棉花学报 ›› 2021, Vol. 33 ›› Issue (5): 412-421.doi: 10.11963/cs20210013
姜辉1(),郑锦秀2,王永翠1,张超1,王秀丽1,陈莹1,高明伟1,王家宝1,柴启超1,赵军胜1,*(
)
收稿日期:
2021-02-06
出版日期:
2021-09-15
发布日期:
2022-01-27
通讯作者:
赵军胜
E-mail:jianghui-agro@163.com;zhaojunshengsd@163.com
作者简介:
姜辉(1984―),男,博士, 基金资助:
Jiang Hui1(),Zheng Jinxiu2,Wang Yongcui1,Zhang Chao1,Wang Xiuli1,Chen Ying1,Gao Mingwei1,Wang Jiabao1,Chai Qichao1,Zhao Junsheng1,*(
)
Received:
2021-02-06
Online:
2021-09-15
Published:
2022-01-27
Contact:
Zhao Junsheng
E-mail:jianghui-agro@163.com;zhaojunshengsd@163.com
摘要:
【目的】L-D1基因调控陆地棉叶形。本研究设计特异分子标记精准鉴定L-D1等位基因,为其在陆地棉冠层结构改良中的应用提供支撑。【方法】利用具有鲁棉研28号遗传背景的L-D1等位基因近等基因系,分析不同等位基因组合对叶形的影响。根据4个等位基因的启动子和编码区的多态性设计特异分子标记,并对不同叶形中的等位基因进行检测。【结果】L-D1基因从3叶期开始调控叶片叶裂的形成,4~8叶期叶裂不断加深,从9叶期开始基本稳定;L-D1等位基因不同组合可形成相似叶形,仅从形态上难以准确辨别。克隆获得L-D1位点4个等位基因起始密码子前约4 kb的启动子片段,发现24个SNPs(Single nucleotide polymorphism,单核苷酸多态性)、1个133 bp及1个14 bp的插入缺失。根据等位基因启动子及编码区的SNP和缺失插入开发了1个Indel分子标记InDel_8和2个衍生酶切扩增多态性序列标记dCAPS_192、dCAPS_519,分别为l2、L2o、L2s的特异分子标记。【结论】根据陆地棉中控制叶形的L-D1等位基因间的差异开发了3个特异性分子标记,可用来鉴定不同的L-D1等位基因。
姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421.
Jiang Hui,Zheng Jinxiu,Wang Yongcui,Zhang Chao,Wang Xiuli,Chen Ying,Gao Mingwei,Wang Jiabao,Chai Qichao,Zhao Junsheng. Development and application of specific molecular markers for L-D1 alleles in upland cotton[J]. Cotton Science, 2021, 33(5): 412-421.
表1
L-D1等位基因启动子区域的差异位点"
多态性类型 Type of polymorphism | 位置 Location/bp | 4个等位基因的基因型 Genotype of four alleles | |||
L2s | L2o | L2u | l2 | ||
缺失 Deletion | -877~-745 | - | - | + | + |
-1 412~-1 399 | + | + | + | - | |
SNP | -166 | T | T | T | C |
-192 | T | G | T | T | |
-250 | A | A | A | G | |
-436 | C | C | C | A | |
-519 | A | G | G | G | |
-689 | T | T | T | G | |
-968 | A | A | A | T | |
-991 | A | A | A | G | |
-1 468 | T | T | T | C | |
-1 785 | G | G | G | T | |
-1 977 | A | A | A | G | |
-2 485 | C | G | C | C | |
-2 610 | C | C | C | T | |
-2 638 | A | A | A | G | |
-2 661 | A | A | A | C | |
-2 736 | A | A | A | G | |
-2 740 | T | T | T | C | |
-2 819 | A | A | A | T | |
-2 917 | A | A | A | G | |
-3 018 | A | A | A | C | |
-3 284 | T | T | T | A | |
-3 330 | A | A | A | C | |
-3 527 | T | T | T | C | |
-3 814 | A | A | A | G |
表2
L-D1叶形等位基因的特异分子标记"
引物名称 Primer name | 引物序列 Primer sequences | 扩增片段大小 Size of PCR product/bp | 备注 Note |
InDel_8_F2 InDel_8_R2 | ACTCTCATACCTTTTACGCAGGT CCGCCGGAGATTTCCTTGTA | l2:93;L2u,L2o,L2s:101 | l2特异分子标记 Specific marker for l2 |
dCAPS _192_F3 dCAPS _192_R3 | GTCCACCCTCTCTCCATCTCAATT CAATGGGGAGCAGACCAGAA | L2u,L2s,l2:121;L2o:101 | L2o特异分子标记 Specific marker for L2o |
dCAPS _519_F4 dCAPS _519_R4 | GATGTAGTGAATGAGTATTTATCCAT TGTACATTTACAATCCCTCATCA | L2u,l2,L2o:183; L2s:210 | L2s特异分子标记 Specific marker for L2s |
[1] | 中国农业科学院棉花研究所. 中国棉花栽培学[M]. 3版. 上海: 上海科学技术出版社, 2013: 209-211. |
Institute of Cotton Research of Chinese Academy of Agricultural Sciences. Cotton cultivation in China[M]. 3rd ed. Shanghai: Shanghai Science and Technology Press, 2013: 209-211. | |
[2] | 李继军. 对于棉花烂铃的思考与分析[J]. 江西棉花, 2011,33(2): 13-15. |
Li Jijun. Thinking and analysis of cotton boll rot[J]. Jiangxi Cotton, 2011,33(2): 13-15. | |
[3] | 董合忠, 毛树春, 张旺锋, 等. 棉花优化成铃栽培理论及其新发展[J/OL]. 中国农业科学, 2014,47(3): 441-451[2021-02-01]. https://doi.org/10.3864/j.issn.0578-1752.2014.03.004. |
Dong Hezhong, Mao Shuchun, Zhang Wangfeng, et al. On boll-setting optimization theory for cotton cultivation and its new development[J/OL]. Scientia Agricultura Sinica, 2014,47(3): 441-451[2021-02-01]. https://doi.org/10.3864/j.issn.0578-1752.2014.03.004. | |
[4] |
Yao Hesheng, Zhang Yali, Yi Xiaoping, et al. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen[J/OL]. Field Crops Research, 2016,188: 10-16[2021-02-01]. https://doi.org/10.1016/j.fcr.2016.01.012.
doi: 10.1016/j.fcr.2016.01.012 |
[5] | 董建军, 代建龙, 李霞, 等. 黄河流域棉花轻简化栽培技术评述[J/OL]. 中国农业科学, 2017,50(22): 4290-4298[2021-02-01]. https://doi.org/10.3864/j.issn.0578-1752.2017.22.005. |
Dong Jianjun, Dai Jianlong, Li Xia, et al. Review of light and simplified cotton cultivation technology in the Yellow River valley[J/OL]. Scientia Agricultura Sinica, 2017,50(22): 4290-4298[2021-02-01]. https://doi.org/10.3864/j.issn.0578-1752.2017.22.005. | |
[6] | 江曲, 陈金湘, 刘海荷, 等. 棉花稀植大棵群体不同果枝产量与品质分布特征的研究[J/OL]. 作物研究, 2013,2(1): 15-20[2021-02-01]. https://doi.org/10.3969/j.issn.1001-5280.2013.01.04. |
Jiang Qu, Chen Jinxiang, Liu Haihe, et al. Studies on distribution characteristics of yield and fiber quality of different fruiting branch under low density planting in cotton[J/OL]. Crop Research, 2013,2(1): 15-20[2021-02-01]. https://doi.org/10.3969/j.issn.1001-5280.2013.01.04. | |
[7] |
Gao H Y, Li N N, Li J H, et al. Improving boll capsule wall, subtending leaves anatomy and photosynthetic capacity can increase seed cotton yield under limited drip irrigation systems[J/OL]. Industrial Crops and Products, 2021,161: 113214[2021-02-01]. https://doi.org/10.1016/j.indcrop.2020.113214.
doi: 10.1016/j.indcrop.2020.113214 |
[8] |
Chapepa B, Mudada N, Mapuranga R. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: an overview[J/OL]. Journal of Cotton Research, 2020,3: 18[2021-02-01]. https://doi.org/10.1186/s42397-020-00059-z.
doi: 10.1186/s42397-020-00059-z |
[9] |
Chen H X, Zhao X X, Han Y C, et al. Competition for light interception in cotton populations of different densities[J/OL]. Agronomy, 2021,11(1): 176[2021-02-01]. https://doi.org/10.3390/agronomy11010176.
doi: 10.3390/agronomy11010176 |
[10] | 贾晓昀, 王士杰, 赵红霞, 等. 陆地棉株型及生育期相关性状QTL定位[J/OL]. 棉花学报, 2021,33(2): 124-133[2021-02-01]. https://doi.org/10.11963/1002-7807.jxywgy.20210226. |
Jia Xiaoyun, Wang Shijie, Zhao Hongxia, et al. QTL analysis for Gossypium hirsutum L. plant architecture and growth period traits[J/OL]. Cotton Science, 2021,33(2): 124-133[2021-02-01]. https://doi.org/10.11963/1002-7807.jxywgy.20210226. | |
[11] | 马雄风, 杨代刚, 张雪妍. 澳大利亚棉花育种考察报告[J]. 中国棉花, 2016,40(2): 1-2. |
Ma Xiongfeng, Yang Daigang, Zhang Xueyan. Investigation on cotton breeding in Australia[J]. China Cotton, 2016,40(2): 1-2. | |
[12] | 冯国艺, 罗宏海, 姚炎帝, 等. 新疆超高产棉花叶、铃空间分布及与群体光合生产的关系[J/OL]. 中国农业科学, 2012,45 (13): 2607-2617[2021-02-01]. https://doi.org/10.3864/j.issn.0578-1752.2012.13.005. |
Feng Guoyi, Luo Honghai, Yao Yandi, et al. Spatial distribution of leaf and boll in relation to canopy photosynthesis of super high-yielding cotton in Xinjiang[J/OL]. Scientia Agricultura Sinica, 2012,45 (13): 2607-2617[2021-02-01]. https://doi.org/10.3864/j.issn.0578-1752.2012.13.005. | |
[13] |
杜明伟, 冯国艺, 姚炎帝, 等. 杂交棉标杂A1和石杂2号超高产冠层特性及其与群体光合生产的关系[J]. 作物学报, 2009,35(6): 1068-1077.
doi: 10.3724/SP.J.1006.2009.01068 |
Du Mingwei, Feng Guoyi, Yao Yandi, et al. Canopy characteristics and its correlation with photosynthesis of super high-yielding hybrid cotton Biaoza A1 and Shiza 2[J]. Acta Agronomica Sinica, 2009,35(6): 1068-1077.
doi: 10.3724/SP.J.1006.2009.01068 |
|
[14] | 姜辉, 王秀丽, 高明伟, 等. L-D1等位基因对陆地棉叶形、产量及纤维品质的影响[C]//山东作物学会. 2018年山东作物学会学术年会论文集. 济南: 山东作物学会, 2018: 41-49. |
Jiang Hui, Wang Xiuli, Gao Mingwei, et al. The effect of L-D1 alleles on leaf shape, yield and fiber quality in upland cotton[C]//Shandong Crop Society. Proceedings of the annual meeting of Shandong crop society in 2018. Jinan: Shandong Crop Society, 2018: 41-49. | |
[15] | 朱伟, 王学德, 华水金, 等. 鸡脚叶标记的三系杂交棉光合特性的研究[J]. 中国农业科学, 2005,38 (11): 2211-2218. |
Zhu Wei, Wang Xuede, Hua Shuijing, et al. Photosynthetic properties of CMS-based hybrid cotton(Gossypium hirsutum L.) with okra leaf[J]. Scientia Agricultura Sinica, 2005,38 (11): 2211-2218. | |
[16] |
Andres R J, Bowman D T, Kaur B, et al. Mapping and genomic targeting of the major leaf shape gene (L) in upland cotton (Gossypium hirsutum L.)[J]. Theoretical and Applied Genetics, 2014,127 (1): 167-177.
doi: 10.1007/s00122-013-2208-4 pmid: 24158249 |
[17] |
Zhu Q H, Zhang J, Liu D X, et al. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L.[J/OL]. Journal of Experimental Botany, 2016,67(3): 763-774[2021-02-01]. https://doi.org/10.1093/jxb/erv494.
doi: 10.1093/jxb/erv494 |
[18] |
Chang L J, Fang L, Zhu Y, et al. Insights into interspecific hybridization events in allotetraploid cotton formation from characterization of a gene regulating leaf shape[J/OL]. Genetics, 2016,204(2): 799-806[2021-02-01]. https://doi.org/10.1534/genetics.116.193086.
doi: 10.1534/genetics.116.193086 |
[19] |
Chang L J, Mei G F, Hu Y, et al. LMI1-like and KNOX1 genes coordinately regulate plant leaf development in dicotyledons[J/OL]. Plant Molecular Biology, 2019,99: 449-460[2021-02-01]. https://doi.org/10.1007/s11103-019-00829-7.
doi: 10.1007/s11103-019-00829-7 |
[20] |
Andres R J, Coneva V, Frank M H, et al. Modifications to a LATE MERISTEM IDENTITY-1 gene are responsible for the major leaf shapes of cotton (Gossypium hirsutum L.)[J/OL]. Proceedings of the National Academy of Sciences, 2017,114(1): E57-E66[2021-02-01]. https://doi.org/10.1073/pnas.1613593114.
doi: 10.1073/pnas.1613593114 |
[21] |
He D F, Zhao X, Liang C Z, et al. Genetic variation in LBL1 contributes to depth of leaf blades lobes between cotton subspecies, Gossypium barbadense and Gossypium hirsutum[J/OL]. Journal of Integrative Agriculture, 2018,17(11): 2394-2404[2021-02-01]. https://doi.org/10.1016/s2095-3119(18)61954-9.
doi: 10.1016/S2095-3119(18)61954-9 |
[22] | 王欣怡, 李雪源, 龚照龙, 等. 基于SSR标记新疆陆地棉的DNA指纹图谱构建及遗传多样性分析[J/OL]. 棉花学报, 2018,30(4): 308-315[2021-02-01]. https://doi.org/10.11963/1002-7807.wxyaxt.20180723. |
Wang Xinyi, Li Xueyuan, Gong Zhaolong, et al. DNA fingerprint construction and genetic diversity analysis based on SSR markers for upland cotton in Xinjiang[J/OL]. Cotton Science, 2018,30(4): 308-315[2021-02-01]. https://doi.org/10.11963/1002-7807.wxyaxt.20180723. | |
[23] |
Murchie E H, Pinto M, Horton P. Agriculture and the new challenges for photosynthesis research[J/OL]. New Phytologist, 2009,181(3): 532-552[2021-02-01]. https://doi.org/10.1111/j.1469-8137.2008.02705.x.
doi: 10.1111/j.1469-8137.2008.02705.x pmid: 19140947 |
[24] |
Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield[J/OL]. Annual Review of Plant Biology, 2010,61: 235-261[2021-02-01]. https://doi.org/10.1146/annurev-arplant-042809-112206.
doi: 10.1146/arplant.2010.61.issue-1 |
[25] |
Baret F, Madec S, Irfan K, et al. Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping[J/OL]. Journal of Experimental Botany, 2018,69(10): 2705-2716[2021-02-01]. https://doi.org/10.1093/jxb/ery071.
doi: 10.1093/jxb/ery071 |
[26] |
徐静, 王莉, 钱前, 等. 水稻叶片形态建成分子调控机制研究进展[J/OL]. 作物学报, 2013,39(5): 767-774[2021-02-01]. https://doi.org/10.3724/SP.J.1006.2013.00767.
doi: 10.3724/SP.J.1006.2013.00767 |
Xu Jing, Wang Li, et al. Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.)[J/OL]. Acta Agronomica Sinica, 2013,39(5): 767-774[2021-02-01]. https://doi.org/10.3724/SP.J.1006.2013.00767.
doi: 10.3724/SP.J.1006.2013.00767 |
|
[27] | Zhang S N, Wang S K, Xu Y X, et al. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J/OL]. Plant Cell & Environment, 2015,38(4): 638-654[2021-02-01]. https://doi.org/10.1111/pce.12397. |
[28] |
Zhang X Q, Sun J, Cao X F, et al. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice[J/OL]. Plant Physiology, 2015,169:2118-2128[2021-02-01]. https://doi.org/10.1104/pp.15.00836.
doi: 10.1104/pp.15.00836 |
[29] |
Zhang J, Ku L X, Han Z P, et al. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.)[J/OL]. Journal of Experimental Botany, 2014,65(17): 5063-5076[2021-02-01]. https://doi.org/10.1093/jxb/eru271.
doi: 10.1093/jxb/eru271 pmid: 24987012 |
[30] | Jiang F K, Guo M, Yang F, et al. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize[J/OL]. PLoS ONE, 2012,7(5): e37040[2021-02-01]. https://doi.org/10.1371/journal.pone.0037040. |
[31] |
Tian J G, Wang C L, Xia J L, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J/OL]. Science, 2019,365(6454): 658-664[2021-02-01]. https://doi.org/10.1126/science.aax5482.
doi: 10.1126/science.aax5482 |
[32] |
Hu J, Zhu L, Zeng D L, et al. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice[J/OL]. Plant Molecular Biology, 2010,73 (3): 283-292[2021-02-01]. https://doi.org/10.1007/s11103-010-9614-7.
doi: 10.1007/s11103-010-9614-7 |
[33] |
Hunter C H, Kirienko D H, Sylvester A N, et al. Cellulose synthase-like D1 is integral to normal cell division, expansion, and leaf development in maize[J/OL]. Plant Physiology, 2012,158(2): 708-724[2021-02-01]. https://doi.org/10.1104/pp.111.188466.
doi: 10.1104/pp.111.188466 |
[34] |
Sun J, Cui X A, Teng S Z, et al. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice[J/OL]. Plant Biotechnology Journal, 2020,18(12): 2559-2572[2021-02-01]. https://doi.org/10.1111/pbi.13435.
doi: 10.1111/pbi.v18.12 |
[35] |
Zhou Y B, Wang D, Wu T, et al. LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling through modulating bulliform cell development in rice[J/OL]. Molecular Breeding, 2018,38(5): 48[2021-02-01]. https://doi.org/10.1007/s11032-018-081-4.
doi: 10.1007/s11032-018-0811-4 |
[36] |
Ohmori Y, Toriba T, Nakamura H, et al. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice[J/OL]. Plant Journal, 2011,65(1): 77-86[2021-02-01]. https://doi.org/10.1111/j.1365-313X.2010.04404.x.
doi: 10.1111/j.1365-313X.2010.04404.x |
[37] | 王永强, 刘建光, 赵俊丽, 等. 利用SSR分子标记辅助棉花提纯选育的研究[J/OL]. 分子植物育种, 2014,12(3): 492-498[2021-02-01]. https://doi.org/10.13271/j.mpb.012.000492. |
Wang Yongqiang, Liu Jianguang, Zhao Junli, et al. Study of purification and breeding of cotton by SSR molecular marker-assisted selection[J/OL]. Molecular Plant Breeding, 2014,12(3): 492-498[2021-02-01]. https://doi.org/10.13271/j.mpb.012.000492. | |
[38] | 匡猛, 王延琴, 周大云, 等. 基于单拷贝SNP 标记的棉花杂交种纯度高通量检测技术[J/OL]. 棉花学报, 2016,28(3): 227-233[2021-02-01]. https://doi.org/10.11963/issn.1002-7807.201603005. |
Kuang Meng, Wang Yanqin, Zhou Dayun, et al. High-throughput genotyping assay technology for cotton hybrid purity based on single-copy SNP markers[J/OL]. Cotton Science, 2016,28(3): 227-233[2021-02-01]. https://doi.org/10.11963/issn.1002-7807.201603005. | |
[39] |
Zhang J F, Fang H, Zhou H P, et al. Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton[J/OL]. Crop Science, 2014,54(4): 1289-1303[2021-02-01]. https://doi.org/10.2135/cropsci2013.08.0550.
doi: 10.2135/cropsci2013.08.0550 |
[40] |
Zheng X T, Hoegenauer K A, Quintana J, et al. SNP-based MAS in cotton under depressed-recombination for Renlon-flanking recombinants: results and inferences on wide-cross breeding strategies[J/OL]. Crop Science, 2016,56(4): 1526-1539 [2021-02-01]. https://doi.org/doi:10.2135/cropsci2015.07.0436.
doi: 10.2135/cropsci2015.07.0436 |
[1] | 赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186. |
[2] | 吴健锋,樊志浩,武连杰,胡晓旺,韩知里,高巍,龙璐. 陆地棉衰老相关基因GhSAG101的克隆及抗病功能分析[J]. 棉花学报, 2022, 34(3): 187-197. |
[3] | 田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226. |
[4] | 张素君,李兴河,王海涛,唐丽媛,蔡肖,刘存敬,张香云,张建宏. 陆地棉主要育种性状SSR关联位点的验证及优异材料鉴定[J]. 棉花学报, 2022, 34(2): 120-136. |
[5] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[6] | 陈琴,李多露,赵杰银,高文举,陈全家,曲延英. 陆地棉UDPGP基因家族的鉴定及抗旱性分析[J]. 棉花学报, 2022, 34(1): 12-22. |
[7] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[8] | 李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. |
[9] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[10] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[11] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[12] | 薛羽君,魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[13] | 吕丽敏,左东云,王省芬,张友平,程海亮,王巧连,宋国立,马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[14] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
[15] | 窦玲玲,孙亚如,赵琴,田瑞洁,康洋洋,朱怡然,杨蕾蕾,王彩虹,冯宇,王文博,肖光辉. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
|