
基于隶属函数法对不同基因型棉种萌发期抗氧化能力的综合评价
王洪博,付媛媛,杨鸿基,孙文君,高阳,王兴鹏
基于隶属函数法对不同基因型棉种萌发期抗氧化能力的综合评价
Comprehensive evaluation of antioxidant ability of different genotypes of cotton in germination period based on subordinate function method
【目的】评估特早熟棉花品种中棉619的抗旱、耐盐、耐寒性以及逆境下的抗氧化能力。【方法】基于正交试验设计,用PEG模拟干旱胁迫、NaCl模拟土壤盐分胁迫、生化培养箱控制环境温度,以南疆膜下滴灌主栽品种新陆中37为对照,采用主成分分析、隶属函数法及聚类分析方法,对比分析了水、盐、温及其交互作用对两个棉花品种萌发期可溶性蛋白含量、淀粉酶及抗氧化保护酶活性等生理生化指标的影响。【结果】主成分分析表明:在水、盐、温及其交互作用下,超氧化物歧化酶活性和过氧化氢酶活性可以作为棉种萌发期抗旱、耐盐、耐寒性鉴定的生理生化指标;通过隶属函数法得出:15%(质量分数)PEG、0.4%(质量分数)NaCl及13 ℃条件下,中棉619抗氧化酶活性达到最高;新陆中37抗氧化酶活性在5% PEG、0.4% NaCl及19 ℃条件下达到最高。【结论】抗逆性强的品种一般具有较高的抗氧化能力,中棉619的抗旱及耐寒性高于新陆中37,对环境的适应能力较高,具有较高的抵抗环境胁迫的能力,可为棉花无膜种植栽培提供理论依据。
[Objective] This study aims to evaluate the drought, salt, and cold tolerance and correspondence antioxidant enzymes activity of an extra early maturing cotton variety, Zhongmian 619. [Methods] An orthogonal experimental design was used to setup stress conditions, where as PEG was used to simulate drought stress, NaCl was used to simalate as salt stress, and temperature was modulated by the growth incubator. By the principal component analysis, subordinate function method and cluster analysis, the effect of water, salt and temperature on the physiological and biochemical indexes such as soluble protein content, the axtivity of amylase and antioxidant protective enzymes during the germination period of the Xinluzhong 37 and Zhongmian 619 were compared and analyzed. Xinluzhong 37, which is the main cultivar of under-film drip irrigation in South Xinjiang, was used as the control. [Results] Principal component analysis showed that the activity of superoxide dismutase (SOD) and catalase (CAT) could be used as physiological and biochemical indicators for the evaluation of drought, salt and cold resistance/tolerance of cotton seeds during the germination period. By the subordinate function method, the antioxidant enzymes activities of Zhongmian 619 were at the highest level in 15% PEG, 0.4% NaCl and 13 ℃ treatment, while those of Xinluzhong 37 were at the highest level in 5% PEG, 0.4% NaCl and 19 ℃. [Conclusion] Cultivars with stronger stress resistance generally have higher antioxidant capacity. Zhongmian 619 is more resistant to drought and cold than Xinluzhong 37, and has a higher ability to adapt to environmental stress, which can provide theoretical basis for cotton cultivation without film.
棉种萌发 / 环境胁迫 / 隶属函数 / 聚类分析 / 抗氧化酶 {{custom_keyword}} /
cotton seed germination / environmental stress / subordinate function method / cluster analysis / antioxidant enzymes {{custom_keyword}} /
表1 正交表Table 1 Orthogonal table |
处理号 Treatment number | A | B | A×B | C | A×C | B×C |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 | 3 | 3 |
4 | 1 | 4 | 4 | 4 | 4 | 4 |
5 | 1 | 5 | 5 | 5 | 5 | 5 |
6 | 2 | 1 | 2 | 3 | 4 | 5 |
7 | 2 | 2 | 3 | 4 | 5 | 1 |
8 | 2 | 3 | 4 | 5 | 1 | 2 |
9 | 2 | 4 | 5 | 1 | 2 | 3 |
10 | 2 | 5 | 1 | 2 | 3 | 4 |
11 | 3 | 1 | 3 | 5 | 2 | 4 |
12 | 3 | 2 | 4 | 1 | 3 | 5 |
13 | 3 | 3 | 5 | 2 | 4 | 1 |
14 | 3 | 4 | 1 | 3 | 5 | 2 |
15 | 3 | 5 | 2 | 4 | 1 | 3 |
16 | 4 | 1 | 4 | 2 | 5 | 3 |
17 | 4 | 2 | 5 | 3 | 1 | 4 |
18 | 4 | 3 | 1 | 4 | 2 | 5 |
19 | 4 | 4 | 2 | 5 | 3 | 1 |
20 | 4 | 5 | 3 | 1 | 4 | 2 |
21 | 5 | 1 | 5 | 4 | 3 | 2 |
22 | 5 | 2 | 1 | 5 | 4 | 3 |
23 | 5 | 3 | 2 | 1 | 5 | 4 |
24 | 5 | 4 | 3 | 2 | 1 | 5 |
25 | 5 | 5 | 4 | 3 | 2 | 1 |
注:A×B、A×C及B×C分别表示水盐交互、水温交互及盐温交互。 | |
Note: A×B、 A×C and B×C represent water-salt interaction, water-temperature interaction and salt-temperature interaction, respectively. |
表2 棉种萌发生理指标的极差分析Table 2 Range analysis of physiological indexes of cotton seed germination |
萌发生理指标 Germination index | 因素 Factor | 水平1 Level 1 | 水平2 Level 2 | 水平3 Level 3 | 水平4 Level 4 | 水平5 Level 5 | 极差 Range | |||||||||||
T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | |||||||
可溶性蛋白含量 | A | 0.78 | 0.84 | 0.80 | 1.05 | 0.99 | 1.26 | 1.05 | 1.42 | 0.88 | 1.32 | 0.27 | 0.58 | |||||
Soluble protein | B | 0.86 | 1.03 | 0.97 | 1.14 | 0.95 | 1.35 | 0.87 | 1.31 | 0.85 | 1.08 | 0.12 | 0.32 | |||||
content | A×B | 1.06 | 1.31 | 0.76 | 1.41 | 0.84 | 0.87 | 0.84 | 1.09 | 1.01 | 1.22 | 0.29 | 0.53 | |||||
C | 0.74 | 1.27 | 0.99 | 1.09 | 1.03 | 1.11 | 1.01 | 1.21 | 0.74 | 1.21 | 0.30 | 0.18 | ||||||
A×C | 0.85 | 1.19 | 0.94 | 1.18 | 0.87 | 1.12 | 0.94 | 1.07 | 0.90 | 1.33 | 0.09 | 0.25 | ||||||
B×C | 0.81 | 1.15 | 0.90 | 1.03 | 0.96 | 1.36 | 0.87 | 1.29 | 0.97 | 1.07 | 0.15 | 0.32 | ||||||
POD活力 | A | 7.45 | 6.36 | 6.38 | 5.41 | 4.89 | 4.60 | 5.27 | 3.32 | 5.55 | 4.05 | 2.55 | 3.04 | |||||
POD activity | B | 6.67 | 5.15 | 5.47 | 5.21 | 6.15 | 4.67 | 6.25 | 4.03 | 5.00 | 4.68 | 1.67 | 1.18 | |||||
A×B | 4.52 | 4.03 | 7.11 | 4.37 | 6.27 | 5.51 | 6.69 | 5.00 | 4.95 | 4.83 | 2.59 | 1.48 | ||||||
C | 3.06 | 3.56 | 5.18 | 5.12 | 5.75 | 5.30 | 6.15 | 4.63 | 9.39 | 5.14 | 6.32 | 1.74 | ||||||
A×C | 6.50 | 4.41 | 5.81 | 4.82 | 5.83 | 5.36 | 5.34 | 4.29 | 6.05 | 4.87 | 1.16 | 1.07 | ||||||
B×C | 6.50 | 4.61 | 6.35 | 4.68 | 5.24 | 4.53 | 5.70 | 4.42 | 5.75 | 5.50 | 1.26 | 1.07 | ||||||
SOD活力 | A | 27.80 | 26.83 | 27.89 | 22.14 | 22.86 | 18.29 | 22.91 | 16.00 | 25.84 | 17.45 | 5.04 | 10.83 | |||||
SOD activity | B | 26.37 | 22.24 | 23.08 | 20.05 | 26.19 | 18.68 | 26.38 | 18.04 | 25.28 | 21.71 | 3.30 | 4.20 | |||||
A×B | 22.48 | 17.59 | 29.65 | 18.21 | 26.19 | 25.37 | 27.04 | 20.74 | 21.93 | 18.82 | 7.72 | 7.78 | ||||||
C | 29.60 | 19.55 | 22.45 | 21.25 | 21.79 | 21.07 | 22.50 | 19.66 | 30.96 | 19.18 | 9.17 | 2.07 | ||||||
A×C | 27.62 | 19.17 | 24.60 | 20.16 | 26.11 | 21.26 | 23.48 | 21.37 | 25.50 | 18.75 | 4.14 | 2.61 | ||||||
B×C | 28.28 | 20.72 | 25.90 | 22.31 | 22.78 | 17.29 | 26.90 | 18.51 | 23.44 | 21.88 | 5.49 | 5.02 | ||||||
萌发生理指标 Germination index | 因素 Factor | 水平1 Level 1 | 水平2 Level 2 | 水平3 Level 3 | 水平4 Level 4 | 水平5 Level 5 | 极差 Range | |||||||||||
T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | |||||||
CAT活力 | A | 0.20 | 0.27 | 0.46 | 2.26 | 0.11 | 1.37 | 0.22 | 1.12 | 0.26 | 2.05 | 0.35 | 1.99 | |||||
CAT activity | B | 0.19 | 1.69 | 0.30 | 1.62 | 0.34 | 1.16 | 0.29 | 1.30 | 0.15 | 1.30 | 0.19 | 0.53 | |||||
A×B | 0.17 | 1.55 | 0.35 | 1.12 | 0.28 | 1.74 | 0.19 | 1.48 | 0.27 | 1.18 | 0.18 | 0.62 | ||||||
C | 0.34 | 1.13 | 0.30 | 2.11 | 0.24 | 1.38 | 0.24 | 1.53 | 0.14 | 0.91 | 0.20 | 1.20 | ||||||
A×C | 0.29 | 1.31 | 0.34 | 1.27 | 0.17 | 1.63 | 0.12 | 1.14 | 0.34 | 1.71 | 0.22 | 0.57 | ||||||
B×C | 0.25 | 1.48 | 0.19 | 1.19 | 0.31 | 1.11 | 0.32 | 1.45 | 0.19 | 1.84 | 0.13 | 0.73 | ||||||
α-淀粉酶活力 | A | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | |||||
Alpha-amylase | B | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 | |||||
activity | A×B | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | |||||
C | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | 0.00 | ||||||
A×C | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | ||||||
B×C | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 | ||||||
β-淀粉酶活力 | A | 0.11 | 0.09 | 0.11 | 0.08 | 0.08 | 0.07 | 0.09 | 0.06 | 0.10 | 0.06 | 0.02 | 0.04 | |||||
Beta-amylase | B | 0.10 | 0.08 | 0.09 | 0.07 | 0.10 | 0.07 | 0.10 | 0.07 | 0.10 | 0.08 | 0.02 | 0.01 | |||||
activity | A×B | 0.08 | 0.06 | 0.12 | 0.06 | 0.10 | 0.09 | 0.10 | 0.07 | 0.08 | 0.07 | 0.03 | 0.03 | |||||
C | 0.12 | 0.07 | 0.08 | 0.07 | 0.08 | 0.08 | 0.09 | 0.07 | 0.12 | 0.07 | 0.04 | 0.01 | ||||||
A×C | 0.10 | 0.07 | 0.09 | 0.07 | 0.10 | 0.08 | 0.09 | 0.08 | 0.10 | 0.07 | 0.01 | 0.01 | ||||||
B×C | 0.11 | 0.07 | 0.10 | 0.08 | 0.09 | 0.06 | 0.10 | 0.07 | 0.09 | 0.08 | 0.02 | 0.02 | ||||||
总淀粉酶活力 | A | 0.13 | 0.12 | 0.13 | 0.10 | 0.10 | 0.08 | 0.11 | 0.07 | 0.12 | 0.08 | 0.03 | 0.05 | |||||
Total amylase | B | 0.12 | 0.10 | 0.11 | 0.09 | 0.12 | 0.08 | 0.13 | 0.08 | 0.12 | 0.10 | 0.02 | 0.02 | |||||
activity | A×B | 0.10 | 0.08 | 0.14 | 0.08 | 0.12 | 0.12 | 0.13 | 0.09 | 0.10 | 0.09 | 0.04 | 0.04 | |||||
C | 0.14 | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 | 0.11 | 0.09 | 0.15 | 0.09 | 0.05 | 0.01 | ||||||
A×C | 0.13 | 0.09 | 0.11 | 0.09 | 0.12 | 0.10 | 0.11 | 0.10 | 0.12 | 0.08 | 0.02 | 0.02 | ||||||
B×C | 0.13 | 0.09 | 0.12 | 0.10 | 0.11 | 0.08 | 0.13 | 0.09 | 0.11 | 0.10 | 0.03 | 0.02 |
表3 各主成分的特征向量及贡献率Table 3 The feature vector and contribution rate of each principal component |
主成分 Principal components | 可溶性蛋白 Soluble protein | POD | SOD | CAT | α-淀粉酶 Alpha- amylase | β-淀粉酶 Beta- amylase | 总淀粉酶 Total amylase | 贡献率 % Contribution rate | 累积贡献率 % Cumulative contribution rate | |||||||||||||||||
T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | |||||||||
PC1 | -0.42 | -0.43 | 0.25 | 0.35 | 0.44 | 0.43 | 0.11 | -0.01 | 0.43 | 0.37 | 0.43 | 0.43 | 0.43 | 0.43 | 74.47 | 75.22 | 74.47 | 75.22 | ||||||||
PC2 | 0.00 | -0.05 | -0.50 | 0.10 | 0.00 | -0.03 | 0.86 | 0.99 | 0.04 | -0.06 | 0.02 | 0.00 | 0.02 | -0.04 | 15.33 | 14.46 | 89.80 | 89.67 |
表4 萌芽期各处理的综合指标、隶属函数值、权重、综合评价值和排序Table 4 Comprehensive index, subordinate function value, weight, comprehensive evaluation value and ranking of each treatment in the germination stage |
处理 Treat-ment | 综合指标CI1 Comprehensive index CI1 | 综合指标CI2 Comprehensive index CI2 | 隶属函数值μ1 Subordinate function value μ1 | 隶属函数值μ2 Subordinate function value μ2 | 综合评价值D Comprehensive evaluation value | 排序 Rank | |||||||||||
T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | ||||||
1 | 3.16 | 1.60 | -0.04 | -1.18 | 0.82 | 0.71 | 0.34 | 0.06 | 0.74 | 0.60 | 4 | 10 | |||||
2 | 0.47 | 3.15 | 0.35 | -0.93 | 0.52 | 0.89 | 0.43 | 0.13 | 0.50 | 0.77 | 9 | 4 | |||||
3 | -0.49 | 4.10 | -0.13 | -1.15 | 0.41 | 1.00 | 0.32 | 0.07 | 0.39 | 0.85 | 15 | 1 | |||||
4 | 0.76 | 1.35 | -1.05 | -1.37 | 0.55 | 0.68 | 0.11 | 0.00 | 0.48 | 0.57 | 10 | 13 | |||||
5 | 1.41 | 2.66 | -1.52 | -1.18 | 0.63 | 0.83 | 0.00 | 0.06 | 0.52 | 0.71 | 8 | 6 | |||||
6 | 0.22 | 2.56 | -0.13 | 1.01 | 0.49 | 0.82 | 0.32 | 0.70 | 0.46 | 0.80 | 11 | 3 | |||||
7 | 0.68 | 2.10 | 1.28 | 2.01 | 0.54 | 0.77 | 0.64 | 1.00 | 0.56 | 0.80 | 7 | 2 | |||||
8 | 4.69 | 0.37 | -0.53 | -0.08 | 1.00 | 0.57 | 0.23 | 0.38 | 0.87 | 0.54 | 2 | 15 | |||||
9 | 0.28 | -2.21 | 2.87 | -0.26 | 0.50 | 0.27 | 1.00 | 0.33 | 0.58 | 0.28 | 5 | 19 | |||||
10 | -0.88 | 0.61 | 0.72 | 1.90 | 0.36 | 0.59 | 0.51 | 0.97 | 0.39 | 0.65 | 16 | 7 | |||||
11 | 1.70 | 1.45 | -1.15 | 0.01 | 0.66 | 0.69 | 0.08 | 0.41 | 0.56 | 0.65 | 6 | 8 | |||||
12 | -0.75 | 0.43 | -0.23 | 0.68 | 0.38 | 0.57 | 0.29 | 0.61 | 0.37 | 0.58 | 18 | 12 | |||||
13 | -3.03 | -0.90 | -0.19 | -0.03 | 0.12 | 0.42 | 0.30 | 0.40 | 0.15 | 0.41 | 23 | 16 | |||||
14 | -3.12 | -2.09 | -0.51 | 0.06 | 0.11 | 0.28 | 0.23 | 0.42 | 0.13 | 0.30 | 24 | 18 | |||||
15 | -0.76 | -2.87 | -0.19 | -0.73 | 0.38 | 0.19 | 0.30 | 0.19 | 0.37 | 0.19 | 17 | 23 | |||||
16 | -1.92 | -1.67 | 0.19 | 0.78 | 0.25 | 0.33 | 0.39 | 0.64 | 0.27 | 0.38 | 19 | 17 | |||||
17 | -3.09 | -2.15 | 0.77 | -0.43 | 0.11 | 0.27 | 0.52 | 0.28 | 0.18 | 0.27 | 22 | 20 | |||||
18 | -4.08 | -2.83 | 0.13 | -0.04 | 0.00 | 0.19 | 0.38 | 0.39 | 0.06 | 0.23 | 25 | 22 | |||||
19 | 4.01 | -2.98 | -1.24 | -0.99 | 0.92 | 0.18 | 0.06 | 0.11 | 0.78 | 0.17 | 3 | 24 | |||||
20 | -0.10 | 1.90 | -0.06 | -1.22 | 0.45 | 0.74 | 0.33 | 0.04 | 0.43 | 0.63 | 14 | 9 | |||||
21 | -1.55 | 0.54 | -0.90 | 0.81 | 0.29 | 0.58 | 0.14 | 0.64 | 0.26 | 0.59 | 21 | 11 | |||||
22 | -1.50 | -2.39 | -0.93 | -0.12 | 0.29 | 0.24 | 0.13 | 0.37 | 0.27 | 0.26 | 20 | 21 | |||||
23 | 3.89 | -4.49 | 2.39 | 0.05 | 0.91 | 0.00 | 0.89 | 0.42 | 0.91 | 0.07 | 1 | 25 | |||||
24 | -0.07 | 1.42 | 0.41 | 1.88 | 0.46 | 0.69 | 0.44 | 0.96 | 0.45 | 0.73 | 12 | 5 | |||||
25 | 0.07 | 0.34 | -0.31 | 0.50 | 0.47 | 0.56 | 0.27 | 0.55 | 0.44 | 0.56 | 13 | 14 | |||||
wj | 0.83 | 0.84 | 0.17 | 0.16 |
注:CI1和CI2分别为根据PC1和PC2的各特征向量计算出的综合指标值。μ1和μ2分别为CI1和CI2的隶属函数值。 | |
Note: CI1 and CI2 are the value of comprehensive indices calculated according to eigenvectors of PC1 and PC2, respectively. μ1 and μ2 are the subordinate function values of CI1 and CI2, respectively. |
[1] |
喻树迅. 无膜棉对中国棉花产业转型升级的意义[J]. 农学学报, 2019,9(3): 1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
塔伊尔·买买提江, 马亚丽, 兰海燕. 盐旱耦合胁迫对费尔干猪毛菜种子萌发及其幼苗生长的影响[J/OL]. 干旱区研究, 2019,36(4): 878-885[2021-01-01]. https://doi.org/10.13866/j.azr.2019.04.11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
冯春晓, 郝志军, 高健民, 等. 干旱胁迫下NaCl对棉花幼苗抗氧化酶活性及水分特征的影响[J/OL]. 干旱地区农业研究, 2018,36(6): 98-103[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2018.06.15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
Yildlrlm,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
田又升, 谢宗铭, 张建新, 等. 干旱复水对棉花苗期抗氧化系统及光合荧光参数的影响[J/OL]. 干旱地区农业研究, 2016,34(6): 209-214[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2016.06.32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
费克伟, 罗晓丽, 司怀军, 等. 五个棉花品种抗旱性与SOD活性相关性分析[J/OL]. 作物杂志, 2013(6): 134-136[2021-01-01]. https://doi.org/10.3969/j.issn.1001-7283.2013.06.035
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
The effect of colonization with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe on the growth and physiology of NaCl-stressed maize plants ( Zea mays L. cv. Yedan 13) was examined in the greenhouse. Maize plants were grown in sand with 0 or 100 mM NaCl and at two phosphorus (P) (0.05 and 0.1 mM) levels for 34 days, following 34 days of non-saline pre-treatment. Mycorrhizal plants maintained higher root and shoot dry weights. Concentrations of chlorophyll, P and soluble sugars were higher than in non-mycorrhizal plants under given NaCl and P levels. Sodium concentration in roots or shoots was similar in mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants had higher electrolyte concentrations in roots and lower electrolyte leakage from roots than non-mycorrhizal plants under given NaCl and P levels. Although plants in the low P plus AM fungus treatment and those with high P minus AM fungus had similar P concentrations, the mycorrhizal plants still had higher dry weights, soluble sugars and electrolyte concentrations in roots. Similar relationships were observed regardless of the presence or absence of salt stress. Higher soluble sugars and electrolyte concentrations in mycorrhizal plants suggested a higher osmoregulating capacity of these plants. Alleviation of salt stress of a host plant by AM colonization appears not to be a specific effect. Furthermore, higher requirement for carbohydrates by AM fungi induces higher soluble sugar accumulation in host root tissues, which is independent of improvement in plant P status and enhances resistance to salt-induced osmotic stress in the mycorrhizal plant.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
潘晓云, 曹琴东, 王根轩. 膜脂过氧化作为扁桃品种抗寒性鉴定指标研究[J/OL]. 生态学报, 2002(11): 1902-1911[2021-01-01]. https://doi.org/10.3321/j.issn:1000-0933.2002.11.015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Cold acclimation is an adaptive response whereby plants from temperate regions increase their capacity to tolerate freezing in response to low-nonfreezing temperatures. Numerous studies have unveiled the large transcriptome re-programming that takes place during cold acclimation in diverse species, and a number of proteins have been identified as important regulators of this adaptive response. Post-translational mechanisms regulating the function of proteins involved in cold acclimation have been, however, much less studied. Several components of the signal transduction pathways mediating cold response have been described to be post-translationally modified. These post-translational modifications, including protein phosphorylation and dephosphorylation, ubiquitination, SUMOylation, N-glycosylation and lipid modification, determine key aspects of protein function such as sub-cellular localization, stability, activity or ability to interact with other proteins. Integrating these post-translational mechanisms within the appropriate spatio-temporal context of cold acclimation is essential to develop new crops with improved cold tolerance. Here, we review available evidence regarding the post-translational regulation of cold acclimation, discuss its relevance for the accurate development of this response, and highlight significant missing data.Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较[J/OL]. 作物学报, 2011,37(3): 496-505[2021-01-01]. https://doi.org/10.3724/SP.J.1006.2011.00496.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王洪博, 杨莹攀, 高阳, 等. 环境因子对无膜滴灌棉种萌发特性的影响[J/OL]. 新疆农业科学, 2021(3): 430-440[2021-01-01]. http://www.xjnykx.com/CN/10.6048/j.issn.1001-4330.2021.03.005.
【目的】 研究水、盐、温及其交互作用等环境因子对无膜滴灌棉种中棉619萌发特性的影响。【方法】 基于正交试验、隶属函数法及聚类分析,以PEG模拟干旱胁迫、NaCl模拟土壤盐分胁迫及用生化培养箱控制环境温度,对比分析水、盐、温及其交互作用对无膜滴灌棉种中棉619(无膜棉)和膜下滴灌棉种新陆中37号2个棉种萌发特性的影响。【结果】 两者均对温度有较高的要求,而无膜滴灌棉种耐盐及抗旱性优于膜下滴灌棉种,其中温度对于种子萌发的影响达到极显著水平(P<0.01),盐分达到显著水平(P<0.05),而水分及交互作用未达到显著水平。【结论】 适宜无膜滴灌棉种中棉619环境因子范围是温度为25℃,盐分为0.1%~0.4%,水分为7.5%和15%,当水分含量为15%、盐分含量为0.2%及温度为25℃时,无膜滴灌棉种的萌发效果最好。
<b>【Objective】</b> To study the effects of water, salt, temperature and interaction on the germination characteristics of Zhongmian 619 cottond.<b>【Methods】</b> Based on orthogonal experiments, membership function method, and cluster analysis, PEG simulates drought stress, NaCl simulates soil salt stress, and a biochemical incubator were used to control the environmental temperature.The effects of water, salt, temperature and their interactions on filmless drip irrigation were compared and analyzed.After that, effects of germination characteristics on cotton cultivar Zhongmian 619 (filmless cotton) and Xinluzhong 37 cotton cultivar Xinluzhong under drip irrigation were compared.<b>【Results】</b> The results show that: Both had higher requirements for temperature, and the salt tolerance and drought resistance of cotton seeds without film and drip irrigation were better than those under drip irrigation.The effect of temperature on seed germination reached a significant level (<i>P </i><0.01), the salinity reached a significant level (<i>P </i><0.05), but the moisture and interactions did not reach a significant level.<b>【Conclusion】</b> Therefore, the suitable environmental factors for Zhongmian 619 cotton with no film drip irrigation are temperature 25℃, salt content 0.1%-0.4%, water content 7.5% and 15%, when water content is 15%, salt content is 0.2% and temperature is 25℃, the germination of the filmless cotton seed without drip irrigation was the best.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
严晓红, 包秋娟, 张富春. 萌发期干旱胁迫下棉花转录因子的表达[J/OL]. 种子, 2018,37(5): 13-18[2021-01-01]. https://doi.org/10.16590/j.cnki.1001-4705.2018.05.013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
李志博, 魏亦农. 北疆主栽棉花种子对渗透胁迫的响应及其萌发力差异评价[J/OL]. 种子, 2010,29(7): 1-4[2021-01-01]. https://doi.org/10.3969/j.issn.1001-4705.2010.07.001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
徐建伟, 张晨, 曾晓燕, 等. 近十年新疆北疆主栽棉花种子低温萌发能力差异评价[J/OL]. 新疆农业科学, 2017,54(9): 1569-1578[2021-01-01]. http://www.xjnykx.com/CN/10.6048/j.issn.1001-4330.2017.09.001.
【目的】研究低温对棉花种子萌发特性的影响,筛选耐冷种质资源,探讨模糊隶属函数法在棉花种子低温耐冷性鉴定的应用。【方法】以近10年新疆北疆主栽的棉花品种(系)为试材,测试种子发芽指标对不同温度的响应变化,基于发芽指标和相对发芽指标(耐冷系数)的模糊隶属函数值法,对试材的低温萌发能力差异进行评价。【结果】随着胁迫增强,棉花种子的萌发能力受到显著抑制,种子平均发芽速度随温度上升呈下降趋势,而其它发芽指标均随温度上升呈显著增高。棉花种子的耐冷萌发力均与其萌发指标显著正相关。同一低温下两种隶属函数法对种子低温萌发能力的鉴定结果高度一致,但不同低温下参试棉花种子的萌发力有所差异。15℃种子萌发强的为中棉所36号和新陆早46号,20℃为新陆早25号、新陆早42号、新陆早36号、新陆中26号、中棉所36号、新陆早41号和新陆早35号。低温下,除了平均发芽速度,其它棉花种子的发芽指标间及其与种子萌发力两两极显著相关。采用逐步回归法建立了不同低温下棉花种子萌发耐冷性的鉴定模型,其中15℃为Y=0.01+0.022<sup>*</sup>发芽指数,20℃为Y=-0.046+0.002<sup>*</sup>发芽率+0.005<sup>*</sup>种子萌发指数。【结论】萌芽期种子耐冷性强的材料为中棉所36号和新陆早46号。基于发芽指标的模糊隶属函数法可以有效用于棉花种子萌芽的耐冷性鉴定评价。
【<b>Objective</b>】 In order to understand the effect of low temperature on seed germination and to explore the suitable methods for identifying chilling tolerance of cotton seeds.【<b>Method</b>】Some mainly-cultivated cottons were selected as the experimental materials in northern Xinjiang in recent ten years, responses of seed germination characteristics to different temperature were studied, and their germination abilities were also evaluated using germination parameters and relative germination parameters (cold tolerance coefficient)according to subordinative function method under low temperature, respectively.【<b>Result</b>】With the increase of stress, the germination ability of cotton seeds was significantly inhibited, the average seed germination rate decreased with the increase of the temperature, and other indexes of germination were significantly higher with the increase of the temperature. The cold resistant germination ability of cotton seeds was positively correlated with the tested germination index. At the same low temperature, two kinds of subordinate function method showed a good agreement on the seed germination ability at low temperature, but the germination rate of cotton seed under different low temperature was different. The seed germination of Zhongmiansuo No.36 and Xinluzao No.46 had a high chilling-tolerance at 15℃, and at 25℃, those with high chilling tolerance were Xinluzao No.25, Xinluzao No.42, Xinluzao No.36, Xinluzhong No.26, Zhongmiansuo No.36, Xinluzao No.41 and Xinluzao No.35. Except for the average germination speed, the relationship among others germination parameters and seed germination ability was significantly correlated. The identification model for cold resistant cotton seed germination under low temperature was established by stepwise regression method: <i>Y=0.01+0.022<sup>*</sup></i> GI (germination index) (<i>R</i><sup>2</sup>=0.998) at 15℃; <i>Y=-0.046+0.002<sup>*</sup></i> GR (germination rate) +0.005<sup>*</sup> SGC (Seed germination coefficient) (<i>R</i><sup>2</sup>=0.992) at 12℃. 【<b>Conclusion</b>】The seed of Zhongmiansuo NO.36 and Xinluzao NO.46 had a high chilling tolerance at the seed germination stage. The germination index of fuzzy membership function method can be effectively used for the identification and evaluation of cold tolerance based on cotton seed germination.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
程建权. 城市系统工程[M]. 武汉: 武汉大学出版社, 2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
王贺正. 水稻抗旱性研究及其鉴定指标的筛选[D]. 雅安: 四川农业大学, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
苗永美, 宁宇, 曹玉杰, 等. 黄瓜萌芽期和苗期耐冷性评价[J/OL]. 应用生态学报, 2013,24(7): 1914-1922[2021-01-01]. https://doi.org/10.13287/j.1001-9332.2013.0426
