棉花学报 ›› 2021, Vol. 33 ›› Issue (5): 385-392.doi: 10.11963/cs20210015
• 研究与进展 • 下一篇
收稿日期:
2021-02-21
出版日期:
2021-09-15
发布日期:
2022-01-27
通讯作者:
彭文勇
E-mail:mingfengL0124@163.com;767957740@qq.com
作者简介:
李鸣凤(1991―),女,博士, 基金资助:
Li Mingfeng1(),Peng Wenyong2,*(
),He Hua1,Liu Xinwei3,Zhao Zhuqing3
Received:
2021-02-21
Online:
2021-09-15
Published:
2022-01-27
Contact:
Peng Wenyong
E-mail:mingfengL0124@163.com;767957740@qq.com
摘要:
【目的】研究外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响。【方法】采用土培方法,以中棉所83为试验材料,设置空白对照、无机硼酸(硼酸)、有机硼(硼酸二甘油酯)3个处理,施硼量均为1.00 mg·kg-1,棉花生长65 d后取样并测定相关指标。【结果】施用无机硼酸和有机硼均促进了棉花细胞壁和叶绿体的发育,增加了棉花叶、茎和根部及其细胞壁的硼含量,同时促进了棉花对磷和镁的吸收,但减少了棉花对钙的吸收,使单株生物量分别增加15.09%和22.49%。相比无机硼酸,有机硼处理对棉花叶和茎硼含量的增加效果更显著,增幅分别为16.88%和10.72%,且增加的主要为移动性高的自由态硼或原生质体硼。【结论】有机硼较无机硼酸更有利于植物对硼的吸收利用。
李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392.
Li Mingfeng,Peng Wenyong,He Hua,Liu Xinwei,Zhao Zhuqing. Effects of different forms of boron on absorption and utilization of boron and other mineral elements in cotton[J]. Cotton Science, 2021, 33(5): 385-392.
表2
不同形态硼肥对苗期棉花各部位硼含量和累积分配比的影响"
处理 Treatments | 硼含量 Boron content/(mg·kg-1) | 硼累积分配比 Boron distribution/% | |||||
叶Leaf | 茎Stem | 根Root | 叶Leaf | 茎Stem | 根Root | ||
CK | 14.32±1.18 c | 8.55±0.93 c | 9.79±1.78 b | 62.53±1.04 c | 26.11±2.22 a | 11.36±1.31 a | |
B | 52.25±2.12 b | 28.83±1.33 b | 24.33±1.00 a | 70.75±1.31 b | 22.38±1.31 b | 6.87±0.73 b | |
OB | 61.07±3.38 a | 31.92±1.76 a | 24.53±1.82 a | 73.42±1.70 a | 20.79±0.94 b | 5.79±0.89 b |
表3
不同形态硼肥对苗期棉花各部位细胞壁硼含量和比例的影响"
处理 Treatments | 细胞壁硼含量 Cell wall boron content/(mg·kg-1) | 细胞壁硼比例 Cell wall boron ratio/% | |||||
叶Leaf | 茎Stem | 根Root | 叶Leaf | 茎Stem | 根Root | ||
CK | 13.29±1.80 b | 14.28±2.11 b | 13.05±1.17 b | 56.11±4.70 a | 64.23±3.41 a | 45.16±8.85 a | |
B | 37.53±2.14 a | 26.17±1.74 a | 21.37±1.70 a | 39.19±3.21 b | 44.41±3.58 b | 29.46±2.44 b | |
OB | 35.58±2.42 a | 25.91±2.56 a | 21.97±0.58 a | 31.76±2.24 c | 40.08±2.08 b | 29.72±4.31 b |
[1] |
Matthes M S, Robil J M, McSteen P. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants[J/OL]. Journal of Experimental Botany, 2020,71(5): 1681-1693[2021-02-20]. https://doi.org/10.1093/jxb/eraa042.
doi: 10.1093/jxb/eraa042 |
[2] |
Hua Y P, Zhou T, Ding G D, et al. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes[J/OL]. Journal of Experimental Botany, 2016,67(19): 5769-5784[2021-02-20]. https://doi.org/10.1093/jxb/erw342.
doi: 10.1093/jxb/erw342 |
[3] |
Wu X W, Liu G D, Muhammad R, et al. Metabolic changes in roots of trifoliate orange [Poncirus trifoliate (L.) Raf.] as induced by different treatments of boron deficiency and resupply[J/OL]. Plant and Soil, 2019,431(2): 217-229[2021-02-20]. https://doi.org/10.1007/s11104-018-3684-8.
