
陆地棉基因GhMIPS1A的克隆及功能分析
徐婷婷, 张弛, 冯震, 刘其宝, 李黎贝, 俞啸天, 张雅楠, 喻树迅
陆地棉基因GhMIPS1A的克隆及功能分析
Cloning and functional analysis of GhMIPS1A gene in upland cotton (Gossypium hirsutum L.)
【目的】 对肌醇-1-磷酸合酶(myo-inositol-1-phosphate synthase,MIPS)基因GhMIPS1A进行功能分析,探究其在陆地棉纤维发育及抗逆过程中的作用。【方法】 通过系统发育分析、基因结构分析、保守基序分析、荧光定量分析、烟草瞬时转化、拟南芥过表达试验、病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术等对GhMIPS1A基因进行研究。【结果】 从陆地棉TM-1中克隆获得GhMIPS1A基因,通过生物信息学分析发现该基因编码蛋白中存在4个高度保守的序列,分别为GWGGNNG、LWTANTERY、NGSPQNTFVPGL和SYNHLGNNDG。亚细胞定位结果显示,GhMIPS1A蛋白位于细胞膜。在拟南芥中过表达GhMIPS1A基因可促使拟南芥根长显著增加,肌醇含量提高1倍以上。空间表达模式分析表明,GhMIPS1A基因在根、茎、叶、纤维中优势表达,且在高衣分品种新陆早18号中的表达量显著高于其在低衣分品种德字棉531中的表达量;表达模式分析表明,GhMIPS1A基因在纤维发育早期阶段表达量较高。利用VIGS技术沉默TM-1的GhMIPS1A基因,3个株系的棉纤维密度显著降低,衣分分别降低4.48、4.93、3.95百分点,肌醇含量分别降低31.83%、32.90%、29.46%。在干旱处理或盐处理下,GhMIPS1A基因的表达量均表现出先升高后降低的趋势。【结论】 GhMIPS1A在棉纤维发育中发挥积极作用,并且能够响应干旱胁迫和盐胁迫,可以为培育优质高产、耐盐耐旱的棉花新品种提供基因资源和遗传基础。
[Objective] The purpose of this study is to analyze the function of myo-inositol-1-phosphate synthase gene GhMIPS1A in fiber development and stress resistance of upland cotton (Gossypium hirsutum L.). [Method] Phylogenetic analysis, gene structure analysis, conserved motif analysis, quantitative real-time polymerase chain reaction (qRT-PCR), tobacco transient transformation over-expression in Arabidopsis, and virus-induced gene silencing (VIGS) were performed to study the functions of GhMIPS1A. [Result] GhMIPS1A gene was cloned from upland cotton TM-1. Bioinformatics analysis showed that there were four highly conserved motifs, which were GWGGNNG, LWTANTERY, NGSPQNTFVPGL, and SYNHLGNNDG. GhMIPS1A was localized to the cell membrane. Overexpression of GhMIPS1A gene in Arabidopsis thaliana resulted in elongation of root, and a more than 1-fold increase of inositol content. The temporospatial expression pattern analysis showed that GhMIPS1A gene was highly expressed in root, stem, leaf, and fiber, and the expression level in Xinluzao 18 with high lint percentage was significantly higher than that of in Delfos 531 with low lint percentage. And GhMIPS1A gene had a high expression level at the initial stage of fiber development. Compared with the wild type, the cotton fiber density of three GhMIPS1A-silenced lines significantly decreased, and the lint percentage decreased by 4.48, 4.93, and 3.95 percentage points, and the inositol content decreased by 31.83%, 32.90%, and 29.46%, respectively. Under drought treatment or salt treatment, the expression level of GhMIPS1A gene increased first and then decreased. [Conclusion] GhMIPS1A gene plays an positive role in cotton fiber development and can respond to drought stress and salt stress, which can provide genetic resources and genetic basis for the breeding of new cotton varieties with high yield, fine fiber, and salt and drought tolerance.
陆地棉 / GhMIPS1A / 基因功能 / 纤维发育 / 抗逆性 / 耐盐性 / 耐旱性 {{custom_keyword}} /
upland cotton / GhMIPS1A / gene function / fiber development / stress tolerance / salt tolerance / drought tolerance {{custom_keyword}} /
表1 本研究中使用的引物Table 1 Primers used in this study |
引物名称Primer name | 引物序列Primer sequence | 用途Purpose |
---|---|---|
GhMIPS1A-F | TGGGGCAAAAGAGAAATAA | 基因克隆 |
GhMIPS1A-R | AAGGGAAAATGGTCCTAAAG | Gene cloning |
GhMIPS1A-XbaI-F | CTCTAGATGGGGCAAAAGAGAAATAA | 构建表达载体 |
GhMIPS1A-SacI-R | CGAGCTCAAGGGAAAATGGTCCTAAAG | Construction of expression vector |
GhMIPS1A-qF | GCAAAAGCAACTGAGACCCTAC | 检测GhMIPS1A的表达 |
GhMIPS1A-qR | ACCTCTCAGTGTTTGCAGTCC | qRT-PCR of GhMIPS1A |
GhHistone3-F | TCAAGACTGATTTGCGTTTCCA | 检测GhHistone3的表达 |
GhHistone3-R | GCGCAAAGGTTGGTGTCTTC | qRT-PCR of GhHistone 3 |
VIGS-F | GGACTAGTGCAAAAGCAACTGAGACCCTAC | VIGS载体构建 |
VIGS-R | TTGGCGCGCCACCTCTCAGTGTTTGCAGTCC | Construction of VIGS vector |
pCAMBIA3301-GFP-F | CGAGCTCGTGGGGCAAAAGAGAAATAA | 亚细胞定位 |
pCAMBIA3301-GFP-R | GGACTAGTCTTGTATTCCAAAATCATGTTGTT | Subcellular localization |
