不同翅型棉蚜体内细菌群落组成和多样性分析

史庆雨, 李东阳, 王丽, 高雪珂, 张开心, 朱香镇, 姬继超, 雒珺瑜

PDF(8048 KB)
PDF(8048 KB)
棉花学报 ›› 2022, Vol. 34 ›› Issue (2) : 151-161. DOI: 10.11963/cs20210024
研究与进展

不同翅型棉蚜体内细菌群落组成和多样性分析

作者信息 +

Comparative analysis of bacteria composition and diversity in apterous and alate Aphis gossypii

Author information +
History +

摘要

【目的】 旨在明确不同翅型棉蚜体内细菌差异,探究体内细菌与棉蚜翅型分化间的关系。【方法】 通过Illumina MiSeq高通量测序分别对有翅型和无翅型棉蚜体内细菌16S rRNA基因V3~V4区进行测序,并根据测序结果进行操作分类单元(operational taxonomic unit, OTU)聚类分析、α多样性分析、菌种组成与分类等分析。【结果】 在所有棉蚜样本中共鉴定出234个体内细菌OTU,隶属于16门、32纲、64目、107科、148属、187种,其中布赫纳氏菌属(Buchnera)是优势菌属。2种翅型棉蚜体内细菌多样性不同:无翅型(隶属于12门、23纲、50目、82科、106属、136种)略高于有翅型(隶属于14门、26纲、45目、72科、97属、120种)。多种体内细菌的相对丰度在2种翅型棉蚜中存在显著差异。其中:红球菌属(Rhodococcus)细菌在有翅型棉蚜中的相对丰度较高(0.136%),而在无翅型棉蚜中较低(0.078%);未分类的蓝藻纲细菌在有翅型棉蚜体内相对丰度较低(0.005%),而在无翅型棉蚜中较高(0.024%)。【结论】 有翅型和无翅型棉蚜的体内细菌组成和群落结构存在一定的差异。该研究拓展了对棉蚜翅二型现象的认知。

Abstract

[Objective] The purpose of this study is to clarify the differences in the bacteria of different wing morphic cotton aphids, and to explore the relationship between the bacteria and the wing dimorphic in cotton aphids. [Method] The V3-V4 region of 16S rRNA gene of alate and apterous Aphis gossypii was sequenced by Illumina MiSeq high-throughput sequencing technology. Then, operational taxonomic unit (OTU) clustering, α diversity, species composition and classification were analyzed according to the sequencing results. [Result] A total of 234 bacteria OTUs, belonging to 16 phyla, 32 classes, 64 orders, 107 families, 148 genera, and 187 species, were identified from all samples. Among them, Buchnera was the dominant genus. Bacteria diversity between these two wing morphs was different, and the bacteria diversity in apterous morph (belonging to 12 phyla, 23 classes, 50 orders, 82 families, 106 genera, and 136 species) was slightly higher than that of alate morph (belonging to 14 phyla, 26 classes, 45 orders, 72 families, 97 genera, and 120 species). There were significant differences in the relative abundance of many bacteria between the two morphs of cotton aphid. The relative abundance of Rhodococcus in the alate aphid was relatively higher (0.136%), but that in the apterous aphid was relatively lower (0.078%). Besides, the relative abundance of norank-cyanobacteria was lower (0.005%) in the alate aphid but higher (0.024%) in the apterous aphid. [Conclusion] There were differences in bacteria composition and community structure between alate and apterous cotton aphid. This study expanded the understanding about wing dimorphism in cotton aphids.

关键词

棉蚜 / 体内细菌 / 翅多型现象 / 16S rRNA / 基因测序 / 聚类分析 / 多样性

Keywords

Aphis gossypii / bacteria / wing polyphenism / 16S rRNA / gene sequencing / cluster analysis / diversity

