin biosynthesis

A: Lignin content in the roots of TRV:00 and TRV:GhROP6 plants; B: Histochemical analysis of lignin in the stems of TRV:00 and TRV:GhROP6 plants, scale bar: 200 μm; C: Expression analysis of genes involved in lignin synthesis. Mock:water treatment. **: Significant difference compared with TRV:00 in the same treatment at the 0.01 probability level.

Full size|PPT slide

2.5 GhROP6在拟南芥中超表达增强其抗病性

在拟南芥中超表达CA-GhROP6DN-GhROP6附图4),经转基因阳性检测和GhROP6表达量测定(附图5),选取超表达CA-GhROP6的CA2、CA3和超表达DN-GhROP6的DN18、DN19株系用于后续研究。接种黄萎病菌后,与野生型(wild type, WT)拟南芥相比,CA2、CA3发病较轻、萎蔫叶片数量较少,病情指数低于野生型;而DN18和DN19的发病情况稍重,叶片萎蔫严重,病情指数更高(图7A~B)。
图7 超表达GhROP6提高转基因拟南芥的抗病性
A:转基因拟南芥接种黄萎病菌后18 d的表型;B:接种黄萎病菌后的病情指数;C:接种黄萎病菌后JA-Ile含量; D:JA信号通路相关基因的表达水平分析;E:接种黄萎病菌后木质素含量;F:木质素合成相关基因的表达分析。*和**分别表示与野生型相比在0.05和0.01水平上差异显著。

Fig. 7 Overexpression of GhROP6 enhances A. thaliana resistance to V. dahlia

A: The phenotype of transgenic lines 18 days after inoculated with V. dahliae; B: Disease index after inoculation with V. dahliae; C: JA-Ile contents measured after inoculation with V. dahliae; D: The expression levels of JA signaling pathway genes; E: Ligin contents measured after inoculation with V. dahliae; F: Expression analysis of genes involved in lignin synthesis.* and **: Significant difference compared with wild type (WT) at the 0.05 and 0.01 probability level, respectively.

Full size|PPT slide

基因表达分析表明,CA2和CA3中JA信号通路相关基因AtAOS1AtAOC1AtOPR3AtMYC2表达水平均显著高于WT、DN18和DN19,且CA2和CA3中JA-Ile含量显著高于WT、DN18和DN19(图7C~D)。与WT相比,CA2和CA3中木质素含量增加,且CA2中木质素含量显著高于WT,而DN18、DN19中木质素含量降低。与WT相比,CA2和CA3中木质素合成相关基因AtPAL1AtPAL2AtC4HAtF5H的表达水平升高,且CA2中AtPAL1AtPAL2AtF5H表达水平显著高于WT中的表达水平,(图7E~F)。这些结果说明组成型激活的GhROP6可以促进拟南芥JA合成与木质素合成,提高JA-Ile和木质素含量,提升植株对黄萎病抗性。

3 讨论

黄萎病是棉花生产中的主要病害,研究棉花与大丽轮枝菌互作的分子机理具有重要意义。越来越多的研究发现木质素合成、SA和JA介导的抗病信号通路的相关基因在棉花抗黄萎病过程中发挥重要作用[22,32 -34]。在黄萎病菌侵染的棉花RNA测序数据中发现编码小G蛋白的ROP基因的表达水平有明显变化[32]。序列分析显示该基因编码产物在氨基酸水平与AtROP6相似度高,因此,将其命名为GhROP6。ROP蛋白包含一个N端催化G结构域用于核苷酸和效应子结合,一个C端的HVR结构域负责亚细胞定位[9]。研究报道CA-AtROP6 N端融合GFP的蛋白定位于质膜,而DN-AtROP6 C端融合GFP的蛋白主要定位于核周区域[35]。本研究发现GhROP6、CA-GhROP6和DN-GhROP6与GFP的融合蛋白均定位于烟叶表皮细胞的质膜,与OsRac1在水稻原生质体中的定位相似[16]
通过VIGS初步证实GhROP6在植物免疫中发挥重要作用。抑制GhROP6表达降低了植株抗性,暗示GhROP6可能参与了棉花抗病性的信号转导。此外,获得了超表达GhROP6的转基因拟南芥株系,CA-GhROP6株系相比于WT和DN株系更抗黄萎病,DN-GhROP6则在一定程度上抑制拟南芥黄萎病抗性。这进一步证明GhROP6参与了棉花抗黄萎病的信号转导过程。
JA在植物对病原菌的防御反应中发挥重要作用,利用MeJA处理可提高拟南芥对多种病原菌的抗性[36]。前人研究发现,沉默JA信号通路中的负调控因子GhHDTF1能激活JA抗病信号通路,进而增强棉花对黄萎病抗性[37]。GhCPK33是棉花黄萎病抗性的负调控因子,磷酸化GhOPR3导致其稳定性降低,从而抑制JA的合成[38]ROP也与植物激素介导的免疫反应密切相关。超表达大麦ROP基因的CA-HvRAC1植株对大麦白粉病的抗性增强[39]AtROP6突变体内SA含量增加,推测ROP6可能调控SA信号通路影响拟南芥对白粉病的响应过程[40]。也有研究报道ROP为植物免疫反应的负调节因子。在马铃薯中超表达拟南芥DN-ROP1会增强马铃薯对晚疫病的抗性。在DN-AtROP1转基因植株中,LOX的表达被显著诱导,说明AtROP1主要通过影响JA信号通路负调控马铃薯对晚疫病抗性[41]。在本研究中,经MeJA处理后,GhROP6的表达量明显上调,经SA处理后,GhROP6的表达量略有降低,说明GhROP6主要响应激素JA的诱导。同时,接种V991后,GhROP6沉默植株JA-Ile含量、JA信号通路中相关基因的表达量均显著低于对照植株,表明抑制GhROP6的表达会削弱JA合成及信号通路。对接种V991的转基因拟南芥进行JA含量和相关基因表达量分析发现,CA株系相比于WT和DN株系,JA-Ile含量更高。综合前人研究,推测ROP作用于不同的病原菌可能会有不同的功能。
除植物激素外,木质素作为机械屏障在植物抗性建立过程中是非常重要的[42-43]。木质素合成酶OsCCR1是OsRac1的靶标蛋白,OsCCR1与激活态的OsRac1结合可控制木质素的合成,进而调节水稻防御反应[44]。在烟草中超表达小麦TaRac1能提高木质素含量,增强烟草对黑胫病和青枯病的抗性[45]。本研究中,接种V991后,GhROP6沉默植株中木质素含量低于对照,与木质素生物合成相关的GhCCRGhCCoAOMTGhF5H等基因的表达水平也有所下降。对接种后的拟南芥进行木质素含量以及木质素信号通路相关基因表达量分析发现,超表达CA-GhROP6拟南芥中木质素含量高于野生型拟南芥和超表达DN-GhROP6的拟南芥的木质素含量,表明GhROP6参与木质素生物合成调控,但GhROP6调控JA合成与木质素代谢的具体机制仍有待进一步研究。

4 结论

本研究鉴定了陆地棉中28个ROP基因家族成员并克隆了GhROP6。激素处理表明GhROP6基因可能响应JA抗病信号通路。抑制GhROP6表达导致参与茉莉酸合成及信号转导、木质素抗病信号通路的相关基因表达水平显著下降,降低棉花对黄萎病抗性、降低JA-Ile和木质素含量。此外,在拟南芥中,超表达组成型激活的GhROP6能增强拟南芥抗病性,提高JA-Ile和木质素含量,说明GhROP6能通过调控JA合成、JA信号转导和木质素代谢参与棉花抗黄萎病反应。