A total of 13 cucumber materials were used to study the relationships of cucumber's chilling tolerance with the 12 growth indices at germination and seedling stages. There existed significant differences in the relative germination rate, germination index, hypocotyl length, and vigor index at 17 degrees C among the 13 materials (P < 0.05), which also significantly correlated to the chilling tolerance. At seedling stage, the physiology among the materials after treated at 4 degrees C for 2 days had obvious difference. Chilling injury index had significant correlation with the survival rate after recovery, but less correlation with the soluble protein (SP) content, electric conductivity (EC), and superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activities. The chilling tolerance of the materials was classified into three levels by clustering analysis, and the cucumber' s chilling tolerance equations at the two stages were established through stepwise regression analysis. Based on confidence interval value, the chilling tolerance of cucumber could be well assessed.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
贾亚雄, 李向林, 袁庆华, 等. 披碱草属野生种质资源苗期耐盐性评价及相关生理机制研究[J/OL]. 中国农业科学, 2008(10): 2999-3007[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2008.10.012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
胡根海, 董娜, 晁毛妮, 等. PEG模拟干旱胁迫对不同抗逆性棉花的生理特性的影响[J/OL]. 干旱地区农业研究, 2017,35(5): 223-228[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2017.05.33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
李玲, 沈宝宇, 张天静, 等. 豌豆种质资源芽期耐旱性评价及耐旱种质筛选[J/OL]. 植物遗传资源学报, 2017,18(4): 778-785[2021-01-01]. https://doi.org/10.13430/j.cnki.jpgr.2017.04.022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
Reactive O(2) species (ROS) are produced in both unstressed and stressed cells. Plants have well-developed defence systems against ROS, involving both limiting the formation of ROS as well as instituting its removal. Under unstressed conditions, the formation and removal of O(2) are in balance. However, the defence system, when presented with increased ROS formation under stress conditions, can be overwhelmed. Within a cell, the superoxide dismutases (SODs) constitute the first line of defence against ROS. Specialization of function among the SODs may be due to a combination of the influence of subcellular location of the enzyme and upstream sequences in the genomic sequence. The commonality of elements in the upstream sequences of Fe, Mn and Cu/Zn SODs suggests a relatively recent origin for those regulatory regions. The differences in the upstream regions of the three FeSOD genes suggest differing regulatory control which is borne out in the research literature. The finding that the upstream sequences of Mn and peroxisomal Cu/Zn SODs have three common elements suggests a common regulatory pathway. The tools are available to dissect further the molecular basis for antioxidant defence responses in plant cells. SODs are clearly among the most important of those defences, when coupled with the necessary downstream events for full detoxification of ROS.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
陈新, 张宗文, 吴斌. 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选[J/OL]. 中国农业科学, 2014,47(10): 2038-2046[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2014.10.018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
孙小芳, 刘友良, 陈沁. 棉花耐盐性研究进展[J]. 棉花学报, 1998,10(3): 3-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
宋江峰, 李大婧, 刘春泉, 等. 甜糯玉米软罐头主要挥发性物质主成分分析和聚类分析[J/OL]. 中国农业科学, 2010,43(10): 2122-2131[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2010.10.019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
李双男, 郭慧娟, 侯振安. 不同盐碱胁迫对棉花离子组稳态及Na+相关基因表达影响[J/OL]. 棉花学报, 2019,31(6): 515-528[2021-01-01]. https://doi.org/10.11963/1002-7807.lsnhza.20191106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
唐伟, 南志标. 不同温度下PEG-6000渗透胁迫对歪头菜种子发芽的影响[J]. 草业科学, 2019,36(5): 1323-1332.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |