基于隶属函数法对不同基因型棉种萌发期抗氧化能力的综合评价

王洪博,付媛媛,杨鸿基,孙文君,高阳,王兴鹏

PDF(1444 KB)
PDF(1444 KB)
棉花学报 ›› 2021, Vol. 33 ›› Issue (5) : 393-403. DOI: 10.11963/cs20210017
研究与进展

基于隶属函数法对不同基因型棉种萌发期抗氧化能力的综合评价

作者信息 +

Comprehensive evaluation of antioxidant ability of different genotypes of cotton in germination period based on subordinate function method

Author information +
History +

摘要

【目的】评估特早熟棉花品种中棉619的抗旱、耐盐、耐寒性以及逆境下的抗氧化能力。【方法】基于正交试验设计,用PEG模拟干旱胁迫、NaCl模拟土壤盐分胁迫、生化培养箱控制环境温度,以南疆膜下滴灌主栽品种新陆中37为对照,采用主成分分析、隶属函数法及聚类分析方法,对比分析了水、盐、温及其交互作用对两个棉花品种萌发期可溶性蛋白含量、淀粉酶及抗氧化保护酶活性等生理生化指标的影响。【结果】主成分分析表明:在水、盐、温及其交互作用下,超氧化物歧化酶活性和过氧化氢酶活性可以作为棉种萌发期抗旱、耐盐、耐寒性鉴定的生理生化指标;通过隶属函数法得出:15%(质量分数)PEG、0.4%(质量分数)NaCl及13 ℃条件下,中棉619抗氧化酶活性达到最高;新陆中37抗氧化酶活性在5% PEG、0.4% NaCl及19 ℃条件下达到最高。【结论】抗逆性强的品种一般具有较高的抗氧化能力,中棉619的抗旱及耐寒性高于新陆中37,对环境的适应能力较高,具有较高的抵抗环境胁迫的能力,可为棉花无膜种植栽培提供理论依据。

Abstract

[Objective] This study aims to evaluate the drought, salt, and cold tolerance and correspondence antioxidant enzymes activity of an extra early maturing cotton variety, Zhongmian 619. [Methods] An orthogonal experimental design was used to setup stress conditions, where as PEG was used to simulate drought stress, NaCl was used to simalate as salt stress, and temperature was modulated by the growth incubator. By the principal component analysis, subordinate function method and cluster analysis, the effect of water, salt and temperature on the physiological and biochemical indexes such as soluble protein content, the axtivity of amylase and antioxidant protective enzymes during the germination period of the Xinluzhong 37 and Zhongmian 619 were compared and analyzed. Xinluzhong 37, which is the main cultivar of under-film drip irrigation in South Xinjiang, was used as the control. [Results] Principal component analysis showed that the activity of superoxide dismutase (SOD) and catalase (CAT) could be used as physiological and biochemical indicators for the evaluation of drought, salt and cold resistance/tolerance of cotton seeds during the germination period. By the subordinate function method, the antioxidant enzymes activities of Zhongmian 619 were at the highest level in 15% PEG, 0.4% NaCl and 13 ℃ treatment, while those of Xinluzhong 37 were at the highest level in 5% PEG, 0.4% NaCl and 19 ℃. [Conclusion] Cultivars with stronger stress resistance generally have higher antioxidant capacity. Zhongmian 619 is more resistant to drought and cold than Xinluzhong 37, and has a higher ability to adapt to environmental stress, which can provide theoretical basis for cotton cultivation without film.

关键词

棉种萌发 / 环境胁迫 / 隶属函数 / 聚类分析 / 抗氧化酶

Keywords

cotton seed germination / environmental stress / subordinate function method / cluster analysis / antioxidant enzymes

引用本文

导出引用
王洪博 , 付媛媛 , 杨鸿基 , 孙文君 , 高阳 , 王兴鹏. 基于隶属函数法对不同基因型棉种萌发期抗氧化能力的综合评价[J]. 棉花学报, 2021, 33(5): 393-403. https://doi.org/10.11963/cs20210017
Wang Hongbo , Fu Yuanyuan , Yang Hongji , Sun Wenjun , Gao Yang , Wang Xingpeng. Comprehensive evaluation of antioxidant ability of different genotypes of cotton in germination period based on subordinate function method[J]. Cotton Science, 2021, 33(5): 393-403. https://doi.org/10.11963/cs20210017
2017年,中国农业科学院棉花研究所成功培育出适于新疆地区无膜直播的特早熟棉花新品种——中棉619。新品种的成功选育和无膜栽培技术取得的突破性进展,为解决棉田残膜污染提供了可行的技术途径[1]。在南疆地区,植物生长发育常受盐渍、干旱、高低温、强光照等不利因素的影响[2-4],其中干旱[5]、低温[6]和盐渍[4]是植物生长最主要的逆境生态因子,显著影响种子的萌发[7-8]。在环境胁迫或生物胁迫条件下,过量的活性氧(Reactive oxygen species,ROS)在植物体内造成氧化胁迫[5],而植物利用超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化物酶(Peroxidase,POD)、过氧化氢酶(Catalase,CAT)等抗氧化酶促保护系统和非酶促保护系统清除植物体内多余的活性氧,降低膜脂过氧化水平,减轻细胞膜受害程度[9-11]
干旱胁迫会破坏植物体内活性氧代谢平衡,引起膜脂过氧化[12],对膜系统、细胞、器官甚至整株植物造成伤害[13]。抗旱性强的棉花品种的SOD活性随着干旱处理时间延长而增加[14],过表达SOD能提高植物对干旱、盐渍等非生物胁迫的适应性[15],即抗氧化酶活性的提高可增强植物的综合抗性[5]。盐胁迫诱使植物体内产生大量的活性氧自由基,导致活性氧代谢失衡,膜脂过氧化程度加重,膜结构和功能被破坏,蛋白质和叶绿素降解,从而降低植物光合性能[16]。然而,盐胁迫下植物体内合成累积的一些小分子有机物质,如氨基酸、可溶性糖等可以减轻盐胁迫对植物的伤害[17]。低温逆境会导致植物多方面损伤,包括生物膜透性增大[18]、活性氧积累引起的氧化胁迫[19-20]、渗透调节失衡、多种蛋白质变性,酶活性降低甚至丧失[21]。而植物在低温逆境中会通过调节抗氧化酶活性[22]和积累渗透调节物质[23]增强植物抗逆性。棉花由覆膜种植转为无膜种植,导致棉种萌发的外界环境发生改变。因此,本试验以南疆膜下滴灌主栽品种新陆中37(具有适应性好、抗性强的特点)为对照,研究了水、盐、温及其交互作用对无膜直播中棉619可溶性蛋白含量、淀粉酶及抗氧化保护酶活力的影响,评估其抗氧化能力,以期为抗旱、耐盐及耐寒棉花品种选育和种植栽培提供依据,从而促进棉花无膜栽培技术的大面积推广,进而解决地膜残留问题。