注:下划线示酶切位点。 | |
Note: The underline represents the restriction sites of restriction endonucleases. |
图1 10种植物的29个MIPS同源蛋白序列的进化分析Fig. 1 Phylogenetic analysis of 29 MIPS proteins of ten species |
图4 GhMIPS1A的时空表达分析A:GhMIPS1A在不同时期的纤维和胚珠中的相对表达量;B:GhMIPS1A基因在不同器官中的相对表达量。**: 两个材料间GhMIPS1A表达量差异显著(P<0.01)。Fig. 4 Temporal and spatial expression patterns of GhMIPS1A A: Relative expression of GhMIPS1A in fiber and ovule at different stages; B: Relative expression level of GhMIPS1A in different organs. ** means significant difference of GhMIPS1A expression between Xinluzao 18 and Delfos 531 at the 0.01 probability level. |
图6 GhMIPS1A沉默植株的表型A:GhMIPS1A沉默植株的表型;B:GhMIPS1A沉默植株中GhMIPS1A的表达量;C:GhMIPS1A沉默植株中肌醇和D-葡萄糖含量检测;D:GhMIPS1A沉默植株的纤维密度;E:GhMIPS1A沉默植株的衣分统计。不同小写字母表示差异达到显著水平。pCLCrVA-PDS和pCLCrVA分别是阳性对照和阴性对照,VL1~VL3是3个GhMIPS1A沉默植株。Fig. 6 Phenotypes of GhMIPS1A-silenced plants A: Phenotype of GhMIPS1A-silenced plant; B: Detection of GhMIPS1A expression in GhMIPS1A-silenced plants; C: Determination of inositol and D-glucose content in GhMIPS1A-silenced plants; D: Fiber density of GhMIPS1A-silenced plants; E: Lint percentage statistics of GhMIPS1A-silenced plants. Different lowercase letters indicate the significant difference at the 0.05 probability level. pCLCrVA-PDS: positive control; pCLCrVA: negative control; VL1, VL2, VL3: three GhMIPS1A-silenced plants. |
图7 GhMIPS1A基因在拟南芥中的功能研究A:过表达GhMIPS1A基因拟南芥的根,标尺为1 cm;B:转基因拟南芥中GhMIPS1A的表达水平;C:转基因拟南芥不同株系的根长;D:转基因拟南芥中肌醇和D-葡萄糖含量。不同小写字母表示差异显著;WT:野生型,L1~L3:3个T3过表达GhMIPS1A基因拟南芥株系。Fig. 7 Functional analysis of GhMIPS1A in A. thaliana A: Root of GhMIPS1A transgenic A. thaliana, scale bar: 1 cm; B: Relative expression level of GhMIPS1A in different transgenic lines; C: Root length in transgenic lines; D: Determination of inositol and D-glucose contents in different transgenic lines. Different lowercase letters indicate the significant difference at the 0.05 probability level. WT: wild type, L1-L3: three T3 transgenic Arabidopsis lines. |
图8 非生物胁迫下GhMIPS1A的表达模式及相关代谢物含量A~B:20% PEG 6000和200 mmol·L-1 NaCl 处理下丙二醛含量(A)、脯氨酸含量(B);C~F:20% PEG 6000或200 mmol·L-1 NaCl处理下GhMIPS1A的相对表达量(C~D)和肌醇含量(E~F)。Fig. 8 Expression patterns of GhMIPS1A and relative metabolite contents under different abiotic stresses A, B: MDA content and proline content in 20% PEG 6000 and 200 mmol·L-1 NaCl treatment; C-F: Relative expression level of GhMIPS1A (C, D) and inositol contents (E, F) in 20% PEG 6000 treatment or 200 mmol·L-1 NaCl treatment. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
张梦, 谢益民, 杨海涛, 等. 肌醇在植物体内的代谢概述——肌醇作为细胞壁木聚糖和果胶前体物的代谢途径[J]. 林产化学与工业, 2013, 33(5): 106-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
杨楠. 杨树肌醇代谢关键酶基因的表达及功能研究[D]. 烟台: 鲁东大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
郝广龙. 玉米肌醇-1-磷酸合成酶基因 ZmMIPS 的克隆及其抗旱功能鉴定[D]. 杨凌:西北农林科技大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
喻树迅, 范术丽, 王寒涛, 等. 中国棉花高产育种研究进展[J/OL]. 中国农业科学, 2016, 49(18): 3465-3476[2021-03-01]. https://doi.org/10.3864/j.issn.0578-1752.2016.18.001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
黄毅, 张玉龙. 保护地生产条件下的土壤退化问题及其防治对策[J/OL]. 土壤通报, 2004, 35(2): 212-216[2021-03-01]. https://doi.org/10.19336/j.cnki.trtb.2004.02.027.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
宿俊吉. 陆地棉早熟与产量纤维品质性状的全基因组关联分析及候选基因筛选[D]. 杨凌: 西北农林科技大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
郭亚宁. NAC转录因子在陆地棉叶片衰老中的作用[D]. 杨凌: 西北农林科技大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
赵凤利. 棉花叶片衰老相关基因GhNAC12的功能分析[D]. 北京: 中国农业科学院, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
吕淑霞. 基础生物化学实验指导[M]. 北京: 中国农业出版社, 2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-260.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
刘楚楚, 吴玉香. 棉花RCI2基因家族的鉴定及表达分析[J]. 山西农业大学学报 (自然科学版), 2021, 41(4): 41-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |