
不同翅型棉蚜体内细菌群落组成和多样性分析
史庆雨, 李东阳, 王丽, 高雪珂, 张开心, 朱香镇, 姬继超, 雒珺瑜
不同翅型棉蚜体内细菌群落组成和多样性分析
Comparative analysis of bacteria composition and diversity in apterous and alate Aphis gossypii
【目的】 旨在明确不同翅型棉蚜体内细菌差异,探究体内细菌与棉蚜翅型分化间的关系。【方法】 通过Illumina MiSeq高通量测序分别对有翅型和无翅型棉蚜体内细菌16S rRNA基因V3~V4区进行测序,并根据测序结果进行操作分类单元(operational taxonomic unit, OTU)聚类分析、α多样性分析、菌种组成与分类等分析。【结果】 在所有棉蚜样本中共鉴定出234个体内细菌OTU,隶属于16门、32纲、64目、107科、148属、187种,其中布赫纳氏菌属(Buchnera)是优势菌属。2种翅型棉蚜体内细菌多样性不同:无翅型(隶属于12门、23纲、50目、82科、106属、136种)略高于有翅型(隶属于14门、26纲、45目、72科、97属、120种)。多种体内细菌的相对丰度在2种翅型棉蚜中存在显著差异。其中:红球菌属(Rhodococcus)细菌在有翅型棉蚜中的相对丰度较高(0.136%),而在无翅型棉蚜中较低(0.078%);未分类的蓝藻纲细菌在有翅型棉蚜体内相对丰度较低(0.005%),而在无翅型棉蚜中较高(0.024%)。【结论】 有翅型和无翅型棉蚜的体内细菌组成和群落结构存在一定的差异。该研究拓展了对棉蚜翅二型现象的认知。
[Objective] The purpose of this study is to clarify the differences in the bacteria of different wing morphic cotton aphids, and to explore the relationship between the bacteria and the wing dimorphic in cotton aphids. [Method] The V3-V4 region of 16S rRNA gene of alate and apterous Aphis gossypii was sequenced by Illumina MiSeq high-throughput sequencing technology. Then, operational taxonomic unit (OTU) clustering, α diversity, species composition and classification were analyzed according to the sequencing results. [Result] A total of 234 bacteria OTUs, belonging to 16 phyla, 32 classes, 64 orders, 107 families, 148 genera, and 187 species, were identified from all samples. Among them, Buchnera was the dominant genus. Bacteria diversity between these two wing morphs was different, and the bacteria diversity in apterous morph (belonging to 12 phyla, 23 classes, 50 orders, 82 families, 106 genera, and 136 species) was slightly higher than that of alate morph (belonging to 14 phyla, 26 classes, 45 orders, 72 families, 97 genera, and 120 species). There were significant differences in the relative abundance of many bacteria between the two morphs of cotton aphid. The relative abundance of Rhodococcus in the alate aphid was relatively higher (0.136%), but that in the apterous aphid was relatively lower (0.078%). Besides, the relative abundance of norank-cyanobacteria was lower (0.005%) in the alate aphid but higher (0.024%) in the apterous aphid. [Conclusion] There were differences in bacteria composition and community structure between alate and apterous cotton aphid. This study expanded the understanding about wing dimorphism in cotton aphids.
