棉花学报 ›› 2022, Vol. 34 ›› Issue (3): 173-186.doi: 10.11963/cs20210046
• 研究与进展 • 下一篇
收稿日期:
2021-07-06
出版日期:
2022-05-15
发布日期:
2022-08-08
通讯作者:
张薇
E-mail:tlx4109@126.com;zhw_agr@shzu.edu.cn
作者简介:
赵曾强(1985―),男, 基金资助:
Zhao Zengqiang1,2(),Zhang Xi1,Li Xiaoling1,Zhang Wei1,*(
)
Received:
2021-07-06
Online:
2022-05-15
Published:
2022-08-08
Contact:
Zhang Wei
E-mail:tlx4109@126.com;zhw_agr@shzu.edu.cn
摘要:
【目的】乙烯(ethylene, ET)不敏感蛋白3(ethylene-insensitive 3, EIN3)/EIN3-like(EIL)家族基因是乙烯通路中的关键基因,参与植物生物胁迫响应。探究其功能可为解析陆地棉对枯萎病菌的响应机理提供依据。【方法】从枯萎病菌诱导棉花根部基因表达谱数据中筛选并从TM-1基因组数据库中鉴定获得EIN3/EIL基因家族的GhEIN3基因,利用生物信息学、实时荧光定量聚合酶链式反应技术和病毒诱导的基因沉默(virus-induced gene silencing, VIGS)技术分别分析基因序列、不同处理下的表达特征及GhEIN3基因在棉花抗病过程中的作用。【结果】GhEIN3基因(Genbank登录号:KY744279)开放阅读框为1 842 bp,编码的氨基酸序列中含有典型的EIN3蛋白结构域。枯萎病菌胁迫和不同外源激素ET、水杨酸(salicylic acid, SA)和茉莉酸(jasmonic acid, JA)处理后,该基因受枯萎病菌胁迫和ET诱导上调表达,而受SA和JA诱导下调表达;当GhEIN3基因沉默后,对沉默植株进行枯萎病菌接菌试验,结果显示,与对照相比,沉默GhEIN3基因的株系更感病;基因表达量测定结果表明,与对照比较,沉默株系中病程相关基因PR1、PR2、PR4的表达量均下降,乙烯响应因子基因ERF1和1-氨基环丙烷-1-羧酸氧化酶基因ACO的表达量下降,而PR5基因的表达量上升。【结论】从陆地棉中鉴定出的EIN3/EIL家族基因GhEIN3能够响应枯萎病菌和外源激素ET、SA、JA诱导,结合枯萎病菌、ET、SA与JA诱导后GhEIN3基因表达情况,以及枯萎病接种试验和VIGS结果认为,GhEIN3基因在棉花抗枯萎病的过程中起积极作用。
赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186.
Zhao Zengqiang,Zhang Xi,Li Xiaoling,Zhang Wei. Functional analysis of GhEIN3 gene in response to cotton Fusarium wilt stress[J]. Cotton Science, 2022, 34(3): 173-186.
表1
GhEIN3基因同源序列"
基因登录号 Gene accession number | 基因名称 Gene name | 物种 Species |
---|---|---|
KAA3468812.1 | EIN3-like | 澳洲棉 Gossypium australe |
XP_039018867.1 | EIN3-like | 木槿Hibiscus syriacus |
EOY34301.1 | EIN3-like | 可可 Theobroma cacao |
XP_021277894.1 | EIN3-like | 锦葵 Herrania umbratica |
XP_022729333.1 | EIN3-like | 榴莲 Durio zibethinus |
KHG09663.1 | EIN3-like | 亚洲棉 G. arboreum |
XP_021611396.1 | EIN3-like | 木薯 M. esculenta |
KAA3485749.1 | EIN3-like | 澳洲棉 G. australe |
XP_016718322.1 | EIN3 | 陆地棉 G. hirsutum |
XP_002530192.1 | EIN3 | 蓖麻 Ricinus communis |
表2
引物及其序列"
引物名称 Primer name | 引物序列(5'→3') Primer sequences (5' to 3') |
---|---|
GhERF1-F | CTTTAGATCACAACTCGCTTC |
GhERF1-R | TTTTCTTTCGTCGGGCTT |
GhACO-F | TGACCTCAAGTTCCAAGCCAA |
GhACO-R | AGAATTTATCCATCAGCCGACT |
GhPR1-F | TTTAGTAAGGTTTTTGACCGACGAA |
GhPR1-R | GACTCTGTCCATCTTGGTTGTGCTA |
GhPR2-F | TTCAAGGTTTGCACTCGGAAGA |
GhPR2-R | CCACCAGCAGCAGAAGTTATCG |
GhPR4-F | CTTGATATAAGATTGGTTAGCCC |
GhPR4-R | TTTGCTTTTGTTGTATGTAGTCG |
GhPR5-F | TTGGCTCTTACTTCCGACCATCT |
GhPR5-R | GCCGTGATTCATACAGTTATCCTCA |
[1] | 徐梦珂, 李丹, 孟来生, 等. 拟南芥转录因子Ethylene-insensitive3 (EIN3)抑制花青素的合成[J/OL]. 植物研究, 2018, 38(1): 148-154[2021-06-26]. https://doi.org/10.7525/j.issn.1673-5102.2018.01.018. |
Xu Mengke, Li Dan, Meng Laisheng, et al. Arabidopsis thaliana transcription factor ethylene-insensitive3(EIN3) inhibits the synthesis of anthocyanin[J/OL]. Bulletin of Botanical Research, 2018, 38(1): 148-154[2021-06-26]. https://doi.org/10.7525/j.issn.1673-5102.2018.01.018. | |
[2] | 王彦杰, 张超, 王晓庆, 等. 高等植物EIN3/EILs转录因子研究进展[J]. 生物技术通报, 2012 (3): 1-8. |
WANG Yanjie, Zhang Chao, Wang Xiaoqing, et al. Research advances of EIN3/EIL transcription factors in higher plants[J]. Biotechnology Bulletin, 2012(3): 1-8. | |
[3] | 张析, 李潇玲, 郭文婷, 等. 棉花EIN3/EIL家族基因序列分析及GhEIL3基因克隆[J/OL]. 西北植物学报, 2017, 37(3): 445-452[2021-06-26]. https://doi.org/10.7606/j.issn.1000-4025.2017.03.0445. |
Zhang Xi, Li Xiaoling, Guo Wenting, et al. Sequence analysis of EIN3/EIL gene family and cloning of GhEIL3 in cotton[J/OL]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(3): 445-452[2021-06-26]. https://doi.org/10.7606/j.issn.1000-4025.2017.03.0445. | |
[4] | Guo H W, Ecker J R. The ethylene signaling pathway: new insights[J/OL]. Current Opinion in Plant Biology, 2004, 7(1): 40-49[2021-06-26]. https://doi.org/10.1016/j.pbi.2003.11.011 |
[5] | Kosugi S, Ohashi Y. DNA-binding properties of a tobacco ethylene-insensitive3(EIN3) homolog[J/OL]. Nucleic Acids Research, 2000, 28(4): 960-967[2021-06-26]. https://doi.org/10.1093/nar/28.4.960. |
[6] | Rieu I. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses[J/OL]. Journal of Experimental Botany, 2003, 54 (391) : 2239-2244[2021-06-26]. https://doi.org/10.1093/jxb/erg240. |
[7] | Tieman D M, Ciardi J A, Taylor M G, et al. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development[J/OL]. The Plant Journal, 2010, 26(1): 47-58[2021-06-26]. https://doi.org/10.1046/j.1365-313x.2001.01006.x. |
[8] | Yokotani N, Tamura S, Nakano R, et al. Characterization of a novel tomato EIN3-like gene (LeEIL4)[J/OL]. Journal of Experimental Botany, 2003, 54(393): 2775-2776[2021-06-26]. https://doi.org/10.1111/j.1365-2761.2008.00904.x. |
[9] | Mao C Z, Wang S M, Jia Q J, et al. OsEIL1, a rice homolog of the Arabidopsis EIN3 regulates the ethylene response as a positive component[J/OL]. Plant Molecular Biology, 2006, 61: 141[2021-06-26]. https://doi.org/10.1007/s11103-005-6184-1. |
[10] | Hiraga S, Sasaki K, Hibi T, et al. Involvement of two rice ETHYLENE INSENSITIVE3-LIKE genes in wound signaling[J/OL]. Molecular Genetics & Genomics, 2009, 282 (5): 517-529[2021-06-26]. https://doi.org/10.1007/s00438-009-0483-1. |
[11] | Alonso J, Stepanova A N. The ethylene signaling pathway[J/OL]. Science, 2004, 304(5701): 1513-1515[2021-06-26]. https://doi.org/10.1126/science.1104812. |
[12] | Lin Z F, Zhong S L, Grierson D. Recent advances in ethylene research[J/OL]. Journal of Experimental Botany, 2009, 60(12): 3311-3336[2021-06-26]. https://doi.org/10.1093/jxb/erp204. |
[13] |
Hua J, Chang C, Sun Q, et al. Ethylene insensitivity conferred by Arabidopsis ERS gene[J]. Science, 1995, 269(5231): 1712-1714[2021-06-26]. https://doi.org/10.1126/science.7569898.
pmid: 7569898 |
[14] | Hua J, Sakai H, Nourizadeh S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis[J/OL]. The Plant Cell, 1998, 10(8): 1321-1332[2021-06-26]. https://doi.org/10.2307/3870643. |
[15] |
Sakai H, Hua J, Chen Q G, et al. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(10): 5812-5817.
pmid: 9576967 |
[16] | Pan Y, Chen G P, Lu C G, et al. Functional analysis of tomato LeEIL1 in an Arabidopsis ein2 mutant[J/OL]. Acta Physiologiae Plantarum, 2011, 33(2): 489-496[2021-06-26]. https://doi.org/10.1007/s11738-010-0572-0. |
[17] | Feng Y, Xu P, Li B S, et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): 13834-13840[2021-06-26]. https://doi.org/10.1073/pnas.1711723115. |
[18] | Alonso J M, Stepanova A N, Solano R, et al. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2992-2997[2021-06-26]. https://doi.org/10.1073/pnas.0438070100. |
[19] | Fujimoto S Y M, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression[J]. The Plant Cell, 2000, 12(3): 393-404. |
[20] | Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J/OL]. Genes & Development, 1998, 12(23): 3703-3714[2021-06-26]. https://doi.org/10.1101/gad.12.23.3703. |
[21] | Peng J Y, Li Z H, Wen X, et al. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J/OL]. PLoS Genetics, 2014, 10(10): e1004664[2021-06-26]. https://doi.org/10.1371/journal.pgen.1004664. |
[22] | 陈华民. 拟南芥中EIN3EIL1通过抑制SA信号途径负调控植物的先天免疫反应[D]. 上海: 上海交通大学, 2008. |
Chen Huamin. EIN3EIL1 negatively regulate innate immunity through inhibiting SA pathway in Arabidopsis[D]. Shanghai: Shanghai Jiao Tong University, 2008. | |
[23] | 方东鹏. 大豆疫霉根腐病抗性相关基因EIN3-1、EIN3-2的克隆及功能初步研究[D]. 哈尔滨: 东北农业大学, 2014. |
Fang Dongpeng. The cloning and preliminary study on the function of EIN3-1, EIN3-2gene related to Phytophthora sojae resistance in soybean[D]. Harbin: Northeast Agricultural University, 2014. | |
[24] | Shibuya K, Barry K G, Ciardi J A, et al. The central role of PhEIN2 in ethylene responses throughout plant development in petunia[J/OL]. Plant Physiology, 2004, 136 (2): 2900-2912[2021-06-26]. https://doi.org/10.1104/pp.104.046979. |
[25] | Yuan N, Dai C, Ling X T, et al. Peptidomics-based study reveals that GAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance[J/OL]. Molecular Breeding, 2019, 39(10): 1-11[2021-06-26]. https://doi.org/10.1007/s11032-019-1069-1. |
[26] | 赵利辉, 邱德文, 刘峥. 植物SAR和ISR中的乙烯信号转导网络[J/OL]. 生物技术通报, 2006(3): 28-32[2021-06-26]. http://dx.chinadoi.cn/10.3969/j.issn.1002-5464.2006.03.007. |
Zhao Lihui, Qiu Dewen, Liu Zheng. Ethylene signal transduction in plant systematic acquired resistance and induced systemic resistance[J/OL]. Biotechnology Bulletin, 2006(3): 28-32[2021-06-26]. http://dx.chinadoi.cn/10.3969/j.issn.1002-5464.2006.03.007. | |
[27] | Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J/OL]. Nature Genetics, 2017, 49(7): 1089-1098[2021-06-26]. https://doi.org/10.1038/ng.3887. |
[28] | 韩利红. 棉花TCP转录因子的鉴定和特征分析及EIN3的功能研究[D]. 武汉: 华中师范大学, 2017. |
Han Lihong. Genome-wide identification and characterization of TCP transcription factors and study on the role of EIN3 in upland cotton (Gossypium hirsutum)[D]. Wuhan: Central China Normal University, 2017. | |
[29] | Wang X Q, Han L H, Zhou W, et al. GhEIN3, a cotton (Gossypium hirsutum) homologue of AtEIN3, is involved in regulation of plant salinity tolerance[J/OL]. Plant Physiology and Bioche-mistry, 2019, 143: 83-93[2021-06-26]. https://doi.org/10.1016/j.plaphy.2019.08.022. |