附件

详见本刊网站(http://journal.cricaas.com.cn/)本文网页版。
附表1 本研究所用的引物序列

Table S1 List of primers used in this study

引物名称Primer name 序列Sequence 用途Purpose
qGhROP6-F GCTCATCTCCTACACCAGCAATAC 检测相应基因的表达水平
detect gene expression by qRT-PCR
qGhROP6-R CAGCAGTATCCCACAATCCAAG
GhLOX1-F TAGAGAGGACATTTTGCCCTGG
GhLOX1-R GGTCAAGGTCGTCCAGAGATTTTA
GhAOS1-F CGGATTAGAGCCTCAGTGTCGG
GhAOS1-R ATCTTGAGAAATGAAAGGACCAGG
GhAOS2-F TGCCACCTGGTCCTTTCATTTC
GhAOS2-R GCGTGTTTGGGCTCGGAAGGGTCG
GhAOC1-F CAACCCCTTCACTACCACTGCC
GhAOC1-R AGGGCTGCTTCTGTCTCTCTCG
GhOPR3-1-F ATGCTGTTCATGCCAAAGGAGG
GhOPR3-1-R TTTCTGATGTTTCCAGGGGTCG
GhMYC2-F GCTCCGCCACTACCGTGCTC
GhMYC2-R CTCGAAGCACTTTTTTACGGTGTTC
GhCCR-1-F ATTGTTATGGGAAGGCAGTGGC
GhCCR-1-R ACGAGAAGGTGTGCTAATGCG
GhF5H-1-F TTGGAGGCAGATGCGAAAGATT
GhF5H-1-R TCCTCTTGCCCGTGTTTGTTAC
GhCCoAOMT-2-F TACGACAACACGCTGTGGAATGGG
GhCCoAOMT-2-R CATCGCCGACAGGAAACATACAGA
GhCCoAOMT-3-F GAGACCAGTGTGTATCCGAGGG
GhCCoAOMT-3-R CAAGGGCAGTGGCTAAGAGAGA
GhUB7-F GAAGGCATTCCACCTGACCAAC
GhUB7-R CTTGACCTTCTTCTTCTTGTGCTTG
AtPAL1-F CTTGTCAGGAGCAACACCATCA
AtPAL1-R AACGAGCAAGGCATATTTGAAGAG
AtPAL2-F CTACCCCATCAACCTGAACCCA
AtPAL2-R TATGGTCCAGAAGCGGATGTGT
AtC4H-F GCTTAGCAACAATGGTGGAATG
AtC4H-R CATCCTTGGTATTACTTTGGGTCG
AtF5H-F TCCTCTTGCCCGTGTTTGTTAC
AtF5H-R TTGGAGGCAGATGCGAAAGATT
AtAOS1-F TTTTATCGCCGAGAATCCAC
AtAOS1-R CCTCCGCTAATCGGTTATGA
AtAOC1-F AACTGAGCGTGTACGAAATCAAT
AtAOC1-R CAAACATACTGCATTCACAAGGA
AtOPR3-F CGGCGTTGGCAGAGTATTAT
AtOPR3-R GCGAGCTTTGAGCCATTAAC
AtMYC2-F ACGACTGAAACAACTCCGACG
AtMYC2-R AACCGTCGTATGATTTCTCCG
RT-GhROP6-F TCCTACACCAGCAATACTTTC RT-PCR检测GhROP6表达水平
Detect the expression of GhROP6 by RT-PCR
RT-GhROP6-R GGAGGAATTAAGAAAGCTGAT
VIGS-GhROP6-F CAGTGCCCATTACCACAGCC 构建GhROP6沉默载体Construction of GhROP6 silencing vector
VIGS-GhROP6-R AGGAAAGTGTGAGAACACAAAGGG
GhROP6-F ATGAGTGCATCAAGGTTCATCA 扩增 GhROP6 基因
Amplification of full-length GhROP6 gene
GhROP6-R TCACAATATCGAGCAGGCCTT
CA1-GhROP6-F ACAATAATTGAAGCAAGAG 构建组成型激活的GhROP6载体
Construction of constitutively active GhROP6 vector
CA1-GhROP6-R GTGACGTGTGCCGTCGGCAAGA
CA2-GhROP6-F TCACTGTTGGTGACGGTGCA
CA2-GhROP6-R ATTCCGGAGTTGAGTCATACTT
DN1-GhROP6-F ATTACTTTCACTTTTGCAGCAT 构建组成型失活的GhROP6载体Construction of dominant negative GhROP6 vector
DN1-GhROP6-R CGGCAAGAGAATGCATGCT
DN2-GhROP6-F AAGGAGTGCATGCTCATCTC
DN2-GhROP6-R ACCCTGGAGCAGTGCCCATT
附表2 陆地棉中ROP基因基本信息

Table S2 The information of ROP genes in upland cotton (Gossypium hirsutum)

基因ID
Gene ID
长度 length/bp 染色体位置
Chromosome localization
基因ID
Gene ID
长度 length/bp 染色体位置
Chromosome localization
Gh_A01G1392.1 597 A01 Gh_D03G0072 591 D03
Gh_A02G0857 588 A02 Gh_D05G0243 603 D05
Gh_A05G0179 630 A05 Gh_D05G1765 588 D05
Gh_A05G1588 588 A05 Gh_D05G2437 591 D05
Gh_A06G0026 591 A06 Gh_D06G0618 714 D06
Gh_A06G0551 630 A06 Gh_D06G1409 645 D06
Gh_A06G2039 594 A06 Gh_D06G2288 591 D06
Gh_A08G0520 639 A08 Gh_D08G0612 630 D08
Gh_A08G1258 627 A08 Gh_D08G1547 627 D08
Gh_A11G1595 594 A11 Gh_D10G0271 603 D10
Gh_A12G0343 597 A12 Gh_D11G1753 564 D11
Gh_A12G2499 636 A12 Gh_D12G0319 597 D12
Gh_D01G1636 552 D01 Gh_D12G2627 666 D12
Gh_D02G0984 588 D02 Gh_Sca006742G01 591
附图1 AtROP6和GhROP6氨基酸序列比对

Fig. S1 Sequence alignment analysis between AtROP6 and GhROP6

Full size|PPT slide

附图2 陆地棉ROP蛋白序列比对

Fig. S2 Sequences alignment of ROP proteins in upland cotton

Full size|PPT slide

附图3 GhROP基因的染色体分布

Fig. S3 The chromosome distribution of GhROP genes

Full size|PPT slide

附图4 GhROP6与CA、DN突变体氨基酸序列比对分析

Fig. S4 Sequence alignment analysis between GhROP6、CA and DN mutant

Full size|PPT slide

附图5 不同转基因拟南芥株系中GhROP6基因表达分析
A:超表达CA-GhROP6的拟南芥与野生型拟南芥中GhROP6基因的表达水平, B:超表达DN-GhROP6的拟南芥与野生型拟南芥中GhROP6基因的表达水平; C:转基因拟南芥的PCR检测结果。

Fig. S5 Expression of GhROP6 in different transgenic Arabidopsis lines

A: Expression of GhROP6 in CA-GhROP6 transgenic and wild type (WT) Arabidopsis; B: Expression of GhROP6 in DN-GhROP6 transgenic and WT Arabidopsis; C: Identification of GhROP6 by PCR in transgenic Arabidopsis.

Full size|PPT slide

参考文献

[1]
张绪振, 张树琴, 陈吉棣, 等. 我国棉花黄萎病菌“种”的鉴定[J]. 植物病理学报, 1981, 11(3): 13-18.
Zhang Xuzhen, Zhang Shuqin, Chen Jidi, et al. Identification of "species" of Verticillium dahliae in China[J]. Acta Phytopathologica Sinica, 1981, 11(3): 13-18.
[2]
Bhat R G, Subbarao K V. Host range specificity in Verticillium dahliae[J/OL]. Phytopathology, 1999, 89(12): 1218-1225[2021-06-20]. https://doi.org/10.1094/phyto.1999.89.12.1218.
[3]
Fradin E F, Zhang Z, Juarez Ayala J C, et al. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1[J/OL]. Plant Physiology, 2009, 150(1): 320-332[2021-06-20]. https://doi.org/10.1104/pp.109.136762.
[4]
Song R R, Li J P, Xie C J, et al. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae[J/OL]. International Journal of Molecular Sciences, 2020, 21(3): 1120[2021-06-20]. https://doi.org/10.3390/ijms21031120.
[5]
Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins[J/OL]. Physiological Reviews, 2001, 81(1): 153-208[2021-06-20]. https://doi.org/10.1152/physrev.2001.81.1.153.
[6]
Zheng Z L, Yang Z B. The Rop GTPase: an emerging signaling switch in plants[J]. Plant Molecular Biology, 2000, 44(1): 1-9.
G proteins are ubiquitous molecular switches in eukaryotic signal transduction, but their roles in plant signal transduction had not been clearly established until recent studies of the plant-specific Rop subfamily of RHO GTPases. Rop participates in signaling to an array of physiological processes including cell polarity establishment, cell growth, morphogenesis, actin dynamics, H2O2 generation, hormone responses, and probably many other cellular processes in plants. Evidence suggests that plants have developed unique molecular mechanisms to control this universal molecular switch through novel GTPase-activating proteins and potentially through a predominant class of plant receptor-like serine/threonine kinases. Furthermore, the mechanism by which Rop regulates specific processes may also be distinct from that for other GTPases. These advances have raised the exciting possibility that the elucidation of Rop GTPase signaling may lead to the establishment of a new paradigm for G protein-dependent signal transduction in plants.
[7]
Zheng Z L, Yang Z B. The Rop GTPase switch turns on polar growth in pollen[J]. Trends in Plant Science, 2000, 5(7): 298-303.
Pollen-tube growth not only represents an essential stage of plant reproduction but also provides an attractive model for studying cell polarity and morphogenesis. For many years, pollen-tube growth has been known to require a tip-focused Ca2+ gradient and dynamic F actin, but the way that these are controlled remained a mystery until recently. Rop appears to be activated at growth sites by a tip-localized growth cue, acting as a central switch that controls the polar growth of pollen tubes, probably having its effect through phosphoinositides and Ca2+. These findings have begun to shed light on the molecular basis of pollen-tube growth and cell morphogenesis in plants.
[8]
Yang Z. Small GTPases: versatile signaling switches in plants[J/OL]. The Plant Cell, 2002, 14(S1): S375-S388 [2021-06-20]. https://doi.org/10.1105/tpc.001065.
[9]
Gray J L, von Delft F, Brennan P E. Targeting the small GTPase superfamily through their regulatory proteins[J/OL]. Angewandte Chemie, 2020, 59(16): 6342-6366[2021-06-20]. https://doi.org/10.1002/anie.201900585.
[10]
Boulter E, Garcia-Mata R. RhoGDI: A rheostat for the Rho switch[J/OL]. Small GTPases, 2010, 1(1): 65-68[2021-06-20]. https://doi.org/10.4161/sgtp.1.1.12990.
[11]
Feiguelman G, Fu Y, Yalovsky S. ROP GTPases structure function and signaling pathways[J/OL]. Plant Physiology, 2018, 176(1): 57-79[2021-06-20]. https://doi.org/10.1104/pp.17.01415.
[12]
Hoefle C, Huesmann C, Schultheiss H, et al. A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells[J/OL]. The Plant Cell, 2011, 23(6): 2422-2439[2021-06-20]. https://doi.org/10.1105/tpc.110.082131.
[13]
Kawano Y, Akamatsu A, Hayashi K, et al. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity[J/OL]. Cell Host & Microbe, 2010, 7(5): 362-375[2021-06-20]. https://doi.org/10.1016/j.chom.2010.04.010.
[14]
Gu Y, Fu Y, Dowd P, et al. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes[J]. The Journal of Cell Biology, 2005, 169(1): 127-138.
[15]
Kawasaki T, Henmi K, Ono E, et al. The small GTP-binding protein Rac is a regulator of cell death in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(19): 10922-10926.
Cell death plays important roles in the development and defense of plants as in other multicellular organisms. Rapid production of reactive oxygen species often is associated with plant defense against pathogens, but their molecular mechanisms are not known. We introduced the constitutively active and the dominant negative forms of the small GTP-binding protein OsRac1, a rice homolog of human Rac, into the wild type and a lesion mimic mutant of rice and analyzed H(2)O(2) production and cell death in transformed cell cultures and plants. The results indicate that Rac is a regulator of reactive oxygen species production as well as cell death in rice.
[16]
Ono E, Wong H L, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 759-764.
Production of reactive oxygen intermediates (ROI) and a form of programmed cell death called hypersensitive response (HR) are often associated with disease resistance of plants. We have previously shown that the Rac homolog of rice, OsRac1, is a regulator of ROI production and cell death in rice. Here we show that the constitutively active OsRac1 (i) causes HR-like responses and greatly reduces disease lesions against a virulent race of the rice blast fungus; (ii) causes resistance against a virulent race of bacterial blight; and (iii) causes enhanced production of a phytoalexin and alters expression of defense-related genes. The dominant-negative OsRac1 suppresses elicitor-induced ROI production in transgenic cell cultures, and in plants suppresses the HR induced by the avirulent race of the fungus. Taken together, our findings strongly suggest that OsRac1 has a general role in disease resistance of rice.
[17]
Li C J, Lu H, Li W, et al. A ROP2-RIC1 pathway finetunes microtubule reorganization for salt tolerance in Arabidopsis[J/OL]. Plant, Cell & Environment, 2017, 40(7): 1127-1142[2021-06-20]. https://doi.org/10.1111/pce.12905.
[18]
Zhang Y, Xiong Y, Liu R, et al. The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(32): 16121-16126.
Grain size is a key factor for determining grain yield in crops and is a target trait for both domestication and breeding, yet the mechanisms underlying the regulation of grain size are largely unclear. Here we show that the grain size and yield of rice () is positively regulated by ROP GTPase (Rho-like GTPase from plants), a versatile molecular switch modulating plant growth, development, and responses to the environment. Overexpression of rice not only increases cell numbers, resulting in a larger spikelet hull, but also accelerates grain filling rate, causing greater grain width and weight. As a result, OsRac1 overexpression improves grain yield in by nearly 16%. In contrast, down-regulation or deletion of OsRac1 causes the opposite effects. RNA-seq and cell cycle analyses suggest that OsRac1 promotes cell division. Interestingly, OsRac1 interacts with and regulates the phosphorylation level of OsMAPK6, which is known to regulate cell division and grain size in rice. Thus, our findings suggest OsRac1 modulates rice grain size and yield by influencing cell division. This study provides insights into the molecular mechanisms underlying the control of rice grain size and suggests that OsRac1 could serve as a potential target gene for breeding high-yield crops.
[19]
Zhou Z Z, Pang Z Q, Zhao S L, et al. Importance of OsRac1 and RAI1 in signalling of nucleotide-binding site leucine-rich repeat protein-mediated resistance to rice blast disease[J/OL]. the New Phytologist, 2019, 223(2): 828-838[2021-06-20]. https://doi.org/10.1111/nph.15816.
[20]
Zhang Z W, Zhang X L, Na R, et al. StRac1 plays an important role in potato resistance against Phytophthora infestans via regulating H2O2 production[J/OL]. Journal of Plant Physiology, 2020, 253: 153249[2021-06-20]. https://doi.org/10.1016/j.jplph.2020.153249.
[21]
Potikha T S, Collins C C, Johnson D I, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers[J/OL]. Plant Physiology, 1999, 119(3): 849-858[2021-06-20]. https://doi.org/10.1104/pp.119.3.849
[22]
Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[23]
Gao W, Long L, Zhu L F, et al. Proteomic and virus induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae[J/OL]. Molecular & Cellular Proteomics, 2013, 12(12): 3690-3703[2021-06-20]. https://doi.org/10.1074/mcp.M113.031013.
[24]
Zhu L F, Tu L L, Zeng F, et al. An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction[J]. Acta Agronomica Sinica, 2005, 31(12): 1657-1659.
[25]
Sparkes I A, Runions J, Kearns A, et al. Rapid transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nature Protocols, 2006, 1(4): 2019-2025.
Expression and tracking of fluorescent fusion proteins has revolutionized our understanding of basic concepts in cell biology. The protocol presented here has underpinned much of the in vivo results highlighting the dynamic nature of the plant secretory pathway. Transient transformation of tobacco leaf epidermal cells is a relatively fast technique to assess expression of genes of interest. These cells can be used to generate stable plant lines using a more time-consuming, cell culture technique. Transient expression takes from 2 to 4 days whereas stable lines are generated after approximately 2 to 4 months.
[26]
Gao X, Wheeler T, Li Z, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt[J]. The Plant Journal, 2011, 66(2): 293-305.
[27]
Bechtold N, Pelletier G. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration[M/OL]// Martinez-Zapater J M, Salinas J. Arabidopsis protocols. Totowa: Humana Press, 1998: 259-266[2021-06-20]. https://doi.org/10.1385/0-89603-391-0:259.
[28]
Fradin E F, Abd-El-Haliem A, Masini L, et al. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis[J/OL]. Plant Physiology, 2011, 156(4): 2255-2265[2021-06-20]. https://doi.org/10.1104/pp.111.180067.
[29]
Xu L, Zhu L F, Tu L L, et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry[J]. Journal of Experimental Botany, 2011, 62(15): 5607-5621.
The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of 32,774 genes detected by mapping the tags to assembly cotton contigs, 3442 defence-responsive genes were identified. Gene cluster analyses and functional assignments of differentially expressed genes indicated a significant transcriptional complexity. Quantitative real-time PCR (qPCR) was performed on selected genes with different expression levels and functional assignments to demonstrate the utility of RNA-Seq for gene expression profiles during the cotton defence response. Detailed elucidation of responses of leucine-rich repeat receptor-like kinases (LRR-RLKs), phytohormone signalling-related genes, and transcription factors described the interplay of signals that allowed the plant to fine-tune defence responses. On the basis of global gene regulation of phenylpropanoid metabolism-related genes, phenylpropanoid metabolism was deduced to be involved in the cotton defence response. A closer look at the expression of these genes, enzyme activity, and lignin levels revealed differences between resistant and susceptible cotton plants. Both types of plants showed an increased level of expression of lignin synthesis-related genes and increased phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity after inoculation with V. dahliae, but the increase was greater and faster in the resistant line. Histochemical analysis of lignin revealed that the resistant cotton not only retains its vascular structure, but also accumulates high levels of lignin. Furthermore, quantitative analysis demonstrated increased lignification and cross-linking of lignin in resistant cotton stems. Overall, a critical role for lignin was believed to contribute to the resistance of cotton to disease.
[30]
Liu H B, Li X H, Xiao J H, et al. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice bacterium interaction[J]. Plant Methods, 2012, 8(1): 2.
[31]
Bubna G A, Lima R B, Zanardo D Y, et al. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean(Glycine max)[J/OL]. Journal of Plant Physiology, 2011, 168(14): 1627-1633[2021-06-20]. https://doi.org/10.1016/j.jplph.2011.03.005.
[32]
Zhang L, Wang M J, Li N N, et al. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton[J]. Plant Biotechnology Journal, 2018, 16(6): 1172-1185.
Long noncoding RNAs (lncRNAs) have several known functions in plant development, but their possible roles in responding to plant disease remain largely unresolved. In this study, we described a comprehensive disease-responding lncRNA profiles in defence against a cotton fungal disease Verticillium dahliae. We further revealed the conserved and specific characters of disease-responding process between two cotton species. Conservatively for two cotton species, we found the expression dominance of induced lncRNAs in the Dt subgenome, indicating a biased induction pattern in the co-existing subgenomes of allotetraploid cotton. Comparative analysis of lncRNA expression and their proposed functions in resistant Gossypium barbadense cv. '7124' versus susceptible Gossypium hirsutum cv. 'YZ1' revealed their distinct disease response mechanisms. Species-specific (LS) lncRNAs containing more SNPs displayed a fiercer inducing level postinfection than the species-conserved (core) lncRNAs. Gene Ontology enrichment of LS lncRNAs and core lncRNAs indicates distinct roles in the process of biotic stimulus. Further functional analysis showed that two core lncRNAs, GhlncNAT-ANX2- and GhlncNAT-RLP7-silenced seedlings, displayed an enhanced resistance towards V. dahliae and Botrytis cinerea, possibly associated with the increased expression of LOX1 and LOX2. This study represents the first characterization of lncRNAs involved in resistance to fungal disease and provides new clues to elucidate cotton disease response mechanism.© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
[33]
Gong Q, Yang Z E, Wang X Q, et al. Salicylic acidrelated cotton(Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae[J/OL]. BMC Plant Biology, 2017, 17(1): 59[2021-06-20]. https://doi.org/10.1186/s12870-017-1007-5.
[34]
Zhang Y, Wu L Z, Wang X F, et al. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence induced lignification and lignin components in the cell walls of plants[J]. Molecular Plant Pathology, 2019, 20(3): 309-322.
Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The lignification of cell wall appositions is a conserved basal defence mechanism in the plant innate immune response. However, the function of laccase in defence-induced lignification has not been described. Screening of an SSH library of a resistant cotton cultivar, Jimian20, inoculated with V. dahliae revealed a laccase gene that was strongly induced by the pathogen. This gene was phylogenetically related to AtLAC15 and contained domains conserved by laccases; therefore, we named it GhLAC15. Quantitative reverse transcription-polymerase chain reaction indicated that GhLAC15 maintained higher expression levels in tolerant than in susceptible cultivars. Overexpression of GhLAC15 enhanced cell wall lignification, resulting in increased total lignin, G monolignol and G/S ratio, which significantly improved the Verticillium wilt resistance of transgenic Arabidopsis. In addition, the levels of arabinose and xylose were higher in transgenic plants than in wild-type plants, which resulted in transgenic Arabidopsis plants being less easily hydrolysed. Furthermore, suppression of the transcriptional level of GhLAC15 resulted in an increase in susceptibility in cotton. The content of monolignol and the G/S ratio were lower in silenced cotton plants, which led to resistant cotton cv. Jimian20 becoming susceptible. These results demonstrate that GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and arabinose and xylose accumulation in the cell wall of Gossypium hirsutum. This study broadens our knowledge of defence-induced lignification and cell wall modifications as defence mechanisms against V. dahliae.© 2018 The Authors. Molecular Plant Pathology published by BSPP and John Wiley & Sons Ltd.
[35]
Bischoff F, Vahlkamp L, Molendijk A, et al. Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis[J/OL]. Plant Molecular Biology, 2000, 42(3): 515-530[2021-06-20]. https://doi.org/10.1023/a:1006341210147.
[36]
Ren C M, Zhu Q, Gao B D, et al. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling[J/OL]. Journal of Integrative Plant Biology, 2008, 50(5): 630-637[2021-06-20]. https://doi.org/10.1111/j.1744-7909.2008.00653.x.
[37]
Gao W, Long L, Xu L, et al. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton[J/OL]. Journal of Integrative Plant Biology, 2016, 58(5): 503-513[2021-06-20]. https://doi.org/10.1111/jipb.12432.
[38]
Hu Q, Zhu L F, Zhang X N, et al. GhCPK33 negatively regulates defense against Verticillium dahliae by phosphorylating GhOPR3[J]. Plant Physiology, 2018, 178(2): 876-889.
[39]
Pathuri I P, Zellerhoff N, Schaffrath U, et al. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens[J/OL]. Plant Cell Reports, 2008, 27(12): 1877-1887[2021-06-20]. https://doi.org/10.1007/s00299-008-0607-9.
[40]
Poraty-Gavra L, Zimmermann P, Haigis S, et al. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways[J/OL]. Plant Physiology, 2013, 161(3): 1172-1188[2021-06-20]. https://doi.org/10.1104/pp.112.213165.
[41]
Zhang Z W, Yang F, Na R, et al. AtROP1 negatively regulates potato resistance to Phytophthora infestans via NADPH oxidase-mediated accumulation of H2O2[J/OL]. BMC Plant Biology, 2014, 14: 392[2021-06-20]. https://doi.org/10.1186/s12870-014-0392-2.
[42]
Guo W F, Jin L, Miao Y H, et al. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis[J]. Plant Molecular Biology, 2016, 91(3): 305-318.
[43]
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1): 519-546.
[44]
Kawasaki T, Koita H, Nakatsubo T, et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(1): 230-235.
OsRac1, one of the Rac/Rop family of small GTPases, plays important roles in defense responses, including a role in the production of reactive oxygen species mediated by NADPH oxidase. We have identified an effector of OsRac1, namely rice (Oryza sativa) cinnamoyl-CoA reductase 1 (OsCCR1), an enzyme involved in lignin biosynthesis. Lignin, which is polymerized through peroxidase activity by using H(2)O(2) in the cell wall, is an important factor in plant defense responses, because it presents an undegradable mechanical barrier to most pathogens. Expression of OsCCR1 was induced by a sphingolipid elicitor, suggesting that OsCCR1 participates in defense signaling. In in vitro interaction and two-hybrid experiments, OsRac1 was shown to bind OsCCR1 in a GTP-dependent manner. Moreover, the interaction of OsCCR1 with OsRac1 led to the enzymatic activation of OsCCR1 in vitro. Transgenic cell cultures expressing the constitutively active OsRac1 accumulated lignin through enhanced CCR activity and increased reactive oxygen species production. Thus, it is likely that OsRac1 controls lignin synthesis through regulation of both NADPH oxidase and OsCCR1 activities during defense responses in rice.
[45]
Ma Q H, Zhu H H, Han J Q. Wheat ROP proteins modulate defense response through lignin metabolism[J/OL]. Plant Science, 2017, 262: 32-38[2021-06-20]. https://doi.org/10.1016/j.plantsci.2017.04.017.

基金

国家自然科学基金(31771844)
PDF(15032 KB)

1396

Accesses

0

Citation

Detail

段落导航
相关文章

/