1 材料与方法

1.1 试验材料

本试验于2019年在农业农村部作物需水与调控重点实验室进行。供试棉花品种为T1:中棉619(无膜滴灌主栽棉种);T2:新陆中37(膜下滴灌主栽棉种)。选择PEG(因素A)、NaCl(因素B)及温度(因素C)3个主要环境因子,每个因子设置5个水平 (因素A1~A5:5.0%、7.5%、10.0%、12.5%和15.0%(质量分数,下同);因素B1~B5:0.1%、0.2%、0.4%、0.6%和0.8%;因素C1~C5:13 ℃、16 ℃、19 ℃、22 ℃和25 ℃),参考6因素5水平的L25(56)的正交表设计[24],如表1所示。
表1 正交表

Table 1 Orthogonal table

处理号
Treatment
number
A B A×B C A×C B×C
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 1 4 4 4 4 4
5 1 5 5 5 5 5
6 2 1 2 3 4 5
7 2 2 3 4 5 1
8 2 3 4 5 1 2
9 2 4 5 1 2 3
10 2 5 1 2 3 4
11 3 1 3 5 2 4
12 3 2 4 1 3 5
13 3 3 5 2 4 1
14 3 4 1 3 5 2
15 3 5 2 4 1 3
16 4 1 4 2 5 3
17 4 2 5 3 1 4
18 4 3 1 4 2 5
19 4 4 2 5 3 1
20 4 5 3 1 4 2
21 5 1 5 4 3 2
22 5 2 1 5 4 3
23 5 3 2 1 5 4
24 5 4 3 2 1 5
25 5 5 4 3 2 1
注:A×B、A×C及B×C分别表示水盐交互、水温交互及盐温交互。
Note: A×B、 A×C and B×C represent water-salt interaction, water-temperature interaction and salt-temperature interaction, respectively.
棉种消毒后在超纯水中浸泡24 h,取出后剥掉种皮[25],各处理挑选大小一致、籽粒饱满的30粒种子播种于直径为9 cm的培养皿(经150 ℃高温灭菌2 h,底部铺有2层经酒精浸泡后风干的滤纸)[26],加入5 mL处理液,以超纯水为空白对照,置入不同温度的生化培养箱中培养,自萌发后第4天给予光照,昼/夜时间为12 h/12 h。

1.2 测定指标与方法

种子连续萌发8 d,其间每天记录发芽种子数,以胚根突破种皮长度达到种子长度的一半作为萌发标准[27],于第8天分3份收取培养皿内所有胚芽,并利用南京生物建成生物工程研究所的超氧化物歧化酶试剂盒(WST-1法)、过氧化物酶试剂盒(分光光度比色法)、过氧化氢酶试剂盒(钼酸铵法)、可溶性蛋白试剂盒(BCA微板法)及β-淀粉酶试剂盒(分光光度比色法),按照试剂盒说明书要求操作,分别测定可溶性蛋白含量和SOD、POD、CAT、及淀粉酶的活力。

1.3 相关指标的计算

(1)综合指标CIi参考程建权模糊数学建模[28]的方法计算:
CIi=j=17EijXj
(1)
式中:CI i表示第i个综合指标;Eij表示第i个主成分第j个单项指标对应的特征向量;Xj表示第j个单项指标的标准化值。
(2)隶属函数μij、综合指标权重wj及综合评价值D参照王贺正[29]的方法计算:
数据标准化:运用模糊数学隶属函数法对萌发指标进行标准化,如公式(2)和(3):
μij=XijXj min Xj max Xjmin 
(2)
Vj=1j(XijX¯ij)2X¯ij
(3)
权重处理:采用标准差系数法,计算标准差系数Vj,归一化后得到各个萌发指标的权重系数Wj,如公式(4):
Wj=Vj1jVj
(4)
综合评价值D:棉种抗旱、耐盐及生长综合评价值D的计算,如公式(5):
D=1j(μijWj)
(5)
式中:μij表示i种类j指标的隶属值;Xij表示i种类j指标的测定值;XjmaxXjmin分别表示指标的最大值和最小值;Vj表示标准差系数。

1.4 数据分析

采用Microsoft Excel 2010进行数据处理,SPSS 26软件进行主成分程序运算及聚类分析。

2 结果与分析

2.1 不同环境因子下棉种萌发的生理指标直观分析

由试验指标和平均值计算判断试验因素的优水平和优组合,根据极差计算判断试验因素的主次顺序,本文以2种棉种可溶性蛋白含量、POD、SOD、CAT、α-淀粉酶、β-淀粉酶及总淀粉酶活性力7个生理指标进行极差分析。由表2可知,不同水、盐、温胁迫组合下2个棉种生理指标在呈现不同程度的变化,如中棉619棉种POD和SOD的活力分别在PEG浓度为5%、NaCl浓度为0.1%及温度为25 ℃,PEG浓度为7.5%、NaCl浓度为0.6%及温度为25 ℃时最高;而新陆中37棉种POD和SOD分别在PEG浓度为5%、NaCl浓度为0.2%及温度为19 ℃,PEG浓度为5%、NaCl浓度为0.1%及温度为16 ℃时活力最高。
表2 棉种萌发生理指标的极差分析

Table 2 Range analysis of physiological indexes of cotton seed germination

萌发生理指标
Germination index
因素
Factor
水平1
Level 1
水平2
Level 2
水平3
Level 3
水平4
Level 4
水平5
Level 5
极差
Range
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
可溶性蛋白含量 A 0.78 0.84 0.80 1.05 0.99 1.26 1.05 1.42 0.88 1.32 0.27 0.58
Soluble protein B 0.86 1.03 0.97 1.14 0.95 1.35 0.87 1.31 0.85 1.08 0.12 0.32
content A×B 1.06 1.31 0.76 1.41 0.84 0.87 0.84 1.09 1.01 1.22 0.29 0.53
C 0.74 1.27 0.99 1.09 1.03 1.11 1.01 1.21 0.74 1.21 0.30 0.18
A×C 0.85 1.19 0.94 1.18 0.87 1.12 0.94 1.07 0.90 1.33 0.09 0.25
B×C 0.81 1.15 0.90 1.03 0.96 1.36 0.87 1.29 0.97 1.07 0.15 0.32
POD活力 A 7.45 6.36 6.38 5.41 4.89 4.60 5.27 3.32 5.55 4.05 2.55 3.04
POD activity B 6.67 5.15 5.47 5.21 6.15 4.67 6.25 4.03 5.00 4.68 1.67 1.18
A×B 4.52 4.03 7.11 4.37 6.27 5.51 6.69 5.00 4.95 4.83 2.59 1.48
C 3.06 3.56 5.18 5.12 5.75 5.30 6.15 4.63 9.39 5.14 6.32 1.74
A×C 6.50 4.41 5.81 4.82 5.83 5.36 5.34 4.29 6.05 4.87 1.16 1.07
B×C 6.50 4.61 6.35 4.68 5.24 4.53 5.70 4.42 5.75 5.50 1.26 1.07
SOD活力 A 27.80 26.83 27.89 22.14 22.86 18.29 22.91 16.00 25.84 17.45 5.04 10.83
SOD activity B 26.37 22.24 23.08 20.05 26.19 18.68 26.38 18.04 25.28 21.71 3.30 4.20
A×B 22.48 17.59 29.65 18.21 26.19 25.37 27.04 20.74 21.93 18.82 7.72 7.78
C 29.60 19.55 22.45 21.25 21.79 21.07 22.50 19.66 30.96 19.18 9.17 2.07
A×C 27.62 19.17 24.60 20.16 26.11 21.26 23.48 21.37 25.50 18.75 4.14 2.61
B×C 28.28 20.72 25.90 22.31 22.78 17.29 26.90 18.51 23.44 21.88 5.49 5.02
萌发生理指标
Germination index
因素
Factor
水平1
Level 1
水平2
Level 2
水平3
Level 3
水平4
Level 4
水平5
Level 5
极差
Range
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
CAT活力 A 0.20 0.27 0.46 2.26 0.11 1.37 0.22 1.12 0.26 2.05 0.35 1.99
CAT activity B 0.19 1.69 0.30 1.62 0.34 1.16 0.29 1.30 0.15 1.30 0.19 0.53
A×B 0.17 1.55 0.35 1.12 0.28 1.74 0.19 1.48 0.27 1.18 0.18 0.62
C 0.34 1.13 0.30 2.11 0.24 1.38 0.24 1.53 0.14 0.91 0.20 1.20
A×C 0.29 1.31 0.34 1.27 0.17 1.63 0.12 1.14 0.34 1.71 0.22 0.57
B×C 0.25 1.48 0.19 1.19 0.31 1.11 0.32 1.45 0.19 1.84 0.13 0.73
α-淀粉酶活力 A 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
Alpha-amylase B 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00
activity A×B 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.01 0.01
C 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.00
A×C 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
B×C 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00
β-淀粉酶活力 A 0.11 0.09 0.11 0.08 0.08 0.07 0.09 0.06 0.10 0.06 0.02 0.04
Beta-amylase B 0.10 0.08 0.09 0.07 0.10 0.07 0.10 0.07 0.10 0.08 0.02 0.01
activity A×B 0.08 0.06 0.12 0.06 0.10 0.09 0.10 0.07 0.08 0.07 0.03 0.03
C 0.12 0.07 0.08 0.07 0.08 0.08 0.09 0.07 0.12 0.07 0.04 0.01
A×C 0.10 0.07 0.09 0.07 0.10 0.08 0.09 0.08 0.10 0.07 0.01 0.01
B×C 0.11 0.07 0.10 0.08 0.09 0.06 0.10 0.07 0.09 0.08 0.02 0.02
总淀粉酶活力 A 0.13 0.12 0.13 0.10 0.10 0.08 0.11 0.07 0.12 0.08 0.03 0.05
Total amylase B 0.12 0.10 0.11 0.09 0.12 0.08 0.13 0.08 0.12 0.10 0.02 0.02
activity A×B 0.10 0.08 0.14 0.08 0.12 0.12 0.13 0.09 0.10 0.09 0.04 0.04
C 0.14 0.09 0.10 0.09 0.10 0.10 0.11 0.09 0.15 0.09 0.05 0.01
A×C 0.13 0.09 0.11 0.09 0.12 0.10 0.11 0.10 0.12 0.08 0.02 0.02
B×C 0.13 0.09 0.12 0.10 0.11 0.08 0.13 0.09 0.11 0.10 0.03 0.02

2.2 不同环境因子下棉种萌发生理指标主成分分析

数据标准化后进行主成分分析,用SPSS 26软件进行主成分程序运算,得到样本相关矩阵的特征向量和累计贡献率,如表3所示。对于中棉619棉种而言,前2个主成分的贡献率分别为74.47%和15.33%,表明PC1和PC2代表了原来7个单项指标89.80%的变化。而对于新陆中37棉种而言,前2个主成分的贡献率分别为75.22%和14.46%,表明PC1和 PC2代表了原来7个单项指标89.67%的变化。两棉种可将原来的7个单项指标转换为2个新的相互独立的综合指标,在2个新确定的综合指标中,中棉619棉种第1主成分中SOD、α-淀粉酶、β-淀粉酶及总淀粉酶的特征值较大,分别为0.44、0.43、0.43及0.43,第2主成分中CAT的特征值最大,为0.86。而新陆中37棉种第1主成分中SOD、β-淀粉酶及总淀粉酶的特征值较大,均为0.43,第2主成分中CAT的特征值最大,为0.99。表明SOD和CAT指标的贡献率较大,影响程度较高,可作为棉种抗旱、耐盐、耐寒性筛选的依据。
表3 各主成分的特征向量及贡献率

Table 3 The feature vector and contribution rate of each principal component

主成分
Principal components
可溶性蛋白
Soluble
protein
POD SOD CAT α-淀粉酶
Alpha-
amylase
β-淀粉酶
Beta-
amylase
总淀粉酶
Total
amylase
贡献率 %
Contribution
rate
累积贡献率 %
Cumulative
contribution rate
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
PC1 -0.42 -0.43 0.25 0.35 0.44 0.43 0.11 -0.01 0.43 0.37 0.43 0.43 0.43 0.43 74.47 75.22 74.47 75.22
PC2 0.00 -0.05 -0.50 0.10 0.00 -0.03 0.86 0.99 0.04 -0.06 0.02 0.00 0.02 -0.04 15.33 14.46 89.80 89.67

2.3 不同环境因子下棉种萌发生理指标综合评价

棉种萌芽期各处理的综合指标、隶属函数值、权重、综合评价值和排序,如表4所示。中棉619棉种综合评价值的变化范围0.06~0.91,在PEG浓度为15%、NaCl浓度为0.4%及温度为13 ℃时综合评价值达到最高,而新陆中37棉种综合评价值的变化范围0.07~0.85,在PEG浓度为5%、NaCl浓度为0.4%及温度为19 ℃时综合评价值达到最高。表明在此环境下,可溶性蛋白含量较高,POD、SOD、CAT、α-淀粉酶、β-淀粉酶及总淀粉酶活性达到最大值。
表4 萌芽期各处理的综合指标、隶属函数值、权重、综合评价值和排序

Table 4 Comprehensive index, subordinate function value, weight, comprehensive evaluation value and ranking of each treatment in the germination stage

处理
Treat-ment
综合指标CI1
Comprehensive index CI1
综合指标CI2
Comprehensive index CI2
隶属函数值μ1
Subordinate function value μ1
隶属函数值μ2
Subordinate function value μ2
综合评价值D
Comprehensive evaluation value
排序
Rank
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
1 3.16 1.60 -0.04 -1.18 0.82 0.71 0.34 0.06 0.74 0.60 4 10
2 0.47 3.15 0.35 -0.93 0.52 0.89 0.43 0.13 0.50 0.77 9 4
3 -0.49 4.10 -0.13 -1.15 0.41 1.00 0.32 0.07 0.39 0.85 15 1
4 0.76 1.35 -1.05 -1.37 0.55 0.68 0.11 0.00 0.48 0.57 10 13
5 1.41 2.66 -1.52 -1.18 0.63 0.83 0.00 0.06 0.52 0.71 8 6
6 0.22 2.56 -0.13 1.01 0.49 0.82 0.32 0.70 0.46 0.80 11 3
7 0.68 2.10 1.28 2.01 0.54 0.77 0.64 1.00 0.56 0.80 7 2
8 4.69 0.37 -0.53 -0.08 1.00 0.57 0.23 0.38 0.87 0.54 2 15
9 0.28 -2.21 2.87 -0.26 0.50 0.27 1.00 0.33 0.58 0.28 5 19
10 -0.88 0.61 0.72 1.90 0.36 0.59 0.51 0.97 0.39 0.65 16 7
11 1.70 1.45 -1.15 0.01 0.66 0.69 0.08 0.41 0.56 0.65 6 8
12 -0.75 0.43 -0.23 0.68 0.38 0.57 0.29 0.61 0.37 0.58 18 12
13 -3.03 -0.90 -0.19 -0.03 0.12 0.42 0.30 0.40 0.15 0.41 23 16
14 -3.12 -2.09 -0.51 0.06 0.11 0.28 0.23 0.42 0.13 0.30 24 18
15 -0.76 -2.87 -0.19 -0.73 0.38 0.19 0.30 0.19 0.37 0.19 17 23
16 -1.92 -1.67 0.19 0.78 0.25 0.33 0.39 0.64 0.27 0.38 19 17
17 -3.09 -2.15 0.77 -0.43 0.11 0.27 0.52 0.28 0.18 0.27 22 20
18 -4.08 -2.83 0.13 -0.04 0.00 0.19 0.38 0.39 0.06 0.23 25 22
19 4.01 -2.98 -1.24 -0.99 0.92 0.18 0.06 0.11 0.78 0.17 3 24
20 -0.10 1.90 -0.06 -1.22 0.45 0.74 0.33 0.04 0.43 0.63 14 9
21 -1.55 0.54 -0.90 0.81 0.29 0.58 0.14 0.64 0.26 0.59 21 11
22 -1.50 -2.39 -0.93 -0.12 0.29 0.24 0.13 0.37 0.27 0.26 20 21
23 3.89 -4.49 2.39 0.05 0.91 0.00 0.89 0.42 0.91 0.07 1 25
24 -0.07 1.42 0.41 1.88 0.46 0.69 0.44 0.96 0.45 0.73 12 5
25 0.07 0.34 -0.31 0.50 0.47 0.56 0.27 0.55 0.44 0.56 13 14
wj 0.83 0.84 0.17 0.16
注:CI1CI2分别为根据PC1和PC2的各特征向量计算出的综合指标值。μ1μ2分别为CI1CI2的隶属函数值。
Note: CI1 and CI2 are the value of comprehensive indices calculated according to eigenvectors of PC1 and PC2, respectively. μ1 and μ2 are the subordinate function values of CI1 and CI2, respectively.

2.4 不同环境因子下棉种萌发生理指标聚类分析

采用标准化转换后的综合评价值、欧氏距离及类平均法对各处理的生理指标进行聚类分析,结果见图1。以综合评价值最高为依据,在距离为12时可将25种组合处理分为三大类。第一类(C1)可溶性蛋白含量、POD、SOD、CAT、α-淀粉酶、β-淀粉酶及总淀粉酶活性较高,中棉619包含4种组合,而新陆中37包含15种组合;第二类(C2)各组合抗氧化酶活性中等,中棉619包含14种组合,而新陆中37包含9种组合;第三类(C3)各组合抗氧化酶活性较低。较高的可溶性蛋白含量、POD、SOD、CAT、α-淀粉酶、β-淀粉酶及总淀粉酶活性,反映出棉种受逆境胁迫的程度较大。
图1 棉种生理指标的聚类分析
a:中棉619;b:新陆中37。

Fig. 1 Cluster analysis of cotton seed physiological indicators

a: Zhongmian 619; b: Xinluzhong 37.

Full size|PPT slide

3 讨论

当植物受到外界环境胁迫时,可溶性蛋白含量及抗氧化保护酶活力等生理代谢指标发生变化,常被用于评价作物的抗逆性[30]。本研究对2个棉种的可溶性蛋白含量、POD、SOD、CAT、α-淀粉酶、β-淀粉酶及总淀粉酶活力7个生理指标进行极差分析,发现2个棉种的上述生理指标在不同水、盐、温胁迫组合下呈现不同程度的变化,说明种质资源间的抗性存在较大的差异[31]。同时,不同类型的胁迫下,棉种的生理生化指标的表现也存在差异[32],这是因为起主导作用的抗氧化酶活力有差异[33]。因此,要确切鉴定一个品种的抗性强弱,不能根据某个单一生理生化指标或形态表现进行判定[34],而应根据多个指标进行综合分析。
主成分分析是数据降维的一种方法,既减少了变量的个数,又能体现变量间的内在联系。本研究对外界环境胁迫下2个棉种的7个单项指标进行主成分分析,前两个主成分累计贡献率分别为89.80%(中棉619)和89.67%(新陆中37),其中主成分1分别解释了中棉619 74.47%和新陆中37 75.22%的变化。通过主成分分析,发现SOD和CAT可以作为2个棉种抗旱、耐盐、耐寒性的筛选指标,这与胡根海等[33]的研究结果类似。有研究发现酶促保护系统中SOD是植物体内ROS的清除剂,是ROS防御的第一道防线[35],可催化O2-生成H2O2的歧化反应[36];CAT则直接催化H2O2生成H2O和O2,减少体内过量ROS,降低膜脂过氧化水平[13]
隶属函数法通过无量纲化将各指标都转换为0~1的数值,从而将不同指标放到了同一量级上,增强不同指标间的可比性,可以较好地定量评价每个处理[37]。本研究通过隶属函数法计算棉种萌发生理指标的综合得分,进行隶属函数值比较,综合评价值越大,表明棉种萌发生理指标越强,对环境胁迫的抗性越高。对中棉619而言,PEG浓度为15%、NaCl浓度为0.4%及温度为13 ℃时综合评价值D达到最大,为0.91。而新陆中37棉种在PEG浓度为5%、NaCl浓度为0.4%及温度为19 ℃时综合评价值D达到最大,为0.85。中棉619在环境胁迫较严重时,生理指标才表现为较高的强度,说明新陆中37棉种的抗旱及耐寒性均低于中棉619,对环境的适应能力较差,这与孙小芳等[38]得出棉花萌发和生长的极限土壤含盐量约为0.4%~0.6%的结论相一致。棉种在较严重的环境胁迫下仍能完成萌发进程,这是因为受到环境胁迫时,通过提高体内抗氧化保护酶的活性,能有效地调节ROS代谢平衡,降低膜脂过氧化程度,保护膜结构的完整性,增强其在环境胁迫下的抗氧化能力[39]
聚类分析作为一种无管理模式的识别方法,可将相同或相似的一类进行划分[40]。通过聚类分析将中棉619在25个处理下的抗氧化酶活性分成三类,其中处理1、8、19和23的可溶性蛋白含量、POD、SOD、CAT、α-淀粉酶、β-淀粉酶及总淀粉酶活性较高。而较高的抗氧化酶活性反映了植株受到严重的外界环境胁迫,因此,C1类别的水、盐、温组合条件对中棉619造成较严重的胁迫。此外,植物对不同胁迫因素存在交叉适应,例如,土壤盐分及温度可影响干旱胁迫对植物的伤害。土壤盐分一方面导致植物细胞内的离子积累[41],有利于降低组织渗透势、增强吸水动力,积累离子参与渗透调节;另一方面还可减少干旱条件下有机渗透调节物质合成所需的物质和能量消耗,这对植物的水分代谢和同化物积累可能是有益的[5]。而在适宜的温度条件下,干旱胁迫对种子发芽的抑制强度低于亚适温和超适温条件,通过激活体内酶保护机制,累积渗透调节物质用以抵御水分胁迫,维持正常的生理代谢,缓解干旱对种子发芽的不利影响[42]

4 结论

本文基于正交试验、主成分分析、隶属函数法及聚类分析,研究了水、盐、温及其交互作用等环境因子对无膜滴灌棉种及膜下滴灌棉种萌发时抗氧化系统的影响,得出SOD和CAT活性可以作为棉种抗旱、耐盐、耐寒性筛选的依据。无膜滴灌棉种中棉619在PEG浓度为15%、NaCl浓度为0.4%及温度为13 ℃时抗氧化酶活性达到最大,而新陆中37的抗氧化酶活性在PEG浓度为5%、NaCl浓度为0.4%及温度为19 ℃时达到最大,表明中棉619抗氧化酶活性优于膜下滴灌主栽棉种新陆中37,具有较高的抵抗环境胁迫的能力。

参考文献

[1]
喻树迅. 无膜棉对中国棉花产业转型升级的意义[J]. 农学学报, 2019,9(3): 1-5.
Yu Shuxun. The significance of filmless cotton to promote the transformation and upgrading of China’s cotton industry[J]. Journal of Agriculture, 2019,9(3): 1-5.
[2]
Ma Y, Zhang J, Li X, et al. Effects of environmental stress on seed germination and seedling growth of Salsola ferganica (Chenopodiaceae)[J/OL]. Acta Ecologica Sinica, 2016,36(6): 456-463[2021-01-01]. https://doi.org/10.1016/c-hnaes.2016.09.008.
[3]
Jaganathan G K. Influence of maternal environment in developing different levels of physical dormancy and its ecological significance[J/OL]. Plant Ecology, 2016,217(1): 71-79[2021-01-01]. httsp://doi.org/10.1007/s11258-015-0560-y.
[4]
塔伊尔·买买提江, 马亚丽, 兰海燕. 盐旱耦合胁迫对费尔干猪毛菜种子萌发及其幼苗生长的影响[J/OL]. 干旱区研究, 2019,36(4): 878-885[2021-01-01]. https://doi.org/10.13866/j.azr.2019.04.11.
Tayier Maimaitijiang, Ma Yali, Lan Haiyan. Effect of salt coupled with drought stress on seed germination and seedling growth of Salsola ferganica[J/OL]. Arid Zone Research, 2019,36(4): 878-885[2021-01-01]. https://doi.org/10.13866/j.azr.2019.04.11.
[5]
冯春晓, 郝志军, 高健民, 等. 干旱胁迫下NaCl对棉花幼苗抗氧化酶活性及水分特征的影响[J/OL]. 干旱地区农业研究, 2018,36(6): 98-103[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2018.06.15.
Feng Chunxiao, Hao Zhijun, Gao Jianmin, et al. Effect of NaCl on antioxidant enzyme activities and water status in cotton seedling under drought stress[J/OL]. Agricultural Research in the Arid Areas, 2018,36(6): 98-103[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2018.06.15.
[6]
Wang Q S, Liu N, Yang X Y, et al. Small RNA-mediated responses to low-and high-temperature stresses in cotton[J/OL]. Scientific Reports, 2016,6: 290-295[2021-01-01]. https://doi.org/10.1038/srep35558.
[7]
Gul B, Ansari R, Flowers T J, et al. Germination strategies of halophyte seeds under salinity[J/OL]. Environmental and Experimental Botany, 2013: 4-18[2021-01-01]. https://doi.org/10.1016/j.envexpbot.2012.11.006.
[8]
Li R, Shi F, Fukuda K. Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora(Poaceae)[J/OL]. South African Journal of Botany, 2010,76(2): 380-387[2021-01-01]. https://doi.org/10.1016/j.sajb.2010.01.004.
[9]
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J/OL]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50(1): 601-639[2021-01-01]. https://doi.org/10.1146/annurev.arplant.50.1.601.
[10]
Yildlrlm, Denli Y, Aras S, et al. Active oxygen scavenging enzyme activities and glutathione, ascorbic acid and lipid peroxidation levels in developing Vitis Vinifera L. leaves and berries[J/OL]. Leaves and Berries. 2003,17(2): 114-122[2021-01-01]. https://doi.org/10.1080/13102818.2003.10817068.
[11]
Subbarao G V, Chauhan Y S, Johansen C. Patterns of osmotic adjustment in pigeonpea-its importance as a mechanism of drought resistance[J/OL]. Europeau Journal of Agronomy 2000,12(3/4): 239-249[2021-01-01]. https://doi.org/10.1016/s1161-0301(00)00050-2.
[12]
Chandra M S, Binod K, Suhel M, et al. Effect of drought stress in rice: a review on morphological and physiological characteristics[J]. Trends in Biosciences, 2012,5(4): 261-265.
[13]
田又升, 谢宗铭, 张建新, 等. 干旱复水对棉花苗期抗氧化系统及光合荧光参数的影响[J/OL]. 干旱地区农业研究, 2016,34(6): 209-214[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2016.06.32.
Tian Yousheng, Xie Zongming, Zhang Jianxin, et al. Effects of drought and rewatering on antioxidant system and photosynthetic fluorescence parameters of cotton seedling[J/OL]. Agricultural Research in the Arid Areas, 2016,34(6): 209-214[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2016.06.32.
[14]
费克伟, 罗晓丽, 司怀军, 等. 五个棉花品种抗旱性与SOD活性相关性分析[J/OL]. 作物杂志, 2013(6): 134-136[2021-01-01]. https://doi.org/10.3969/j.issn.1001-7283.2013.06.035
Fei Kewei, Luo Xiaoli, Si Huaijun, et al. Correlated analysis of SOD activity and drought resistance in five upland cotton cultivars[J/OL]. Crops, 2013 (6): 134-136[2021-01-01]. https://doi.org/10.3969/j.issn.1001-7283.2013.06.035
[15]
Yan H, Li Q, Park S C, et al. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato[J/OL]. Plant Physiology and Biochemistry, 2016,109: 20-27[2021-01-01]. https://doi.org/10.1016/j.plaphy.2016.09.003.
[16]
Asish K P, Anath B D, Prasanna M. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes[J/OL]. Journal of Plant Physiology, 2004,161(5): 531-542[2021-01-01]. https://doi.org/10.1078/0176-1617-01084.
[17]
Feng G, Zhang F S, Li X L, et al. Improved tolerance of maize plants to salt stress by Arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J/OL]. Mycorrhiza, 2002,12(4): 185-190[2021-01-01]. https://doi.org/10.1007/s00572-002-0170-0.
The effect of colonization with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe on the growth and physiology of NaCl-stressed maize plants ( Zea mays L. cv. Yedan 13) was examined in the greenhouse. Maize plants were grown in sand with 0 or 100 mM NaCl and at two phosphorus (P) (0.05 and 0.1 mM) levels for 34 days, following 34 days of non-saline pre-treatment. Mycorrhizal plants maintained higher root and shoot dry weights. Concentrations of chlorophyll, P and soluble sugars were higher than in non-mycorrhizal plants under given NaCl and P levels. Sodium concentration in roots or shoots was similar in mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants had higher electrolyte concentrations in roots and lower electrolyte leakage from roots than non-mycorrhizal plants under given NaCl and P levels. Although plants in the low P plus AM fungus treatment and those with high P minus AM fungus had similar P concentrations, the mycorrhizal plants still had higher dry weights, soluble sugars and electrolyte concentrations in roots. Similar relationships were observed regardless of the presence or absence of salt stress. Higher soluble sugars and electrolyte concentrations in mycorrhizal plants suggested a higher osmoregulating capacity of these plants. Alleviation of salt stress of a host plant by AM colonization appears not to be a specific effect. Furthermore, higher requirement for carbohydrates by AM fungi induces higher soluble sugar accumulation in host root tissues, which is independent of improvement in plant P status and enhances resistance to salt-induced osmotic stress in the mycorrhizal plant.
[18]
潘晓云, 曹琴东, 王根轩. 膜脂过氧化作为扁桃品种抗寒性鉴定指标研究[J/OL]. 生态学报, 2002(11): 1902-1911[2021-01-01]. https://doi.org/10.3321/j.issn:1000-0933.2002.11.015.
Pan Xiaoyun, Cao Qindong, Wang Genxuan. Evaluation of lipid peroxidation for use in selection of cold hardiness cultivars of almond[J/OL]. Acta Ecologica Sinica, 2002,22(11): 1902-1911[2021-01-01]. https://doi.org/10.3321/j.issn:1000-0933.2002.11.015.
[19]
Kwang-Hyun B, Daniel Z S. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines[J/OL]. Plant Science, 2003,165(6): 1221-1227[2021-01-01]. https://doi.org/10.1016/s0168-9452(03)00329-7.
[20]
Xu S, Li J L, Zhang X Q, et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J/OL]. Environmental and Experimental Botany, 2005,56(3): 274-285[2021-01-01]. https://doi.org/10.1016/j.envexpbot.2005.03.002.
[21]
Barrero-Gil J, Salinas J. Post-translational regulation of cold acclimation response[J/OL]. Plant Science, 2013,205-206: 48-54[2021-01-01]. https://doi.org/10.1016/j.plantsci.2013.01.008.
Cold acclimation is an adaptive response whereby plants from temperate regions increase their capacity to tolerate freezing in response to low-nonfreezing temperatures. Numerous studies have unveiled the large transcriptome re-programming that takes place during cold acclimation in diverse species, and a number of proteins have been identified as important regulators of this adaptive response. Post-translational mechanisms regulating the function of proteins involved in cold acclimation have been, however, much less studied. Several components of the signal transduction pathways mediating cold response have been described to be post-translationally modified. These post-translational modifications, including protein phosphorylation and dephosphorylation, ubiquitination, SUMOylation, N-glycosylation and lipid modification, determine key aspects of protein function such as sub-cellular localization, stability, activity or ability to interact with other proteins. Integrating these post-translational mechanisms within the appropriate spatio-temporal context of cold acclimation is essential to develop new crops with improved cold tolerance. Here, we review available evidence regarding the post-translational regulation of cold acclimation, discuss its relevance for the accurate development of this response, and highlight significant missing data.Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
[22]
Gao C H, Hu J, Zheng Y Y, et al. Antioxidant enzyme activities and proline content in maize seedling and their relationships to cold endurance[J]. Journal of Applied Ecology, 2006,17(6): 1045-1050.
[23]
张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较[J/OL]. 作物学报, 2011,37(3): 496-505[2021-01-01]. https://doi.org/10.3724/SP.J.1006.2011.00496.
Zhang Baoqing, Yang Litao, Li Yangrui. Comparison of physiological and biochemical characteristics related to cold resistance in sugarcane under field conditions[J/OL]. Acta Agronomica Science, 2011,37(3): 496-505[2021-01-01]. https://doi.org/10.3724/SP.J.1006.2011.00496.
[24]
王洪博, 杨莹攀, 高阳, 等. 环境因子对无膜滴灌棉种萌发特性的影响[J/OL]. 新疆农业科学, 2021(3): 430-440[2021-01-01]. http://www.xjnykx.com/CN/10.6048/j.issn.1001-4330.2021.03.005.
摘要
【目的】 研究水、盐、温及其交互作用等环境因子对无膜滴灌棉种中棉619萌发特性的影响。【方法】 基于正交试验、隶属函数法及聚类分析,以PEG模拟干旱胁迫、NaCl模拟土壤盐分胁迫及用生化培养箱控制环境温度,对比分析水、盐、温及其交互作用对无膜滴灌棉种中棉619(无膜棉)和膜下滴灌棉种新陆中37号2个棉种萌发特性的影响。【结果】 两者均对温度有较高的要求,而无膜滴灌棉种耐盐及抗旱性优于膜下滴灌棉种,其中温度对于种子萌发的影响达到极显著水平(P<0.01),盐分达到显著水平(P<0.05),而水分及交互作用未达到显著水平。【结论】 适宜无膜滴灌棉种中棉619环境因子范围是温度为25℃,盐分为0.1%~0.4%,水分为7.5%和15%,当水分含量为15%、盐分含量为0.2%及温度为25℃时,无膜滴灌棉种的萌发效果最好。
Wang Hongbo, Yang Yingpan, Gao Yang, et al. Effects of environmental factors on germination characteristics of cotton seeds with filmless drip irrigation[J/OL]. Xinjiang Agricultural Sciences, 2021(3): 430-440[2021-01-01]. http://www.xjnykx.com/CN/10.6048/j.issn.1001-4330.2021.03.005.
<b>【Objective】</b> To study the effects of water, salt, temperature and interaction on the germination characteristics of Zhongmian 619 cottond.<b>【Methods】</b> Based on orthogonal experiments, membership function method, and cluster analysis, PEG simulates drought stress, NaCl simulates soil salt stress, and a biochemical incubator were used to control the environmental temperature.The effects of water, salt, temperature and their interactions on filmless drip irrigation were compared and analyzed.After that, effects of germination characteristics on cotton cultivar Zhongmian 619 (filmless cotton) and Xinluzhong 37 cotton cultivar Xinluzhong under drip irrigation were compared.<b>【Results】</b> The results show that: Both had higher requirements for temperature, and the salt tolerance and drought resistance of cotton seeds without film and drip irrigation were better than those under drip irrigation.The effect of temperature on seed germination reached a significant level (<i>P </i>&lt;0.01), the salinity reached a significant level (<i>P </i>&lt;0.05), but the moisture and interactions did not reach a significant level.<b>【Conclusion】</b> Therefore, the suitable environmental factors for Zhongmian 619 cotton with no film drip irrigation are temperature 25℃, salt content 0.1%-0.4%, water content 7.5% and 15%, when water content is 15%, salt content is 0.2% and temperature is 25℃, the germination of the filmless cotton seed without drip irrigation was the best.
[25]
严晓红, 包秋娟, 张富春. 萌发期干旱胁迫下棉花转录因子的表达[J/OL]. 种子, 2018,37(5): 13-18[2021-01-01]. https://doi.org/10.16590/j.cnki.1001-4705.2018.05.013.
Yan Xiaohong, Bao Qiujuan, Zhang Fuchun. Expression of cotton transcription factors under drought stress in germination stage[J/OL]. Seed, 2018,37(5): 13-18[2021-01-01]. https://doi.org/10.16590/j.cnki.1001-4705.2018.05.013.
[26]
李志博, 魏亦农. 北疆主栽棉花种子对渗透胁迫的响应及其萌发力差异评价[J/OL]. 种子, 2010,29(7): 1-4[2021-01-01]. https://doi.org/10.3969/j.issn.1001-4705.2010.07.001.
Li Zhibo, Wei Yinong. Germination response and drought-resistance evaluation of cotton seed to osmotic stress in Northern Xinjiang[J/OL]. Seed, 2010,29(7): 1-4[2021-01-01]. https://doi.org/10.3969/j.issn.1001-4705.2010.07.001.
[27]
徐建伟, 张晨, 曾晓燕, 等. 近十年新疆北疆主栽棉花种子低温萌发能力差异评价[J/OL]. 新疆农业科学, 2017,54(9): 1569-1578[2021-01-01]. http://www.xjnykx.com/CN/10.6048/j.issn.1001-4330.2017.09.001.
摘要
【目的】研究低温对棉花种子萌发特性的影响,筛选耐冷种质资源,探讨模糊隶属函数法在棉花种子低温耐冷性鉴定的应用。【方法】以近10年新疆北疆主栽的棉花品种(系)为试材,测试种子发芽指标对不同温度的响应变化,基于发芽指标和相对发芽指标(耐冷系数)的模糊隶属函数值法,对试材的低温萌发能力差异进行评价。【结果】随着胁迫增强,棉花种子的萌发能力受到显著抑制,种子平均发芽速度随温度上升呈下降趋势,而其它发芽指标均随温度上升呈显著增高。棉花种子的耐冷萌发力均与其萌发指标显著正相关。同一低温下两种隶属函数法对种子低温萌发能力的鉴定结果高度一致,但不同低温下参试棉花种子的萌发力有所差异。15℃种子萌发强的为中棉所36号和新陆早46号,20℃为新陆早25号、新陆早42号、新陆早36号、新陆中26号、中棉所36号、新陆早41号和新陆早35号。低温下,除了平均发芽速度,其它棉花种子的发芽指标间及其与种子萌发力两两极显著相关。采用逐步回归法建立了不同低温下棉花种子萌发耐冷性的鉴定模型,其中15℃为Y=0.01+0.022<sup>*</sup>发芽指数,20℃为Y=-0.046+0.002<sup>*</sup>发芽率+0.005<sup>*</sup>种子萌发指数。【结论】萌芽期种子耐冷性强的材料为中棉所36号和新陆早46号。基于发芽指标的模糊隶属函数法可以有效用于棉花种子萌芽的耐冷性鉴定评价。
Xu Jianwei, Zhang Chen, Zeng Xiaoyan, et al. Evaluation of seed germination of main-cultivated cotton under low temperature in Northern Xinjiang in recent ten years[J/OL]. Xinjiang Agricultural Sciences, 2017,54(9): 1569-1578[2021-01-01]. http://www.xjnykx.com/CN/10.6048/j.issn.1001-4330.2017.09.001.
【<b>Objective</b>】 In order to understand the effect of low temperature on seed germination and to explore the suitable methods for identifying chilling tolerance of cotton seeds.【<b>Method</b>】Some mainly-cultivated cottons were selected as the experimental materials in northern Xinjiang in recent ten years, responses of seed germination characteristics to different temperature were studied, and their germination abilities were also evaluated using germination parameters and relative germination parameters (cold tolerance coefficient)according to subordinative function method under low temperature, respectively.【<b>Result</b>】With the increase of stress, the germination ability of cotton seeds was significantly inhibited, the average seed germination rate decreased with the increase of the temperature, and other indexes of germination were significantly higher with the increase of the temperature. The cold resistant germination ability of cotton seeds was positively correlated with the tested germination index. At the same low temperature, two kinds of subordinate function method showed a good agreement on the seed germination ability at low temperature, but the germination rate of cotton seed under different low temperature was different. The seed germination of Zhongmiansuo No.36 and Xinluzao No.46 had a high chilling-tolerance at 15℃, and at 25℃, those with high chilling tolerance were Xinluzao No.25, Xinluzao No.42, Xinluzao No.36, Xinluzhong No.26, Zhongmiansuo No.36, Xinluzao No.41 and Xinluzao No.35. Except for the average germination speed, the relationship among others germination parameters and seed germination ability was significantly correlated. The identification model for cold resistant cotton seed germination under low temperature was established by stepwise regression method: <i>Y=0.01+0.022<sup>*</sup></i> GI (germination index) (<i>R</i><sup>2</sup>=0.998) at 15℃; <i>Y=-0.046+0.002<sup>*</sup></i> GR (germination rate) +0.005<sup>*</sup> SGC (Seed germination coefficient) (<i>R</i><sup>2</sup>=0.992) at 12℃. 【<b>Conclusion</b>】The seed of Zhongmiansuo NO.36 and Xinluzao NO.46 had a high chilling tolerance at the seed germination stage. The germination index of fuzzy membership function method can be effectively used for the identification and evaluation of cold tolerance based on cotton seed germination.
[28]
程建权. 城市系统工程[M]. 武汉: 武汉大学出版社, 2002.
Cheng Jianquan. Urban system engineering[M]. Wuhan: Wuhan University Press, 2002.
[29]
王贺正. 水稻抗旱性研究及其鉴定指标的筛选[D]. 雅安: 四川农业大学, 2007.
Wang Hezheng. Research on rice drought resistance and screening of identification index[D]. Ya’an: Sichuan Agricultural University, 2007.
[30]
苗永美, 宁宇, 曹玉杰, 等. 黄瓜萌芽期和苗期耐冷性评价[J/OL]. 应用生态学报, 2013,24(7): 1914-1922[2021-01-01]. https://doi.org/10.13287/j.1001-9332.2013.0426
Miao Yongmei, Ning Yu, Cao Yujie. Evaluation of cucumber's chilling tolerance at germination and seedling stages[J/OL]. Chinese Journal of Applied Ecology, 2013,24(7): 1914-1922[2021-01-01]. https://doi.org/10.13287/j.1001-9332.2013.0426.
A total of 13 cucumber materials were used to study the relationships of cucumber's chilling tolerance with the 12 growth indices at germination and seedling stages. There existed significant differences in the relative germination rate, germination index, hypocotyl length, and vigor index at 17 degrees C among the 13 materials (P < 0.05), which also significantly correlated to the chilling tolerance. At seedling stage, the physiology among the materials after treated at 4 degrees C for 2 days had obvious difference. Chilling injury index had significant correlation with the survival rate after recovery, but less correlation with the soluble protein (SP) content, electric conductivity (EC), and superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activities. The chilling tolerance of the materials was classified into three levels by clustering analysis, and the cucumber' s chilling tolerance equations at the two stages were established through stepwise regression analysis. Based on confidence interval value, the chilling tolerance of cucumber could be well assessed.
[31]
贾亚雄, 李向林, 袁庆华, 等. 披碱草属野生种质资源苗期耐盐性评价及相关生理机制研究[J/OL]. 中国农业科学, 2008(10): 2999-3007[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2008.10.012.
Jia Yaxiong, Li Xianglin, Yuan Qinghua, et al. Evaluation of salt-tolerance and the related physiological characteristics of wild Elymus spp.[J/OL]. Scientia Agricultura Sinica, 2008(10): 2999-3007[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2008.10.012.
[32]
Reddy A R, Chaitanya K V, Vivekanandan M. Drought induced responses of photosynthesis and anti-oxidant metabolism in higher plants[J/OL]. Journal of Plant Physiology, 2004,161(11): 1189-1202[2021-01-01]. https://doi.org/10.1016/j.jplph.2004.01.013.
[33]
胡根海, 董娜, 晁毛妮, 等. PEG模拟干旱胁迫对不同抗逆性棉花的生理特性的影响[J/OL]. 干旱地区农业研究, 2017,35(5): 223-228[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2017.05.33.
Hu Genhai, Dong Na, Chao Maoni, et al. Effects of drought stress simulated by PEG 6000 on physiological characteristics of different upland cotton[J/OL]. Agricultural Research in The Arid Areas, 2017,35(5): 223-228[2021-01-01]. https://doi.org/10.7606/j.issn.1000-7601.2017.05.33.
[34]
李玲, 沈宝宇, 张天静, 等. 豌豆种质资源芽期耐旱性评价及耐旱种质筛选[J/OL]. 植物遗传资源学报, 2017,18(4): 778-785[2021-01-01]. https://doi.org/10.13430/j.cnki.jpgr.2017.04.022.
Li Ling, Shen Baoyu, Zhang Tianjing, et al. Evaluation and screening of pea (Pisum sativum) germplasm resources for drought resistance during germination stage[J/OL]. Journal of Plant Genetic Resources, 2017,18(4): 778-785[2021-01-01]. https://doi.org/10.13430/j.cnki.jpgr.2017.04.022.
[35]
Rup K K. Plant responses to water stress role of reactive oxygen species[J/OL]. Plant Signaling & Behavior, 2011,6(11): 1741-1745[2021-01-01]. https://doi.org/10.4161/psb.6.11.17729.
[36]
Alscher R U, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J/OL]. Journal of Experimental Botany, 2002,53: 1331-1341[2021-01-01]. https://doi.org/10.1093/jexbot/53.372.1331.
Reactive O(2) species (ROS) are produced in both unstressed and stressed cells. Plants have well-developed defence systems against ROS, involving both limiting the formation of ROS as well as instituting its removal. Under unstressed conditions, the formation and removal of O(2) are in balance. However, the defence system, when presented with increased ROS formation under stress conditions, can be overwhelmed. Within a cell, the superoxide dismutases (SODs) constitute the first line of defence against ROS. Specialization of function among the SODs may be due to a combination of the influence of subcellular location of the enzyme and upstream sequences in the genomic sequence. The commonality of elements in the upstream sequences of Fe, Mn and Cu/Zn SODs suggests a relatively recent origin for those regulatory regions. The differences in the upstream regions of the three FeSOD genes suggest differing regulatory control which is borne out in the research literature. The finding that the upstream sequences of Mn and peroxisomal Cu/Zn SODs have three common elements suggests a common regulatory pathway. The tools are available to dissect further the molecular basis for antioxidant defence responses in plant cells. SODs are clearly among the most important of those defences, when coupled with the necessary downstream events for full detoxification of ROS.
[37]
陈新, 张宗文, 吴斌. 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选[J/OL]. 中国农业科学, 2014,47(10): 2038-2046[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2014.10.018.
Chen Xin, Zhang Zongwen, Wu Bin. Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat (Avena nuda L.) at germination stage[J/OL]. Scientia Agricultura Sinica, 2014,47(10): 2038-2046[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2014.10.018.
[38]
孙小芳, 刘友良, 陈沁. 棉花耐盐性研究进展[J]. 棉花学报, 1998,10(3): 3-5.
Sun Xiaofang, Liu Youliang, Chen Qin. Recent progresses in studies on salinity tolerance in cotton[J]. Cotton Science, 1998,10(3): 3-5.
[39]
Bryan D, Mckersie, Chen Y R, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L)[J/OL]. Plant Physiology, 1993,103: 1155-1163[2021-01-01]. https://doi.org/10.1104/pp.103.4.1155.
[40]
宋江峰, 李大婧, 刘春泉, 等. 甜糯玉米软罐头主要挥发性物质主成分分析和聚类分析[J/OL]. 中国农业科学, 2010,43(10): 2122-2131[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2010.10.019.
Song Jiangfeng, Li Dajing, Liu Chunquan, et al. Principal components analysis and cluster analysis of flavor compositions in waxy corn soft can[J/OL]. Scientia Agricultura Sinica, 2010,43(10): 2122-2131[2021-01-01]. https://doi.org/10.3864/j.issn.0578-1752.2010.10.019.
[41]
李双男, 郭慧娟, 侯振安. 不同盐碱胁迫对棉花离子组稳态及Na+相关基因表达影响[J/OL]. 棉花学报, 2019,31(6): 515-528[2021-01-01]. https://doi.org/10.11963/1002-7807.lsnhza.20191106.
Li Shuangnan, Guo Huijuan, Hou Zhen’an. Ionic homeostasis and expression of Na+ related genes of cotton under different salt and alkali stresses[J/OL]. Cotton Science, 2019,31(6): 515-528[2021-01-01]. https://doi.org/10.11963/1002-7807.lsnhza.20191106.
[42]
唐伟, 南志标. 不同温度下PEG-6000渗透胁迫对歪头菜种子发芽的影响[J]. 草业科学, 2019,36(5): 1323-1332.
Tang Wei, Nan Zhibiao. Effects of osmotic stress by PEG-6000 on germination of Vicia unijuga seeds under different temperature conditions[J]. Pratacultural Science, 2019,36(5): 1323-1332.

基金

国家重点研发计划(2016YFC0400208)
新疆生产建设兵团科技攻关项目(2018AB027)
新疆维吾尔自治区研究生科研创新项目(XJ2019G265)
PDF(1444 KB)

350

Accesses

0

Citation

Detail

段落导航
相关文章

/