[30] | 张景霞, 王芙蓉, 高阳, 等. VIGS技术及其在棉花功能基因组研究中的应用进展[J/OL]. 棉花学报, 2015, 27(5): 469-473[2021-06-26]. http://dx.chinadoi.cn/10.11963/issn.1002-7807.201505011. |
Zhang Jingxia, Wang Furong, Gao Yang, et al. Application of VIGS in studies of gene function in cotton[J/OL]. Cotton Science, 2015, 27(5): 469-473[2021-06-26]. http://dx.chinadoi.cn/10.11963/issn.1002-7807.201505011. | |
[31] | Magwanga R O, Kirungu J N, Lu P, et al. Knockdown of ghAlba_4 and ghAlba_5 proteins in cotton inhibits root growth and increases sensitivity to drought and salt stresses[J/OL]. Frontiers in Plant Science, 2019, 10: 1292-1312[2021-06-26]. https://doi.org/10.3389/fpls.2019.01292. |
[32] | Gao W, Long L, Zhu L F, et al. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae[J/OL]. Molecular & Cellular Proteomics, 2013, 12(12): 3690-3703[2021-06-26]. https://doi.org/10.1074/mcp.M113.031013. |
[33] | Gao X Q, Wheeler T, Li Z H, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt[J/OL]. The Plant Journal, 2011, 66(2): 293-305[2021-06-26]. https://doi.org/10.1111/j.1365-313X.2011.04491.x. |
[34] | 韩泽刚, 赵曾强, 何兰兰, 等. 棉花抗枯萎病相关转录因子基因GhERFB101的克隆与表达分析[J/OL]. 华北农学报, 2015, 30(1): 66-72[2021-06-26]. http://dx.chinadoi.cn/10.7668/hbnxb.2015.01.011. |
Han Zegang, Zhao Zengqiang, He Lanlan, et al. Cloning and expression analysis of transcription factor gene GhERFB101 related to resistant Fusarium oxysporum f. sp. vasinfectum in cotton[J/OL]. Acta Agriculturae Boreali-Sinica, 2015, 30(1): 66-72[2021-06-26]. http://dx.chinadoi.cn/10.7668/hbnxb.2015.01.011. | |
[35] | 赵曾强, 孙国清, 张国丽, 等. 海岛棉GbRLCK10基因克隆及表达分析[J/OL]. 西北植物学报, 2017, 37(11): 2130-2138[2021-06-26]. http://dx.chinadoi.cn/10.7606/j.issn.1000-4025.2017.11.2130. |
Zhao Zengqaing, Sun Guoqing, Zhang Guoli, et al. Cloning and expression analysis of the GbRLCK10 gene in Gossypium barbadense L.[J/OL]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(11): 2130-2138[2021-06-26]. http://dx.chinadoi.cn/10.7606/j.issn.1000-4025.2017.11.2130. | |
[36] | 彭姗, 吕学莲, 高峰, 等. 一种新的棉花黄、枯萎病快速接种方法的研究[J]. 棉花学报, 2008, 20(3): 174-178. |
Peng Shan, Lü Xuelian, Gao Feng, et al. Study on a new rapid inoculation method for Verticillium wilt and Fusarium wilt of cotton[J]. Cotton Science, 2008, 20(3): 174-178. | |
[37] | 胡根海, 喻树迅. 利用改良的CTAB法提取棉花叶片总RNA[J]. 棉花学报, 2007, 19(1): 69-70. |
Hu Genhai, Yu Shuxun. Extraction of high-quality RNA in cotton leaves with improved CTAB method[J]. Cotton Science, 2007, 19(1): 69-70. | |
[38] | Wang M, Wang Q L, Zhang B H. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton(Gossypium hirsutum L.)[J/OL]. Gene, 2013, 530(1): 44-50[2021-06-26]. https://doi.org/10.1016/j.gene.2013.07.084. |
[39] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J/OL]. Methods, 2001, 25(4): 402-408[2021-06-26]. https://doi.org/10.1006/meth.2001.1262. |
[40] | 穆春, 周琳, 李茂营, 等. 水培条件下病毒诱导棉花基因沉默体系的建立及优化[J/OL]. 作物学报, 2016, 42(6): 844-849[2021-06-26]. http://dx.chinadoi.cn/10.3724/SP.J.1006.2016.00844. |
Mu Chun, Zhou Lin, Li Maoying, et al. Establishment and optimisation of virus-induced gene silencing in system hydroponic cotton[J/OL]. Acta Agronomica Sinica, 2016, 42(6): 844-849[2021-06-26]. http://dx.chinadoi.cn/10.3724/SP.J.1006.2016.00844. | |
[41] | Anver S, Tsuda K. Ethylene and plant immunity[M]// Wen C K. Ethylene in plants. Dordrecht: Springer, 2015: 205-221 |
[42] | Xu L M, Huang J Y, Liu X Q, et al. Cloning of Brassica napus EIN3 gene and its expression induced by Sclerotinia sclerotiorum[J]. Agricultural Science & Technology, 2009, 10(2): 33-36. |
[43] | 郭立佳. 一个NBS-LRR基因DEPG1和两个胞质类受体激酶基因NRRB和XCRK在水稻与细菌性条斑病菌互作中的作用[D]. 厦门: 厦门大学, 2011. |
Guo Lijia. Role of the NBS-LRR gene DEPG1, and the two receptor-like cytoplasmic kinase genes NRRB and XCRK in rice-bacterial leaf streak pathogen interactions[D]. Xiamen: Xiamen University, 2011. | |
[44] | Jing L, Brader G, Palva E T. The WRKY70 70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense[J/OL]. The Plant Cell, 2004, 16(2): 319-331[2021-06-26]. https://doi.org/10.1105/tpc.016980. |
[45] | Shaban M, Miao Y H, Ullah A, et al. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae[J/OL]. Plant Physiology and Biochemistry, 2018, 125: 193-204[2021-06-26]. https://doi.org/10.1016/j.plaphy.2018.02.011. |
[46] | Shan X Y, Wang Z L, Xie D. Jasmonate signal pathway in Arabidopsis[J/OL]. Journal of Integrative Plant Biology, 2007, 49(1): 81-86[2021-06-26]. https://doi.org/10.1111/j.1744-7909.2006.00416.x. |
[47] | Shoji T, Nakajima K, Hashimoto T. Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis[J/OL]. Plant & Cell Physiology, 2000, 41(9): 1072-1076[2021-06-26]. https://doi.org/10.1093/pcp/pcd027. |
[48] | Zhang Y, Wang X F, Ding Z G, et al. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement[J/OL]. BMC Genomics, 2013, 14(1): 1-18[2021-06-26]. https://doi.org/10.1186/1471-2164-14-637. |
[49] | 金京波. 两个植物特异性转录因子调控SA合成与系统获得性抗性[J]. 农业生物技术学报, 2010, 18(6): 1031. |
Jin Jingbo. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors[J]. Journal of Agricultural Biotechnology, 2010, 18(6): 1031. | |
[50] | Li X Y, Li R H, Wang C, et al. Inhibition of BpEIN3 causes plaques in leaves of Betula platyphylla × B. pendula[J/OL]. Trees, 2020, 34(2): 483-495[2021-06-26]. https://doi.org/10.1007/s00468-019-01930-6. |
[51] | Wang X J, Zhang H T, Nyamesorto B, et al. A new mode of NPR1 action via an NB-ARC-NPR1 fusion protein negatively regulates the defence response in wheat to stem rust pathogen[J/OL]. New Phytologist, 2020, 228(3): 959-972[2021-06-26]. https://doi.org/10.1111/nph.16748. |
[52] | Chao Q, Rothenberg M, Solano R, et al. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins[J/OL]. Cell, 1997, 89(7): 1133-1144[2021-06-26]. https://doi.org/10.1016/s0092-8674(00)80300-1. |
[53] | 朱东兴, 饶景萍, 任小林, 等. 柿果实 1-甲基环丙烯处理对成熟软化的影响[J]. 园艺学报, 2004, 31(1): 87-89. |
Zhu Dongxing, Rao Jingping, Ren Xiaolin, et al. Effects of posthavest treatment with 1-MCP on ripening and softening of persimmon fruits[J]. Acta Horticulture Sinica, 2004, 31(1): 87-89. |
[1] | 吴健锋,樊志浩,武连杰,胡晓旺,韩知里,高巍,龙璐. 陆地棉衰老相关基因GhSAG101的克隆及抗病功能分析[J]. 棉花学报, 2022, 34(3): 187-197. |
[2] | 田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226. |
[3] | 张素君,李兴河,王海涛,唐丽媛,蔡肖,刘存敬,张香云,张建宏. 陆地棉主要育种性状SSR关联位点的验证及优异材料鉴定[J]. 棉花学报, 2022, 34(2): 120-136. |
[4] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[5] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[6] | 陈琴,李多露,赵杰银,高文举,陈全家,曲延英. 陆地棉UDPGP基因家族的鉴定及抗旱性分析[J]. 棉花学报, 2022, 34(1): 12-22. |
[7] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[8] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[9] | 李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. |
[10] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[11] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[12] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[13] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[14] | 薛羽君,魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[15] | 吕丽敏,左东云,王省芬,张友平,程海亮,王巧连,宋国立,马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
|