棉蚜 / 体内细菌 / 翅多型现象 / 16S rRNA / 基因测序 / 聚类分析 / 多样性 {{custom_keyword}} /
Aphis gossypii / bacteria / wing polyphenism / 16S rRNA / gene sequencing / cluster analysis / diversity {{custom_keyword}} /
表1 各样本质控后的数据统计Table 1 Statistical data of each sample after quality control |
样品编号 Sample ID | 读长数 Reads number | 长度 Length/bp | 平均长度 Average length/bp | 最小长度 Minimum length/bp | 最大长度 Maximum length/bp | 运算分类单元 OTU |
---|---|---|---|---|---|---|
AL_1 | 34 496 | 14 796 380 | 428.930 3 | 404 | 430 | 48 |
AL_2 | 43 018 | 18 451 304 | 428.920 5 | 404 | 431 | 54 |
AL_3 | 40 649 | 17 435 771 | 428.934 8 | 404 | 431 | 49 |
AL_4 | 44 199 | 18 955 601 | 428.869 5 | 302 | 430 | 75 |
AP_1 | 53 897 | 23 114 983 | 428.873 3 | 404 | 431 | 82 |
AP_2 | 45 086 | 19 333 073 | 428.804 4 | 404 | 430 | 97 |
AP_3 | 47 774 | 20 490 562 | 428.906 1 | 403 | 430 | 68 |
AP_4 | 51 342 | 22 020 981 | 428.907 7 | 262 | 430 | 52 |
注:AL_1~4 代表有翅蚜的4个生物重复;AP_1~4代表无翅蚜的4个生物重复。 | |
Note: AL_1-4 represent four biological replicates of alate aphids; AP_1-4 represent four biological replicates of apterous aphids. |
图1 有翅(AL)和无翅(AP)棉蚜体内细菌群落α多样性指数稀释曲线和样本聚类分析结果A:OTU水平的Shannon指数稀释曲线;B:OTU水平的Chao 1指数稀释曲线;C:OTU水平的主成分分析;D:OTU水平的主坐标分析。 C、D中横纵坐标后百分比分别表示主成分、主坐标对样本组成差异的解释度值。Fig. 1 Rarefaction curves from α-diversity indices and samples cluster analysis plot of bacteria communities from alate (AL) and apterous (AP) morphs of A. gossypii A: Shannon diversity index on OTU level; B: Chao 1 diversity index on OTU level; C: principal components analysis on OTU level; D: principal coordinates analysis on OTU level. The percentages behind the abscissa and ordinate in C and D respectively represent the explanatory value of principal component and principal coordinate to the difference in sample composition. |
表2 棉蚜体内细菌在不同分类水平上的组成Table 2 Community composition of bacteria in A. gossypii at different taxonomic levels considering both alate and apterous morphs |
分类水平Taxonomic level | 细菌类别Bacteria category | 相对丰度Relative abundance/% |
---|---|---|
门Phylum | 变形菌门Proteobacteria | 99.55 |
放线菌门Actinobacteria | 0.29 | |
纲Class | 丙型变形菌纲Gammaproteobacteria | 99.50 |
放线菌纲Actinobacteria | 0.29 | |
目Order | 肠杆菌目Enterobacteriales | 99.46 |
棒状杆菌目Corynebacteriales | 0.11 | |
科Family | 肠杆菌科Enterobacteriaceae | 99.46 |
诺卡氏菌科Nocardiaceae | 0.11 |
注:仅列出了相对丰度大于0.1%的细菌类目。 | |
Note: Only the bacteria categories with relative abundance over 0.1% were listed in the table. |
图3 有翅与无翅棉蚜各分类水平的细菌群落维恩图A:门水平;B:纲水平;C:目水平;D:科水平;E:属水平;F:种水平。AL与AP分别代表有翅型与无翅型棉蚜。Fig. 3 Venn diagram of community of bacteria from alate and apterous morphs of A. gossypii at different classification levels A: phylum level; B: class level; C: order level; D: family level; E: genus level; F: species level. AL represents alate morph, and AP represents apterous morph. |
图4 有翅型和无翅型棉蚜在属水平上的细菌多样性差异A:2种翅型棉蚜中优势细菌物种;AP_1~4代表无翅蚜的4个生物重复,AL_1~4 代表有翅蚜的4个生物重复。B:2种翅型棉蚜属水平的细菌相对丰度(百分数)差异显著性分析;右侧数值(概率,P)旁的星号代表差异显著(P<0.05);圆中颜色显示细菌相对丰度高的棉蚜种类,蓝色代表有翅蚜,红色代表无翅蚜。Fig. 4 The difference of diversity of bacteria on genus level in alate and apterous morphs of A. gossypii A: The dominant bacterial species proportion in alate and apterous morphs of A. gossypii; AP_1-4 represent four biological replicates of apterous morph, AL_1-4 represent four biological replicates of alate morph; B: Difference analysis of bacterial relative abundance (proportion) between alate and apterous morphs of A. gossypii; asterisks beside the right figures (probability, P) represent significant difference at the 0.05 probability level (P<0.05); colors of circles indicate the aphid morph with higher bacterial relative abundance, and the blue and red indicate alate and apterous morphs, respectively. |