引用本文

导出引用
史庆雨 , 李东阳 , 王丽 , 高雪珂 , 张开心 , 朱香镇 , 姬继超 , 雒珺瑜. 不同翅型棉蚜体内细菌群落组成和多样性分析[J]. 棉花学报, 2022, 34(2): 151-161. https://doi.org/10.11963/cs20210024
Shi Qingyu , Li Dongyang , Wang Li , Gao Xueke , Zhang Kaixin , Zhu Xiangzhen , Ji Jichao , Luo Junyu. Comparative analysis of bacteria composition and diversity in apterous and alate Aphis gossypii[J]. Cotton Science, 2022, 34(2): 151-161. https://doi.org/10.11963/cs20210024
棉蚜(Aphis gossypii)属半翅目蚜科,是世界性分布害虫,可危害多种寄主植物,也是危害棉花作物的重要害虫之一[1]。它通过刺吸式口器取食植物汁液从而影响植物生长发育,且可在不同寄主间转移导致植物病毒的传播,对农业生产造成严重危害[2]
翅多型是相同基因型个体产生有(长)翅型和无(短)翅型不同形态的现象,是昆虫在繁殖与飞行扩散间权衡的一种策略[3]。翅多型现象使得昆虫能更好地适应多变的生存环境,对种群环境适应性进化有着重要意义[4-5]。如:沙蟋(Gryllus firmus)长翅型成虫主要进行远距离迁徙,而短翅型成虫主要进行快速繁殖[6];不同环境下褐飞虱(Nilaparvata lugens)可分化为长翅型和短翅型,长翅型具有季节性远距离迁飞习性,而短翅型具有产卵前期短、寿命长等特点[7];飞蝗(Locusta migratoria)在高密度下会出现群居型,低密度下则会出现散居型,群居型翅长,散居型翅短[8];蚜虫因种群密度和营养条件可分化为有翅型和无翅型2种形态,有翅型有强壮的飞行肌和翅,而无翅型具有快速繁殖的能力。食物不充足或者棉蚜种群密度过大等因素均会诱导大量有翅蚜产生,以迁徙寻找更好的生存环境。综上所述,种群密度和植物营养是影响翅多型的主要因素[9-10]。翅多型调控机理更是研究热点之一,例如:褐飞虱中胰岛素和c-Jun氨基端激酶(c-Jun N-terminal kinase, JNK)信号通路介导褐飞虱翅型多样性;在豌豆蚜(Acyrthosiphon pisum)中蜕皮激素信号通路影响翅型分化[11-13]
共生菌分为初生共生菌和次生共生菌,初生共生菌一般是宿主生长发育所必需的,次生共生菌一般与宿主的适应性有关[14]。共生菌可以给宿主提供营养、促进新陈代谢、影响生长发育、影响昆虫的行为[15]。沃尔巴克氏体(Wolbachia)是一种立克氏体,1936年才被命名,对宿主生殖活动起重要调控作用,主要包括诱导宿主的胞质不亲和、孤雌生殖、雌性化、雄性致死等[16]。研究表明,共生菌参与调控昆虫翅型分化[17]。对长翅型以及短翅型埃及扁胸切叶蚁(Vollenhovia emeryi)进行微生物多样性分析发现,所有长翅型均携带沃尔巴克氏体,而所有短翅型均不携带沃尔巴克氏体,推测沃尔巴克氏体可能参与翅型分化的调控[18]。然而,微生物参与蚜虫翅型分化作用机理的研究并不深入。Reyes等[19]在对比3种次生共生菌Serratia symbioticaHamiltonella defensaRegiella insecticola对豌豆蚜后代有翅蚜产生的影响时,发现R. insecticola对有翅后代的影响最大;Shang 等[20]对褐色橘蚜(Aphis citricidus)有翅和无翅成虫体内细菌进行16S 核糖体RNA(ribosome RNA, rRNA)测序,发现无翅成虫具有较高的细菌多样性。
分子生物学和高通量测序技术的发展为细菌群落特征鉴定提供了新方法[21]。对聚合酶链式反应(polymerase chain reaction, PCR)扩增的细菌16S rRNA片段进行测序,可以检测到样本中存在的大多数细菌群落,是研究蚜虫微生物群落的一种高效方法[22-24]。利用高通量测序技术能够研究不同生物体的整个微生物群落,Zepeda-Paulo等[25]通过16S rRNA扩增子测序检测了麦长管蚜(Sitobion avenae)和禾谷缢管蚜(Rhopalosiphum padi)的细菌群落多样性,并发现蚜虫具有作为植物致病菌载体或替代宿主的潜在作用。
为明确有翅型与无翅型棉蚜成虫体内细菌群落的差异,本研究通过高通量测序技术对2组样品16S rRNA扩增子进行检测,从而获得棉蚜有翅、无翅型体内细菌的组成与结构,并比较2组棉蚜样品体内细菌群落间的差异,为后续探究体内细菌在棉蚜翅型分化中的作用奠定基础。

1 材料与方法

1.1 供试昆虫

供试棉蚜采集于中国农业科学院棉花研究所试验农场试验棉田棉花上,于中棉所49的离体棉花子叶上单头饲养建立单克隆种群。饲养条件为:26 ℃±1℃,光周期为14 h(光照)/10 h(黑暗),相对湿度70%~80%。所用的有翅型和无翅型棉蚜,均源于同一个单克隆。

1.2 样品收集

通过高种群密度诱导棉蚜产生有翅蚜,通过低种群密度使棉蚜保持无翅状态[26]。在实验室中通过离体棉花子叶进行棉蚜的饲养,收集无翅蚜时,每片离体棉花子叶上均放置20头1龄若蚜;收集有翅蚜时,每片离体棉花子叶上均放置100头1龄若蚜,分别收集2日龄有翅棉蚜成蚜与无翅棉蚜成蚜,然后依次用75%(体积分数)的乙醇、磷酸盐缓冲溶液(pH 7.4)和超纯水清洗3次(每次5 min)。有翅蚜与无翅蚜各4个生物重复,每个重复有30头成蚜。将有翅型棉蚜4个重复分别命名为AL_1、AL_2、AL_3、AL_4,无翅型棉蚜4个重复命名为AP_1、AP_2、AP_3、AP_4。

1.3 DNA提取和PCR扩增

使用天根血液试剂盒(DP304)分别提取无翅蚜和有翅蚜虫体总DNA。采用1%(质量分数)琼脂糖凝胶电泳法检测DNA质量,用NanoDrop 2000微量紫外分光光度计(Thermo,美国)测定DNA的最终质量浓度。使用通用引物(338F: 5'-ACTCCTACGGGAGGCAGCAG-3',806R: 5'-GGACTACHVGGGTWTCTAAT-3')扩增样本中16S rRNA基因V3~V4可变区序列[27]。所用仪器为GeneAmp 9700热循环PCR系统(Applied Biosystems公司,美国)。扩增程序:95 ℃预变性3 min;95 ℃变性30 s,55 ℃退火30 s,72 ℃延伸45 s,循环35次;72 ℃延伸10 min。扩增体系为20 μL,其中模板DNA 10 ng,每种引物0.8 μL(5 μmol·L-1),2.5 mmol·L-1的4种脱氧核糖核苷三磷酸(deoxyribonucleoside triphosphate, dNTP)各0.5 μL,4 μL 5×FastPfu缓冲液,0.4 μL FastPfu聚合酶,最后添加无菌水至20 μL。

1.4 Illumina测序和数据处理

测序工作由上海美吉生物医药科技有限公司完成,所用平台为Illumina MiSeq,测序平均长度为429 bp。采用Fastp对原始序列进行质控:1)过滤读长(reads)尾部质量值20以下的碱基,设置50 bp的窗口,如果窗口内的平均质量值低于20,从窗口开始截去后端碱基,过滤质控后50 bp以下的读长,去除含N碱基的读长;2)根据双端(paired-end, PE )测序读长之间的重叠(Overlap)关系,将成对读长拼接成1条序列,最小重叠长度为10 bp;3)拼接序列时允许重叠区最大错配率为0.2,筛除无法拼接的序列;4)根据序列首尾两端的识别码(Barcode)和引物区分样品,并调整序列方向,允许的barcode错配数为0,引物错配数为2。使用UPARSE(v7.1,http://drive5.com/uparse/)在97%的相似性水平下对所有序列进行运算分类单元(operational taxonomic unit, OTU)生物信息统计分析[28]。利用UCHIME(http://drive5.com/uchime/)鉴定并移除嵌合序列[29]。通过威尔科克森秩和检验(Wilcoxon's rank-sum test)进行差异显著性分析,并用伪发现率(false discovery rate,FDR)对概率(P)进行检验校正[30]。利用阈值FDR<0.01和P<0.05,在OTU水平上鉴定有翅蚜和无翅蚜体内细菌相对丰度的差异显著性。

1.5 多样性分析方法

根据OTU利用软件Mothurs (v1.30,http://www.mothur.org)采用Shannon和Chao 1指数[31]进行细菌多样性分析。采用主坐标分析(principal coordinates analysis, PCoA)和主成分分析(principle component analysis, PCA)对不同数据进行可视化[32]。使用RDP classifier(https://sourceforge.net/projects/rdp-classifier/)在Silva(SSU128)16S rRNA数据库中以70%的置信度分析每个16S rRNA基因序列的分类[33];整理分析从属到门的OTU水平上的细菌相对丰度(某属细菌在有翅与无翅棉蚜体内细菌中的占比)分布,并使用Microsoft Excel制作属水平上群落相对丰度柱状图;采用威尔科克森秩和检验方法在属水平上对有翅型棉蚜和无翅型棉蚜体内细菌的相对丰度进行差异显著性检验,显著性水平设为0.05[34]。对相似性水平为97%的属到门水平的样品,使用R语言(v3.3.1)进行数据统计和维恩图(Venn diagram)制作。

1.6 系统发育分析

为了研究已鉴定的棉蚜OTU的进化关系,使用ClustalW在默认设置下对16S rDNA序列进行比对。基于比对结果在Mega(v5.05)中使用邻接法(neighbor-joining, NJ)构建系统发育树,设置自展值(bootstrap value)为1 000[35]

2 结果与分析

2.1 16S rDNA测序数据分析

在Illunina Miseq PE 300平台上对有翅型与无翅型棉蚜体内细菌16S rRNA基因V3~V4区进行测序,共得到360 461条高质量读长,全长154 598 655 bp,平均长度约为429 bp(表1)。为去除微量的差异,对所有的样本按照最小样本数进行抽平,并基于97%的序列相似性进行OTU聚类。通过Shannon指数和Chao 1指数稀释曲线对样本进行物种多样性评估,曲线在样品读长数下均能趋于平稳(图1A、1B),表明测序样本量足够,可在此基础上进行数据分析。
表1 各样本质控后的数据统计

Table 1 Statistical data of each sample after quality control

样品编号
Sample ID
读长数
Reads number
长度
Length/bp
平均长度
Average length/bp
最小长度
Minimum length/bp
最大长度
Maximum length/bp
运算分类单元
OTU
AL_1 34 496 14 796 380 428.930 3 404 430 48
AL_2 43 018 18 451 304 428.920 5 404 431 54
AL_3 40 649 17 435 771 428.934 8 404 431 49
AL_4 44 199 18 955 601 428.869 5 302 430 75
AP_1 53 897 23 114 983 428.873 3 404 431 82
AP_2 45 086 19 333 073 428.804 4 404 430 97
AP_3 47 774 20 490 562 428.906 1 403 430 68
AP_4 51 342 22 020 981 428.907 7 262 430 52
注:AL_1~4 代表有翅蚜的4个生物重复;AP_1~4代表无翅蚜的4个生物重复。
Note: AL_1-4 represent four biological replicates of alate aphids; AP_1-4 represent four biological replicates of apterous aphids.
图1 有翅(AL)和无翅(AP)棉蚜体内细菌群落α多样性指数稀释曲线和样本聚类分析结果
A:OTU水平的Shannon指数稀释曲线;B:OTU水平的Chao 1指数稀释曲线;C:OTU水平的主成分分析;D:OTU水平的主坐标分析。 C、D中横纵坐标后百分比分别表示主成分、主坐标对样本组成差异的解释度值。

Fig. 1 Rarefaction curves from α-diversity indices and samples cluster analysis plot of bacteria communities from alate (AL) and apterous (AP) morphs of A. gossypii

A: Shannon diversity index on OTU level; B: Chao 1 diversity index on OTU level; C: principal components analysis on OTU level; D: principal coordinates analysis on OTU level. The percentages behind the abscissa and ordinate in C and D respectively represent the explanatory value of principal component and principal coordinate to the difference in sample composition.

Full size|PPT slide

2.2 物种注释与分析

2组棉蚜样本共聚类到234个OTU,这些OTU按分类阶元可划分为16门、32纲、64目、107科、148属、187种。在门水平上,变形菌门(Proteobacteria)为优势菌门(相对丰度99.55%);在纲水平上,丙型变形菌纲(Gammaproteobacteria)为优势菌纲(相对丰度99.50%);在目水平上,肠杆菌目(Enterobacteriales)为优势菌目(相对丰度99.46%);在科水平上,肠杆菌科(Enterobacteriaceae)为优势菌科(相对丰度99.46%)(表2)。
表2 棉蚜体内细菌在不同分类水平上的组成

Table 2 Community composition of bacteria in A. gossypii at different taxonomic levels considering both alate and apterous morphs

分类水平Taxonomic level 细菌类别Bacteria category 相对丰度Relative abundance/%
门Phylum 变形菌门Proteobacteria 99.55
放线菌门Actinobacteria 0.29
纲Class 丙型变形菌纲Gammaproteobacteria 99.50
放线菌纲Actinobacteria 0.29
目Order 肠杆菌目Enterobacteriales 99.46
棒状杆菌目Corynebacteriales 0.11
科Family 肠杆菌科Enterobacteriaceae 99.46
诺卡氏菌科Nocardiaceae 0.11
注:仅列出了相对丰度大于0.1%的细菌类目。
Note: Only the bacteria categories with relative abundance over 0.1% were listed in the table.

2.3 棉蚜体内主要细菌的系统发育树

选取相对丰度前100个OTU进行系统发育树构建,在门水平上发育树一共有10个分支,分别为放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、蓝藻门(Cyanobacteria)、疣微菌门(Verrucomicrobia)、拟杆菌门(Bacteroidetes)、异常球菌-栖热菌门(Deinococcus-Thermus)、酸杆菌门(Acidobacteria)、单糖菌门(Saccharibacteria)、梭杆菌门(Fusobacteria)和变形菌门。其中:变形菌门为门水平上最大类群,包含34个OTU;其次为放线菌门,包含31个OTU (图2)。
图2 基于OTU的棉蚜体内主要细菌系统进化树
标尺代表OTU间遗传变异度。

Fig. 2 Phylogenetic tree of bacteria in A. gossypii based on OTU sequence

Scale represents the degree of genetic variation between OTU.

Full size|PPT slide

2.4 有翅和无翅型体内细菌多样性的对比

通过PCA、PCoA分析发现:有翅型棉蚜4个重复和无翅型棉蚜4个重复各形成1个类群(图1C、D)。鉴定出的234个OTU中,有翅型棉蚜体内细菌多样性相对较低,仅有143个OTU,隶属于14门、26纲、45目、72科、97属、120种;无翅型棉蚜体内细菌多样性较高,共有172个OTU,隶属于12门、23纲、50目、82科、106属、136种。维恩图(图3)显示,无翅型棉蚜特有的OTU隶属于2门、6纲、19目、35科、51属、67种,有翅型棉蚜特有的OTU隶属于4门、9纲、14目、25科、42属、51种,有10门、17纲、31目、47科、55属、69种为无翅型、有翅型棉蚜所共有。在门水平上,无翅型棉蚜特有的是脱铁杆菌门(Deferribacteres)和俭菌总门(Parcubacteria),有翅型棉蚜特有的是硝化螺旋菌门(Nitrospirae)、浮霉菌门(Planctomycetes)、梭杆菌门和未定义门(Unclassified),两者共有的为放线菌门、厚壁菌门、蓝藻门、变形菌门等10个门;在纲水平上,无翅型棉蚜特有的为脱铁杆菌纲(Deferribacteres)、δ-变形菌纲(Deltaproteobacteria)、ε-变形菌纲(Epsilonproteobacteria)等6个纲,有翅型棉蚜特有的为浮霉菌纲(Planctomycetacia)、硝化螺旋菌纲(Nitrospira)、绿弯菌纲(Chloroflexia)等9个纲,而共有的为β-变形菌纲(Betaproteobacteria)、拟杆菌纲(Bacteroidia)、丙型变形菌纲等17个纲。
图3 有翅与无翅棉蚜各分类水平的细菌群落维恩图
A:门水平;B:纲水平;C:目水平;D:科水平;E:属水平;F:种水平。AL与AP分别代表有翅型与无翅型棉蚜。

Fig. 3 Venn diagram of community of bacteria from alate and apterous morphs of A. gossypii at different classification levels

A: phylum level; B: class level; C: order level; D: family level; E: genus level; F: species level. AL represents alate morph, and AP represents apterous morph.

Full size|PPT slide

在属水平上,有翅型和无翅型棉蚜体内细菌群落中,布赫纳氏菌属(Buchnera)所占比例最高,在有翅型棉蚜体内细菌中平均占比为99.6%,在无翅型棉蚜体内细菌中平均占比为99.5%。其次是红球菌属(Rhodococcus),在有翅型和无翅型棉蚜成虫中分别占0.136%和0.078%(图4A)。在2种翅型的棉蚜中,多种细菌的丰度具有显著差异,红球菌属在有翅型棉蚜中的相对丰度显著高于其在无翅型棉蚜中的相对丰度,而未分类-蓝藻纲(“未分类”表示该纲的未分类属)在有翅型棉蚜中的相对丰度(0.005%)显著低于其在无翅型棉蚜中的相对丰度(0.024%)(图4B)。
图4 有翅型和无翅型棉蚜在属水平上的细菌多样性差异
A:2种翅型棉蚜中优势细菌物种;AP_1~4代表无翅蚜的4个生物重复,AL_1~4 代表有翅蚜的4个生物重复。B:2种翅型棉蚜属水平的细菌相对丰度(百分数)差异显著性分析;右侧数值(概率,P)旁的星号代表差异显著(P<0.05);圆中颜色显示细菌相对丰度高的棉蚜种类,蓝色代表有翅蚜,红色代表无翅蚜。

Fig. 4 The difference of diversity of bacteria on genus level in alate and apterous morphs of A. gossypii

A: The dominant bacterial species proportion in alate and apterous morphs of A. gossypii; AP_1-4 represent four biological replicates of apterous morph, AL_1-4 represent four biological replicates of alate morph; B: Difference analysis of bacterial relative abundance (proportion) between alate and apterous morphs of A. gossypii; asterisks beside the right figures (probability, P) represent significant difference at the 0.05 probability level (P<0.05); colors of circles indicate the aphid morph with higher bacterial relative abundance, and the blue and red indicate alate and apterous morphs, respectively.

Full size|PPT slide

3 讨论

共生菌与宿主存在互利共生关系,在昆虫的生长发育、繁殖、寄主适应等过程中发挥重要作用,是最近研究的热点[36]。共生菌在沙漠蝗(Schistocerca gregaria)肠道产生一些对其有益的酚类物质能够抗菌和防御病原体[37];吴玉新等[38]研究发现桃蚜(Myzus persicae) 与其共生菌存在协同进化的关系。研究发现,宿主的表型是由其基因组和微生物基因组共同决定的[39]。近年的研究表明,许多微生物参与宿主各种表型可塑性,其中一些微生物似乎与蚜虫的翅多型现象有关[40]。为了更好地了解棉蚜体内细菌群落与翅多型之间的关系,本研究对有翅型与无翅型棉蚜体内细菌群落进行测序,分析有翅与无翅2种翅型棉蚜体内细菌的多样性与丰度差异。本研究共鉴定出棉蚜体内细菌187种,其中有翅蚜特有的为51种,无翅蚜特有的为67种。
在16S rRNA基因序列高通量测序中,布赫纳氏菌属是棉蚜优势菌属,在2组样品中平均相对丰度均最高,这与Shang等[20]的研究一致。布赫纳氏菌为初级共生细菌,在蚜虫宿主体内经历了长期的平行进化,参与蚜虫生长发育和繁殖等主要生命活动[41]。它可以影响麦长管蚜翅的可塑性,为宿主提供生长发育的必需氨基酸[17,42]。布赫纳氏菌属在有翅型棉蚜中的相对丰度为99.6%,在无翅型棉蚜中的相对丰度为99.5%,差异不显著。这一结果与Hardie等[43]的研究结果相悖,可能是因为物种的差异,也可能是因为测序手段存在一定的局限性。红球菌属在有翅型棉蚜中的相对丰度为0.136%,而在无翅型棉蚜中的相对丰度为0.078%,在2种翅型棉蚜中的相对丰度存在显著差异;虽然蓝藻纲细菌在棉蚜中的相对丰度低,但其在2种翅型棉蚜中的相对丰度具有显著差异(图4B)。对昆虫中红球菌属细菌的研究不多,在蚜虫中的相关研究更是寥寥无几。本研究中红球菌属在2种翅型棉蚜中的相对丰度不高却存在显著差异,这是否与棉蚜翅型分化存在联系有待验证。

4 结论

本研究分析了有翅型与无翅型棉蚜体内细菌群落的差异,以探究其与宿主翅型分化之间的联系。结果显示:无翅型棉蚜成虫的体内细菌群落多样性高于有翅型棉蚜成虫;在棉蚜有翅型与无翅型成虫中都含有大量布赫纳氏菌属细菌,且有翅型棉蚜成虫体内布赫纳氏菌属的相对丰度略高;在2种翅型棉蚜中均检测到一定含量的红球菌属细菌,并且该菌属在2种翅型棉蚜中的相对丰度存在显著差异。

参考文献

[1]
雒珺瑜, 张帅, 任相亮, 等. 近十年我国棉花虫害研究进展[J/OL]. 棉花学报, 2017, 29 (S1): 100-112[2021-04-06].
Luo Junyu, Zhang Shuai, Ren Xiangliang, et al. Research progress of cotton insect pests in China in recent ten years[J/OL]. Cotton Science, 2017, 29(S1): 100-112[2021-04-06].
[2]
闫慧敏, 邓小霞, 汪凤娟, 等. 不同棉蚜为害程度对花蕾期棉花生理生化的影响[J]. 新疆农业科学, 2013, 50(11): 2077-2084.
Yan Huimin, Deng Xiaoxia, Wang Fengjuan, et al. Effect of different aphid damage levels on the physiology and biochemistry of bud stage cotton[J]. Xinjiang Agricultural Science, 2013, 50(11): 2077-2084.
[3]
袁一杨, 陈新, 王竹承, 等. 昆虫翅多型的分子调控机制研究进展[J/OL]. 应用昆虫学报, 2020, 57(2): 265-271[2021-04-06]. https://doi.org/10.7679/j.issn.2095-1353.2020.030.
Yuan Yiyang, Chen Xin, Wang Zhucheng, et al. Molecular regulatory mechanism of wing polymorphism in insects[J/OL]. Chinese Journal of Applied Entomology, 2020, 57(2): 265-271[2021-04-06]. https://doi.org/10.7679/j.issn.2095-1353.2020.030.
[4]
戴华国, 吴小毅, 杨亦桦. 昆虫翅多型现象的控制机理[J]. 华东昆虫学报, 1997, 6(1): 101-105.
Dai Huaguo, Wu Xiaoyi, Yang Yihua. Regulative mechanism of wing-polymorphism[J]. Entomological Journal of East China, 1997, 6(1): 101-105.
[5]
王小艺, 杨忠岐, 魏可, 等昆虫翅型分化的表型可塑性机制[J/OL]. 生态学报, 2015, 35(12): 3988-3999[2021-04-06]. https://doi.org/10.5846/stxb201310302610.
Wang Xiaoyi, Yang Zhongqi, Wei Ke, et al. Mechanisms of phenotypic plasticity for wing morph differentiation in insects[J/OL]. Acta Ecologica Sinica, 2015, 35(12): 3988-3999[2021-04-06]. https://doi.org/10.5846/stxb201310302610.
[6]
张保常, 赵章武. 沙蟋翅多型性的调控机理[J]. 昆虫知识, 2009, 46(1): 5-11, 170.
Zhang Baochang, Zhao Zhangwu. The regulatory mechanisms of the wing-polymorphism in Gryllus firmus[J]. Chinese Bulletin of Entomology, 2009, 46(1): 5-11, 170.
[7]
张增全. 褐稻虱翅型分化的研究[J]. 昆虫学报, 1983(3): 260-267.
Zhang Zengquan. A study on the development of wing dimorphism in the rice brown planthopper, Nilaparvata lugens Stl[J]. Acta Entomologica Sinica, 1983(3): 260-267.
[8]
朱道弘, 阳柏苏. 飞蝗变型及体色多型的内分泌控制机理[J]. 动物学研究, 2004, 25(5): 460-464.
Zhu Daohong, Yang Baisu. Endocrine mechanisms controlling phase polymorphism and body-color polymorphism in Locusta migratoria[J]. Zoological Research, 2004, 25(5): 460-464.
[9]
邹运鼎, 陈基诚, 王士槐. 稻株营养物质与褐飞虱翅型分化的关系[J]. 昆虫学报, 1982(2): 220-222.
Zou Yunding, Chen Jicheng, Wang Shihuai. The relation between nutrient substances in the rice plant and wing dimorphism of the brown planthopper (Nilaparvata lugens Stl)[J]. Acta Entomologica Sinica, 1982(2): 220-222.
[10]
黄凤宽, 韦素美, 黄所生, 等. 若虫密度和水稻生育期对稻褐飞虱不同生物型若虫历期、存活及翅型分化的影响[J]. 西南农业学报, 2001, 14(3): 67-70.
Huang Fengkuan, Wei Sumei, Huang Suosheng, et al. Effects of nymphal density and rice growth stage on nymphal development, survival rate and wing dimorphism of different rice brown planthopper biotypes[J]. Southwest China Journal of Agricultural Sciences, 2001, 14(3): 67-70.
[11]
郭姗姗. 胰岛素信号通路参与调节豌豆蚜的翅非遗传多型[D]. 杨凌: 西北农林科技大学, 2016.
Guo Shanshan. Insulin signaling pathway is involved in regulating wing polyphenism of pea aphid[D]. Yangling: Northwest A&F University, 2016.
[12]
张金利. 褐飞虱翅型及生殖可塑性发育的分子机制研究[D]. 杭州: 浙江大学, 2019.
Zhang Jinli. Molecular mechanism of wing dimorphism and reproductive plasticity in brown planthopper, Nilaparvata lugens[D]. Hangzhou: Zhejiang University, 2019.
[13]
杨宗霖. 蜕皮激素对豌豆蚜翅型发育相关miRNA及其靶标基因的调控机制初探[D]. 南阳: 南阳师范学院, 2020.
Yang Zonglin. Preliminary study on the regulatory mechanism of ecdysone on wing-development-related miRNA and their target genes in pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae)[D]. Nanyang: Nanyang Normal University, 2020.
[14]
徐红星, 郑许松, 刘淑平, 等. 昆虫内共生菌在昆虫防御中的作用[J]. 昆虫知识, 2009, 46(3): 350-354.
Xu Hongxing, Zheng Xusong, Liu Shuping, et al. The role of endosymbionts in insect host resistance against adverse factors[J]. Chinese Bulletin of Entomology, 2009, 46(3): 350-354.
[15]
杨义婷, 郭建洋, 龙楚云, 等. 昆虫内共生菌及其功能研究进展[J/OL]. 昆虫学报, 2014, 57(1): 111-122[2021-04-06]. https://doi.org/10.16380/j.kcxb.2014.01.005.
Yang Yiting, Guo Jianyang, Long Chuyun, et al. Advances in endosymbionts and their functions in insects[J/OL]. Acta Entomologica Sinica, 2014, 57(1): 111-122[2021-04-06]. https://doi.org/10.16380/j.kcxb.2014.01.005.
[16]
龚鹏, 沈佐锐, 李志红. Wolbachia属共生细菌及其对节肢动物生殖活动的调控作用[J]. 昆虫学报, 2002, 45(2): 241-252.
Gong Peng, Shen Zuorui, Li Zhihong. Wolbachia endosymbionts and their manipulation of reproduction of arthropod hosts[J]. Acta Entomologica Sinica, 2002, 45(2): 241-252.
[17]
Zhang F M, Li X R, Zhang Y H, et al. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae)[J/OL]. Frontiers in Physiology, 2015, 6: 155[2021-04-06]. https://doi.org/10.3389/FPHYS.2015.00155.
[18]
Pureum N, Seung Y O, Soyeon P, et al. Association between host wing morphology polymorphism and Wolbachia infection in Vollenhovia emeryi (Hymenoptera: Myrmicinae)[J/OL]. Ecology and Evolution, 2020, 10(16): 8827-8837[2021-04-06]. https://doi.org/10.1002/ece3.6582.
[19]
Reyes M L, Laughton A M, Parker B J, et al. The influence of symbiotic bacteria on reproductive strategies and wing polyphenism in pea aphids responding to stress[J/OL]. Journal of Animal Ecology, 2019, 88(4): 601-611[2021-04-06]. https://doi.org/10.1111/1365-2656.12942.
[20]
Shang F, Niu J Z, Ding B Y, et al. Comparative insight into the bacterial communities in alate and apterous morphs of brown citrus Aphid(Hemiptera: Aphididae)[J/OL]. Journal of Economic Entomology, 2020, 113(3): 1436-1444[2021-04-06]. https://doi.org/10.1093/jee/toaa016.
[21]
曾晨爔, 林茂, 李忠琴, 等. 基于16S rRNA基因扩增子测序分析日本囊对虾肠道菌群结构与功能的特征[J]. 微生物学通报, 2020, 47(6):1857-1866[2021-04-06]. https://doi.org/10.13344/j.microbiol.china.190749.
Zeng Chenxi, Lin Mao, Li Zhongqin, et al. The structural and functional characteristics of the gut microbiota of Marsupenaeus japonicus as revealed by 16S rRNA gene amplicon sequencing[J]. Microbiology China, 2020, 47(6): 1857-1866[2021-04-06]. https://doi.org/10.13344/j.microbiol.china.190749.
[22]
Degnan P H, Ochman H. Illumina-based analysis of microbial community diversity[J/OL]. The ISME Journal Multidisciplinary Journal of Microbial Ecology, 2012, 6(S1):183-194[2021-04-06]. https://doi.org/10.1038/ismej.2011.74.
[23]
唐慧芳, 孙力军, 刘颖, 等. 基于Illumina MiSeq高通量测序技术分析硇洲岛海星共附生微生物多样性[J/OL]. 微生物学通报, 2020, 47(6): 1675-1684[2021-04-06]. https://doi.org/10.13344/j.microbiol.china.19078.
Tang Huifang, Sun Lijun, Liu Ying, et al. Analysis of symbiotic microorganism diversity in starfish of Naozhou island based on Illumina MiSeq high-throughput sequencing technology[J/OL]. Microbiology China, 2020, 47(6): 1675-1684[2021-04-06]. https://doi.org/10.13344/j.microbiol.china.19078.
[24]
Zhao Y, Zhang S, Luo J Y, et al. Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China[J/OL]. Scientific Reports, 2016, 6: 22958[2021-04-06]. https://doi.org/10.1038/srep22958.
[25]
Zepeda-Paulo F, Ortiz-Martínez S, Silva A X, et al. Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing[J/OL]. PeerJ, 2018, 6(5):e4725 [2021-04-06]. https://doi.org/10.7717/peerj.4725.
[26]
Ji Jichao, Zhang Shuai, Luo Junyu, et al. Comparative transcriptional analysis provides insights of possible molecular mechanisms of wing polyphenism induced by postnatal crowding in Aphis gossypii[J/OL]. Journal of Cotton Research, 2019, 2: 17[2021-04-06]. https://doi.org/10.1186/s42397-019-0036-z.
[27]
Gao X, Niu R C, Zhu X Z, et al. Characterization and comparison of the bacterial microbiota of Lysiphlebia japonica parasitioid wasps and their aphid host Aphis gosypii[J/OL]. Pest Management Science, 2021, 77(6): 2710-2718[2021-09-15]. https://doi.org/10.1002/ps.6299.
[28]
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J/OL]. Nature Methods, 2013, 10(10): 996-998[2021-04-06]. https://doi.org/10.1038/nmeth.2604.
[29]
Edgar R C, Has B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J/OL]. Bioinformatics, 2011, 27(16): 2194-2200[2021-04-06]. https://doi.org/10.1093/bioinformatics/btr381.
[30]
Chumbley J R, Friston K J. False discovery rate revisited: FDR and topological inference using Gaussian random fields[J/OL]. NeuroImage, 2009, 44(1): 62-70[2021-04-06]. https://doi.org/10.1016/j.neuroimage.2008.05.021.
[31]
Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J/OL]. Applied Environmental Microbiology, 2009, 75(23): 7537-7541[2021-04-06]. https://doi.org/10.1128/AEM.01541-09.
[32]
Wu G D, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J/OL]. Science, 2011, 334(6052): 105-108[2021-04-06]. https://doi.org/10.1126/science.1208344.
[33]
Barriuso J, Valverde J R, Mellado R P. Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows[J/OL]. BMC Bioinformatics, 2011, 12(1): 473[2021-04-06]. https://doi.org/10.1186/1471-2105-12-473.
[34]
Zhang X, Zou Q H, Zhao B T, et al. Effects of alternate-day fasting, time-restricted fasting and intermittent energy restriction DSS-induced on colitis and behavioral disorders[J/OL]. Redox Biology, 2020, 32: 101535[2021-04-06]. https://doi.org/10.1016/j.redox.2020.101535.
[35]
Zhang T, Wang N F, Zhang Y Q, et al. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)[J/OL]. Scientific Reports, 2015, 5: 14524[2021-04-06]. https://doi.org/10.1038/srep14524.
[36]
王渭霞, 朱廷恒, 赖凤香. 昆虫共生微生物及其功能研究进展[J/OL]. 昆虫学报, 2021, 64(1): 121-140[2021-04-06]. https://doi.org/10.16380/j.kcxb.2021.01.013.
Wang Weixia, Zhu Tingheng, Lai Fengxiang. Research advances in symbiotic microorganisms in insects and their functions[J/OL]. Acta Entomologica Sinica, 2021, 61(1): 121-140[2021-04-06]. https://doi.org/10.16380/j.kcxb.2021.01.013.
[37]
Dillon R, Charnley K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota[J/OL]. Research in Microbiology, 2002, 153(8): 503-509[2021-04-06]. https://doi.org/10.1016/S0923-2508(02)01361-X.
[38]
吴玉新, 张春玲, 洪晓月. 桃蚜与其内共生菌Buchnera之间的系统进化关系分析[J]. 南京农业大学学报, 2008, 31(1): 51-56.
Wu Yuxin, Zhang Chunling, Hong Xiaoyue. Analysis of the phylogenetic relationships between Myzus persicae and its endosymbiotic bacterium Buchnera[J]. Journal of Nanjing Agricultural University, 2008, 31(1): 51-56.
[39]
Rosenberg I Z, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution[J/OL]. FEMS Microbiology Reviews, 2008, 32(5): 723-735[2021-04-06]. https://doi.org/10.1111/j.1574-6976.2008.00123.x.
[40]
张元臣. 棉蚜体内原生共生菌Buchnera aphidicola种群密度的调控机制[D]. 南京: 南京农业大学, 2016.
Zhang Yuanchen. The regulation mechanisms of population density of Buchnera aphidicola in Aphis gossypii Glover[D]. Nanjing: Nanjing Agricultural University, 2016.
[41]
Xu S F, Jiang L Y, Qiao G X, et al. Diversity of bacterial symbionts associated with Myzus persicae (Sulzer) (Hemiptera: Aphididae: Aphidinae) revealed by 16S rRNA Illumina sequencing[J/OL]. Microbial Ecology, 2020, 81(3): 784-794[2021-04-06]. https://doi.org/10.1007/s00248-020-01622-6.
[42]
Blow F, Bueno E, Clark N, et al. B-vitamin nutrition in the pea aphid-Buchnera symbiosis[J/OL]. Journal of Insect Physiology, 2020, 126: 104092[2021-04-06]. https://doi.org/10.1016/j.jinsphys.2020.104092.
[43]
Hardie J, Leckstein P. Antibiotics, primary symbionts and wing polyphenism in three aphid species[J/OL]. Insect Biochemistry and Molecular Biology, 2007, 37(8): 886-890[2021-04-06]. https://doi.org/10.1016/j.ibmb.2007.05.005.

基金

中央级公益性科研院所基本科研业务费专项(1610162020020604)
PDF(8048 KB)

371

Accesses

0

Citation

Detail

段落导航
相关文章

/