doi: 10.1007/s11104-018-3761-z |
[4] |
Milagres C C, Maia J T L S, Ventrella M C, et al. Anatomical changes in cherry tomato plants caused by boron deficiency[J/OL]. Brazilian Journal of Botany, 2019,42(30): 319-328[2021-02-20]. https://doi.org/10.1007/s40415-019-00537-y.
doi: 10.1007/s40415-019-00537-y |
[5] |
Poss J A, Grattan S R, Grieve C M, et al. Characterization of leaf boron injury in salt-stressed Eucalyptus by image analysis[J/OL]. Plant and Soil, 1999,206(2): 237-245[2021-02-20]. https://doi.org/10.1023/A:1004488331737.
doi: 10.1023/A:1004488331737 |
[6] |
Wu X, Lu X, Riaz M, et al. Boron deficiency and toxicity altered the subcellular structure and cell wall composition architecture in two citrus rootstocks[J/OL]. Scientia Horticulturae, 2018,238: 147-154[2021-02-20]. https://doi.org/10.1016/j.scienta.2018.04.057.
doi: 10.1016/j.scienta.2018.04.057 |
[7] |
Hu H, Brown P H. Localization of boron in cell walls of squash and tobacco and its association with pectin. Evidence for a structural role of boron in the cell wall[J/OL]. Plant Physiology, 1994,105(2): 681-689[2021-02-20]. https://doi.org/10.1104/pp.105.2.681
pmid: 12232235 |
[8] |
Bogiani J C, Sampaio T F, Abreu-Junior C H, et al. Boron uptake and translocation in some cotton cultivars[J/OL]. Plant and Soil, 2014,375(1-2): 241-253[2021-02-20]. https://doi.org/10.1007/s11104-013-1957-9.
doi: 10.1007/s11104-013-1957-9 |
[9] |
Yoshinari A, Takano J. Insights into the mechanisms underlying boron homeostasis in plants[J/OL]. Frontiers in Plant Science, 2017,8(1): 1951[2021-02-20]. https://doi.org/10.3389/fpls.2017.01951.
doi: 10.3389/fpls.2017.01951 |
[10] |
Stangoulis J, Tate M, Graham R, et al. The mechanism of boron mobility in wheat and canola phloem[J/OL]. Plant Physiology, 2010,153(2): 876-881[2021-02-20]. https://doi.org/10.1104/pp.110.155655.
doi: 10.1104/pp.110.155655 pmid: 20413647 |
[11] |
Brown P H, Hu H. Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species[J/OL]. Annals of Botany, 1996,77(5): 497-506[2021-02-20]. https://doi.org/10.1006/anbo.1996.0060.
doi: 10.1006/anbo.1996.0060 |
[12] |
Julkowska M M. Adjusting boron transport by two-step tuning of levels of the efflux transporter BOR1[J/OL]. Plant Physiology, 2018,177(2): 439-440[2021-02-20]. https://doi.org/10.1104/pp.18.00313.
doi: 10.1104/pp.18.00313 |
[13] |
Brown P H, Shelp B. Boron mobility in plants[J/OL]. Plant and Soil, 1997,193(1-2): 85-101[2021-02-20]. https://doi.org/10.1023/A:1004211925160.
doi: 10.1023/A:1004211925160 |
[14] | Hu H, Brown P H. The mechanism of phloem mobility of boron[J/OL]. Plant Nutrition for Sustainable Food Production and Environment, 1997,78: 153-156[2021-02-20]. https://doi.org/10.1007/978-94-009-0047-9_32. |
[15] |
Reid R. Understanding the boron transport network in plants[J/OL]. Plant and Soil, 2014,385(1-2): 1-13[2021-02-20]. https://doi.org/10.1007/s11104-014-2149-y.
doi: 10.1007/s11104-014-2149-y |
[16] |
Liakopoulos G, Stavrianakou S, Filippou Met al. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations[J/OL]. Tree Physiology, 2009,25(2): 157-165[2021-02-20]. https://doi.org/10.1093/treephys/25.2.157.
doi: 10.1093/treephys/25.2.157 |
[17] | 孙淼, 李鹏程, 郑苍松, 等. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响[J/OL]. 棉花学报, 2018,30(1): 45-52[2021-02-20]. https://doi.org/10.11963/1002-7807.smdhl.20180103. |
Sun Miao, Li Pengcheng, Zheng Cangsong, et al. Effects of low phosphorus stress on root morphology and physiological characteristics of different cotton genotypes at the seedling stage[J/OL]. Cotton Science, 2018,30(1): 45-52[2021-02-20]. https://doi.org/10.11963/1002-7807.smdhl.20180103. | |
[18] | 毛树春, 李亚兵, 董合忠. 中国棉花辉煌70年--我国走出了一条适合国情、具有中国特色的棉花发展道路、发展模式和发展理论[J/OL]. 中国棉花, 2019,46(7): 1-14[2021-02-20]. https://doi.org/10.11963/1000-632X.mscmsc.20190715. |
Mao Shuchun, Li Yabing, Dong Hezhong. Brilliant 70 years of China cotton-China has embarked on a development path, model and theory of cotton production with Chinese characteristics suitable for national conditions[J/OL]. China Cotton, 2019,46(7): 1-14[2021-02-20]. https://doi.org/10.11963/1000-632X.mscmsc.20190715. | |
[19] | 王运华, 刘武定, 皮美美, 等. 我国主要棉区缺硼概况与施硼分区[J]. 华中农业大学学报, 1989(S1): 153-157. |
Wang Yunhua, Liu Wuding, Pi Meimei, et al. B-deficiency in cotton and division of B application in important producing cotton area of China[J]. Journal of Huazhong Agricultural University, 1989(S1): 153-157. | |
[20] | 刘铮, 朱其清. 土壤中硼的含量和分布的规律性[J]. 土壤学报, 1989,26(4): 353-361. |
Liu Zheng, Zhu Qiqing. Regularity of the content and distribution of boron in soil[J]. Acta Pedologica Sinica, 1989,26(4): 353-361. | |
[21] |
Monika A W, Isidro A, Richard W B, et al. Boron: an essential element for vascular plants[J/OL]. New Phytologist, 2020,226(5): 1232-1237[2021-02-20]. https://doi.org/10.1111/nph.16127.
doi: 10.1111/nph.16127 pmid: 31674046 |
[22] |
Matthes M S, Robil J M, Paula M S. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants[J/OL]. Journal of Experimental Botany, 2020,71(5): 1681-1693[2021-02-20]. https://doi.org/10.1093/jxb/eraa042.
doi: 10.1093/jxb/eraa042 |
[23] | 朱建华, 耿明建, 曹享云, 等. 硼对棉花不同品种根系吸收活力、根系分泌物和伤流液组分的影响[J]. 棉花学报, 2001,13(3): 142-145. |
Zhu Jianhua, Geng Mingjian, Cao Xiangyun, et al. Effect of boron on root absorbing capability, the composition of root exudates and root bleeding sap of two cotton cultivars[J]. Cotton Science, 2001,13(3): 142-145. | |
[24] | 闫磊, 姜存仓, 董肖昌, 等. 多元醇络合硼对油菜苗期生长及生理特性的影响[J/OL]. 华中农业大学学报, 2017,26(2): 38-44[2021-02-20]. https://doi.org/10.13300/j.cnki.hnlkxb.20170213.015. |
Yan Lei, Jiang Cuncang, Dong Xiaochang, et al. Effects of polyol chelated boron fertilizer on physiological characteristics of rapeseed seedlings[J/OL]. Journal of Huazhong Agricultural University, 2017,26(2): 38-44[2021-02-20]. https://doi.org/10.13300/j.cnki.hnlkxb.20170213.015. | |
[25] | 段蔚. 多元醇络合硼对油菜幼苗生长及营养元素吸收的功效[D]. 南京: 南京农业大学, 2012. |
Duan Wei. Effects of polyol-chelated boron fertilizers on seedling growth and uptake of mineral nutrients in rape[D]. Nanjing: Nanjing Agricultural University, 2012. | |
[26] | 张君, 危常州, 梁远航, 等. 陆地棉对叶面施硼的吸收和分配[J]. 棉花学报, 2012,24(4): 331-335. |
Zhang Jun, Wei Changzhou, Liang Yuanhang, et al. Absorption and distribution of foliar applied boron in upland cotton[J]. Cotton Science, 2012,24(4): 331-335. | |
[27] | 王海彤. 有机硼(GB)对大豆生长发育的影响[D]. 武汉: 华中农业大学, 2019. |
Wang Haitong. Effects of organic boron(GB) on the growth and development of soybean[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[28] | 徐建明, 汪鑫, 罗玉明, 等. 两种形态硼对小麦幼苗叶绿素荧光参数保护酶活性的影响[J/OL]. 华北农学报, 2010,24(2): 149-155[2021-02-20]. https://doi.org/10.7668/hbnxb.2010.02.030. |
Xu Jianming, Wang Xin, Luo Yuming, et al. Effects of two forms of boron on antioxidant enzymes and chlorophyll fluorescence parameters of wheat seedlings[J/OL]. Acta Agriculturae Boreali-Sinica, 2010,24(2): 149-155[2021-02-20]. https://doi.org/10.7668/hbnxb.2010.02.030. | |
[29] |
Will S, Eichert T, Victoria F, et al. Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex[J/OL]. Plant and Soil, 2011,344(1): 283-293[2021-02-20]. https://doi.org/10.1007/s11104-011-0746-6.
doi: 10.1007/s11104-011-0746-6 |
[30] |
Benjamin P, Eggert K, Bienert G P. Boron deficiency effects on sugar, ionome, and phytohormone profiles of vascular and non-vascular leaf tissues of common plantain (Plantago major L.)[J/OL]. International Journal of Molecular Sciences, 2019,20(16): 3882[2021-02-20]. https://doi.org/10.3390/ijms20163882.
doi: 10.3390/ijms20163882 |
[31] | 刘桂东, 胡萍, 张婧卉, 等. 缺硼对脐橙幼苗硼分配及叶片细胞壁组分硼含量的影响[J/OL]. 植物营养与肥料学报, 2018,24(1): 179-186[2021-02-20]. http://dx.doi.org/10.11674/zwyf.17107. |
Liu Guidong, Hu Ping, Zhang Jinghui, et al. Effect of boron deficiency on boron distribution in different plant parts and boron concentration in leaf cell wall components in navel orange plants[J/OL]. Journal of Plant Nutrition and Fertilizers, 2018,24(1): 179-186[2021-02-20]. http://dx.doi.org/10.11674/zwyf.17107. | |
[32] |
Dannel F, Pfeffer H, R mheld V. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply[J/OL]. Journal of Plant Physiology, 1998,153(5-6): 615-622[2021-02-20]. https://doi.org/10.1016/S0176-1617(98)80212-5.
doi: 10.1016/S0176-1617(98)80212-5 |
[33] |
Camacho-Cristo′bal J J, Maldonado J M, González-Fontes A. Boron deficiency increases putrescine levels in tobacco plants[J/OL]. Journal of Plant Physiology, 2005,162(8): 921-928[2021-02-20]
pmid: 16146318 |
[34] |
Kobayashi M, Miyamoto M, Matoh T, et al. Mechanism underlying rapid responses to boron deprivation in Arabidopsis roots[J/OL]. Soil Science and Plant Nutrition, 2018,64(1): 106-115[2021-02-20]. https://doi.org/10.1080/00380768.2017.1416670.
doi: 10.1080/00380768.2017.1416670 |
[1] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[2] | 王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246. |
[3] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[4] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[5] | 卢合全,唐薇,张冬梅,罗振,孔祥强,李振怀,徐士振,代建龙,李维江,辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[6] | 周雪慧,高二林,王钰静,李焱龙,袁道军,朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[7] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[8] | 苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172. |
[9] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[10] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[11] | 席凯鹏,席吉龙,杨苏龙,张建诚. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48-59. |
[12] | 李世梅,李自良,冯旭飞,向导,杨明凤,张旺锋,张亚黎. 棉花盛铃期不同器官氮磷化学计量特征及异速关系[J]. 棉花学报, 2022, 34(1): 60-68. |
[13] | 陈凯丽,田秋恒,刘志洋,王海,熊杰,雷勇辉,孙燕飞. 新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性[J]. 棉花学报, 2022, 34(1): 69-78. |
[14] | 王艳情, 郑杰, 许艳超, 蔡小彦, 周忠丽, 侯宇清, 王坤波, 王玉红, 陈浩东, 刘方, 李志坤. 棉花HDAC基因家族鉴定及其在黄萎病菌侵染下的表达分析[J]. 棉花学报, 2021, 33(6): 469-481. |
[15] | 李秋琳,李燕,陈伟,姚金波,朱守鸿,袁黎,张永山. 基于广泛靶向代谢组学的不同颜色棉花花瓣中类黄酮成分差异分析[J]. 棉花学报, 2021, 33(6): 482-492. |
|