[1] |
雒珺瑜, 张帅, 任相亮, 等. 近十年我国棉花虫害研究进展[J/OL]. 棉花学报, 2017, 29 (S1): 100-112[2021-04-06].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
闫慧敏, 邓小霞, 汪凤娟, 等. 不同棉蚜为害程度对花蕾期棉花生理生化的影响[J]. 新疆农业科学, 2013, 50(11): 2077-2084.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
袁一杨, 陈新, 王竹承, 等. 昆虫翅多型的分子调控机制研究进展[J/OL]. 应用昆虫学报, 2020, 57(2): 265-271[2021-04-06]. https://doi.org/10.7679/j.issn.2095-1353.2020.030.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
戴华国, 吴小毅, 杨亦桦. 昆虫翅多型现象的控制机理[J]. 华东昆虫学报, 1997, 6(1): 101-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
王小艺, 杨忠岐, 魏可, 等昆虫翅型分化的表型可塑性机制[J/OL]. 生态学报, 2015, 35(12): 3988-3999[2021-04-06]. https://doi.org/10.5846/stxb201310302610.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
张保常, 赵章武. 沙蟋翅多型性的调控机理[J]. 昆虫知识, 2009, 46(1): 5-11, 170.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
张增全. 褐稻虱翅型分化的研究[J]. 昆虫学报, 1983(3): 260-267.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
朱道弘, 阳柏苏. 飞蝗变型及体色多型的内分泌控制机理[J]. 动物学研究, 2004, 25(5): 460-464.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
邹运鼎, 陈基诚, 王士槐. 稻株营养物质与褐飞虱翅型分化的关系[J]. 昆虫学报, 1982(2): 220-222.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
黄凤宽, 韦素美, 黄所生, 等. 若虫密度和水稻生育期对稻褐飞虱不同生物型若虫历期、存活及翅型分化的影响[J]. 西南农业学报, 2001, 14(3): 67-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
郭姗姗. 胰岛素信号通路参与调节豌豆蚜的翅非遗传多型[D]. 杨凌: 西北农林科技大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
张金利. 褐飞虱翅型及生殖可塑性发育的分子机制研究[D]. 杭州: 浙江大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
杨宗霖. 蜕皮激素对豌豆蚜翅型发育相关miRNA及其靶标基因的调控机制初探[D]. 南阳: 南阳师范学院, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
徐红星, 郑许松, 刘淑平, 等. 昆虫内共生菌在昆虫防御中的作用[J]. 昆虫知识, 2009, 46(3): 350-354.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
杨义婷, 郭建洋, 龙楚云, 等. 昆虫内共生菌及其功能研究进展[J/OL]. 昆虫学报, 2014, 57(1): 111-122[2021-04-06]. https://doi.org/10.16380/j.kcxb.2014.01.005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
龚鹏, 沈佐锐, 李志红. Wolbachia属共生细菌及其对节肢动物生殖活动的调控作用[J]. 昆虫学报, 2002, 45(2): 241-252.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
曾晨爔, 林茂, 李忠琴, 等. 基于16S rRNA基因扩增子测序分析日本囊对虾肠道菌群结构与功能的特征[J]. 微生物学通报, 2020, 47(6):1857-1866[2021-04-06]. https://doi.org/10.13344/j.microbiol.china.190749.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
唐慧芳, 孙力军, 刘颖, 等. 基于Illumina MiSeq高通量测序技术分析硇洲岛海星共附生微生物多样性[J/OL]. 微生物学通报, 2020, 47(6): 1675-1684[2021-04-06]. https://doi.org/10.13344/j.microbiol.china.19078.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
王渭霞, 朱廷恒, 赖凤香. 昆虫共生微生物及其功能研究进展[J/OL]. 昆虫学报, 2021, 64(1): 121-140[2021-04-06]. https://doi.org/10.16380/j.kcxb.2021.01.013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
吴玉新, 张春玲, 洪晓月. 桃蚜与其内共生菌Buchnera之间的系统进化关系分析[J]. 南京农业大学学报, 2008, 31(1): 51-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
张元臣. 棉蚜体内原生共生菌Buchnera aphidicola种群密度的调控机制[D]. 南京: 南京农业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |