棉花学报 ›› 2022, Vol. 34 ›› Issue (1): 12-22.doi: 10.11963/cs20200100
收稿日期:
2020-12-25
出版日期:
2022-01-15
发布日期:
2022-05-31
通讯作者:
曲延英
E-mail:cqq0777@163.com;ldlfyx@126.com;xjyyq5322@126.com
作者简介:
陈琴(1982―),女,博士,副教授, 基金资助:
Chen Qin(),Li Duolu(
),Zhao Jieyin,Gao Wenju,Chen Quanjia,Qu Yanying*(
)
Received:
2020-12-25
Online:
2022-01-15
Published:
2022-05-31
Contact:
Qu Yanying
E-mail:cqq0777@163.com;ldlfyx@126.com;xjyyq5322@126.com
摘要:
【目的】尿苷二磷酸葡萄糖焦磷酸化酶(Uridine diphosphate glucose pyrophosphorylase, UDPGP)是植物碳水化合物代谢和细胞壁生物合成中的关键酶,但关于棉花UDPGP基因研究较少。对陆地棉UDPGP基因进行全基因组分析,为深入研究UDPGP基因在棉花抗逆中的作用提供参考。【方法】利用已公布的陆地棉标准系TM-1基因组数据,通过生物信息学分析方法对陆地棉UDPGP基因进行全基因组鉴定,分析该家族成员的理化性质、系统进化关系、基因结构、染色体定位、启动子区顺式作用元件、组织表达特异性和干旱胁迫下的表达模式。【结果】陆地棉UDPGP基因家族包含31个成员,不均等地分布在18条染色体上,可分为5个亚族。顺式作用元件分析发现,大部分UDPGP基因的启动子区域含有响应脱落酸、赤霉素、水杨酸、茉莉酸甲酯的顺式作用元件以及响应干旱的MYB结合位点。转录组分析表明,GhUDPGP10和GhUDPGP26基因响应干旱胁迫,且在棉花多个器官中较高水平表达;实时荧光定量聚合酶链式反应结果显示,干旱胁迫下,GhUDPGP10和GhUDPGP26在抗旱材料的根中表达量普遍较高;而在干旱敏感材料中,主要在叶中高表达,推测这两个基因在不同的遗传材料中抗逆作用机制不同。【结论】明确了陆地棉UDPGP基因家族成员的分布特征、结构特征以及系统进化特征,通过表达分析初步揭示了该家族GhUDPGP10和GhUDPGP26基因可能在棉花生长发育和抗旱响应中发挥功能,为解析GhUDPGP基因的抗旱分子机理奠定基础。
陈琴,李多露,赵杰银,高文举,陈全家,曲延英. 陆地棉UDPGP基因家族的鉴定及抗旱性分析[J]. 棉花学报, 2022, 34(1): 12-22.
Chen Qin,Li Duolu,Zhao Jieyin,Gao Wenju,Chen Quanjia,Qu Yanying. Identification and drought resistance analysis of UDPGP family genes in Gossypium hirsutum[J]. Cotton Science, 2022, 34(1): 12-22.
表2
陆地棉UDPGP基因信息"
基因编号 Gene ID | 基因名称 Gene name | 染色体位置 Chromosome location | ORF长度 ORF length/bp | 蛋白 长度 Protein length/aa | 蛋白 分子质量 Protein size/ku | 等电点 Isoelectric point | 亚细胞 定位 Subcellular localization |
---|---|---|---|---|---|---|---|
GH_A02G1221 | GhUDPGP01 | A02: 65 445 728 ~ 65452745 | 1 884 | 627 | 69.28 | 6.12 | Ext |
GH_A03G2444 | GhUDPGP02 | A03: 111 508 218 ~ 111 514 524 | 1 473 | 490 | 54.63 | 6.25 | Cyt |
GH_A05G2382 | GhUDPGP03 | A05: 23 629 292 ~ 23 641 014 | 1 965 | 654 | 72.78 | 6.64 | Ext |
GH_A07G1818 | GhUDPGP04 | A07: 55 230 148 ~ 55 230 916 | 273 | 90 | 10.01 | 9.91 | Cyt |
GH_A07G1819 | GhUDPGP05 | A07: 55 232 573 ~ 55 234 744 | 687 | 228 | 25.70 | 4.99 | Cyt |
GH_A08G0422 | GhUDPGP06 | A08: 4 575 002 ~ 4 581 575 | 1 404 | 467 | 51.50 | 5.86 | Cyt |
GH_A08G2499 | GhUDPGP07 | A08: 121 814 292 ~ 121 819 836 | 1 884 | 627 | 68.83 | 6.69 | Ext |
GH_A10G1000 | GhUDPGP08 | A10: 19 797 228 ~ 19 802 476 | 1 866 | 621 | 68.62 | 6.93 | Ext |
GH_A10G2644 | GhUDPGP09 | A10: 114 588 353 ~ 114 608 136 | 2 628 | 875 | 96.66 | 6.05 | Ext |
GH_A11G1773 | GhUDPGP10 | A11: 22 289 514 ~ 22 294 382 | 1 398 | 465 | 51.31 | 5.62 | Cyt |
GH_A11G2500 | GhUDPGP11 | A11: 88 056 120 ~ 88 065 918 | 1 845 | 614 | 68.35 | 6.26 | Cyt |
GH_A12G0472 | GhUDPGP12 | A12: 9 341 477 ~ 9 347 072 | 1 506 | 501 | 55.04 | 6.12 | Cyt |
GH_D01G1492 | GhUDPGP13 | D01: 31 984 768 ~ 31 988 536 | 552 | 183 | 19.74 | 4.91 | Ext |
GH_D02G2606 | GhUDPGP14 | D02: 69 669 195 ~ 69 684 286 | 981 | 326 | 36.31 | 8.92 | Cyt |
GH_D03G0708 | GhUDPGP15 | D03: 19 170 452 ~ 19 177 329 | 1 884 | 627 | 69.27 | 6.78 | Ext |
GH_D03G1240 | GhUDPGP16 | D03: 42 297 024 ~ 42 297 435 | 258 | 85 | 9.69 | 9.51 | Cyt |
GH_D04G0520 | GhUDPGP17 | D04: 8 139 192 ~ 8 141 506 | 306 | 101 | 11.70 | 6.57 | Ext |
GH_D04G0553 | GhUDPGP18 | D04: 9 016 214 ~ 9 016 589 | 306 | 101 | 11.49 | 8.87 | Cyt |
GH_D07G1857 | GhUDPGP19 | D07: 37 319 315 ~ 37 320 305 | 348 | 115 | 12.73 | 7.85 | Cyt |
GH_D08G0444 | GhUDPGP20 | D08: 4 257 074 ~ 4 263 644 | 1 404 | 467 | 51.54 | 5.82 | Cyt |
GH_D08G0875 | GhUDPGP21 | D08: 15 108 176 ~ 15 110 861 | 324 | 107 | 11.27 | 8.47 | Cyt |
GH_D08G2508 | GhUDPGP22 | D08: 65 886 935 ~ 65 892 208 | 1 842 | 613 | 67.63 | 6.49 | Ext |
GH_D10G1795 | GhUDPGP23 | D10: 47 209 347 ~ 47 209 758 | 258 | 85 | 9.83 | 6.82 | Cyt |
GH_D10G2450 | GhUDPGP24 | D10: 62 181 672 ~ 62 182 823 | 492 | 163 | 18.05 | 9.71 | Ext |
GH_D10G2749 | GhUDPGP25 | D10: 66 423 070 ~ 66 427 939 | 2 610 | 869 | 9.66 | 6.00 | Ext |
GH_D11G1805 | GhUDPGP26 | D11: 18 727 608 ~ 18 732 182 | 1 398 | 465 | 51.30 | 5.45 | Cyt |
GH_D11G1888 | GhUDPGP27 | D11: 20 099 709 ~ 20 100 084 | 306 | 101 | 11.47 | 8.87 | Cyt |
GH_D11G2547 | GhUDPGP28 | D11: 48 854 774 ~ 48 860 882 | 1 845 | 614 | 68.42 | 6.36 | Cyt |
GH_D11G2621 | GhUDPGP29 | D11: 51 800 632 ~ 51 800 887 | 186 | 61 | 6.88 | 9.03 | Cyt |
GH_D12G0484 | GhUDPGP30 | D12: 7 230 507 ~ 7 236 086 | 1 512 | 503 | 55.18 | 6.12 | Cyt |
GH_D13G1555 | GhUDPGP31 | D13: 49 696 588 ~ 49 696 999 | 258 | 85 | 9.80 | 9.03 | Cyt |
[1] | 国家统计局. 国家统计局关于2020年棉花产量的公告[EB/OL]. (2019-12-18) [2020-12-20]. . |
National Bureau of Statistics. Announcement of the National Bureau of Statistics on cotton production in 2020[EB/OL]. (2019-12-18) [2020-12-20]. . | |
[2] | 孙加力. 政府政策与新疆棉花生产发展[D]. 北京: 中国农业大学, 2005. |
Sun Jiali. Government policy and development of Xinjiang cotton production[D]. Beijing: China Agricultural University, 2005. | |
[3] | 刘光亚, 张艳军, 孙学振, 等. 乙烯对棉花适应淹水胁迫的作用及其机制[J/OL]. 棉花学报, 2020, 32(3): 208-218 [2020-12-20]. https://doi.org/10.11963/1002-7807.lgydhz.20200426. |
Liu Guangya, Zhang Yanjun, Sun Xuezhen, et al. Effects of ethylene on cotton adaption to waterlogging stress and the underlying mechanism[J/OL]. Cotton Science, 2020, 32(3): 208-218 [2020-12-20]. https://doi.org/10.11963/1002-7807.lgydhz.20200426. | |
[4] | 许艳超, 韦洋洋, 李振庆, 等. 复合盐碱胁迫下半野生棉苗期耐盐性综合评价及其关键生理指标的变化[J/OL]. 棉花学报, 2018, 30(3): 231-241[2020-12-20]. https://doi.org/10.11963/1002-7807.xyczzl.20180430. |
Xu Yanchao, Wei Yangyang, Li Zhenqing, et al. Integrated evaluation and the physiological and biochemical responses of semi-wild cotton under complex salt-alkali stress[J/OL]. Cotton Science, 2018, 30(3): 231-241[2020-12-20]. https://doi.org/10.11963/1002-7807.xyczzl.20180430. | |
[5] |
John F, Chris P, Joe G. Sucrose and the integration of metabolism in vascular plants[J/OL]. Plant Science, 2000, 154(1): 1-11[2020-12-20]. https://doi.org/10.1016/S0168-9452(99)00260-5.
doi: 10.1016/S0168-9452(99)00260-5 |
[6] |
Soares J S M, Gentile A, Scorsato V, et al. Oligomerization, membrane association, and in vivo phosphorylation of sugarcane UDP-glucose pyrophosphorylase[J/OL]. The Journal of Biological Chemistry, 2014, 289(48): 33364-33367 [2020-12-20]. https://doi.org/10.1074/JBC.M114.590125.
doi: 10.1074/jbc.M114.590125 |
[7] |
Long Wuhua, Dong Bangning, Wang Yihua, et al. FLOURY ENDOSPERM8, encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm[J/OL]. Journal of Plant Biology, 2017, 60(5): 513-522 [2020-12-20]. https://doi.org/10.1007/s12374-017-0066-3.
doi: 10.1007/s12374-017-0066-3 |
[8] | Ana C E, Agnieszka M O, Natalia S, et al. On the ancestral UDP-glucose pyrophosphorylase activity of GalF from Escherichia coli[J/OL]. Frontiers in Microbiology, 2015, 6: 1253[2020-12-20]. https://doi.org/10.3389/fmicb.2015.01253. |
[9] |
Li Mengjiao, Chen Tianxi, Gao Tan, et al. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose[J/OL]. Fungal Genetics and Biology, 2015, 82(1): 251-263 [2020-12-20]. https://doi.org/10.1016/j.fgb.2015.07.012.
doi: 10.1016/j.fgb.2015.07.012 |
[10] |
Decker D, Kleczkowski L A. UDP-sugar producing pyrophosphorylases: distinct and essential enzymes with overlapping substrate specificities, providing de novo precursors for glycosylation reactions[J/OL]. Frontiers in Plant Science, 2018, 9: 1822 [2020-12-20]. https://doi.org/10.3389/fpls.2018.01822.
doi: 10.3389/fpls.2018.01822 |
[11] | 许韶华, 吴旭日, 陈依军. 糖基转移酶活性供体UDP-糖的生物合成及循环再生[J/OL]. 药物生物技术, 2019, 26(3): 244-249[2020-12-20]. https://doi.org/10.19526/j.cnki.1005-8915.20190312. |
Xu Shaohua, Wu Xuri, Chen Yijun. Biosynthesis and cyclic regeneration of glycosyltransferase activity donor UDP-sugar[J/OL]. Pharmaceutical Biotechnology, 2019, 26(3): 244-249[2020-12-20]. https://doi.org/10.19526/j.cnki.1005-8915.20190312. | |
[12] | 刘潇斐, 张良, 冯旭东, 等. 偶联尿苷二磷酸循环体系的天然产物体外糖基化修饰[J/OL]. 化工进展, 2020, 39(1): 329-340 [2020-12-20]. https://doi.org/10.16085/j.issn.1000-6613.2019-0607. |
Liu Xiaofei, Zhang Liang, Feng Xudong, et al. In vitro glycosylation modification of natural products coupled with uridine diphosphate cycle system[J/OL]. Chemical Industry Progress, 2020, 39(1): 329-340[2020-12-20]. https://doi.org/10.16085/j.issn.1000-6613.2019-0607. | |
[13] |
Flores-Diaz M, Alape-Giron A, Persson B, et al. Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylase gene[J/OL]. Journal of Biological Chemistry, 1997, 272(38): 23784-23791 [2020-12-20]. https://doi.org/10.1074/jbc.272.38.23784.
doi: 10.1074/jbc.272.38.23784 pmid: 9295324 |
[14] |
Meng M, Geisler M, Johansson H, et al. UDP-glucose pyrophosphorylase is not rate limiting, but is essential in Arabidopsis thaliana[J/OL]. Plant and Cell Physiology, 2009, 50(5): 998-1011[2020-12-20]. https://doi.org/10.1093/pcp/pcp052.
doi: 10.1093/pcp/pcp052 pmid: 19366709 |
[15] | 陈小敏, 吴海冰, 向泉桔, 等. 香菇UDP-葡萄糖焦磷酸化酶转录水平及酶活性对不同碳氮源的响应特征[J]. 四川大学学报(自然科学版), 2018, 55(1): 214-220. |
Chen Xiaomin, Wu Haibing, Xiang Quanju, et al. The transcription level and enzyme activity of Lentinus edodes UDP-glucose pyrophosphorylase in response to different carbon and nitrogen sources[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(1): 214-220. | |
[16] |
Wang Qinghua, Zhang Xue, Li Fuguang, et al. Identification of a UDP-glucose pyrophosphorylase from cotton (Gossypium hirsutum L.) involved in cellulose biosynthesis in Arabidopsis thaliana[J/OL]. Plant Cell Reports, 2011, 30(7): 1303-1312 [2020-12-20]. https://doi.org/10.1007/s00299-011-1042-x.
doi: 10.1007/s00299-011-1042-x pmid: 21373794 |
[17] |
Zhang Gaoyang, Qi Jianmin, Xu Jiantang, et al. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in jute (Corchorus capsularis L.)[J/OL]. Biochemical and Biophysical Research Communications, 2013, 442(3/4): 153-158 [2020-12-20]. https://doi.org/10.1016/j.bbrc.2013.11.053.
doi: 10.1016/j.bbrc.2013.11.053 |
[18] | 郭鑫. 兴安落叶松尿苷二磷酸葡萄糖焦磷酸化酶促进转基因植物营养生长的分子机理[D]. 呼和浩特: 内蒙古大学, 2019. |
Guo Xin. The molecular mechanism of Larix gmelinii uridine diphosphate glucose pyrophosphorylase promoting the vegetative growth of transgenic plants[D]. Huhhot: Inner Mongolia University, 2019. | |
[19] |
Deng Sheng, Yao Chuanfei, Zhang Xin, et al. Involvement of UDP-glucose pyrophosphorylase from Verticillium dahliae in cell morphogenesis, stress responses, and host infection[J/OL]. Fungal Biology, 2020, 124(7): 648-660[2020-12-20]. https://doi.org/10.1016/j.funbio.2020.03.007.
doi: S1878-6146(20)30052-0 pmid: 32540188 |
[20] | Zhang Haiyan, Ni Zhiyong, Chen Quanjia, et al. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress[J/OL]. Springer Berlin Heidelberg, 2016, 291(3): 1293-1303[2020-12-20]. https://doi.org/10.1007/s00438-016-1188-x. |
[21] | 孙丰磊, 张玻, 曲延英, 等. 花铃期干旱胁迫对不同棉花品种光合特性影响及抗旱性评价[J]. 干旱地区农业研究, 2018, 36(5): 7-13, 20. |
Sun Fenglei, Zhang Bo, Qu Yanying, et al. Effects of drought stress at flowering and boll stage on photosynthetic characteristics and drought resistance evaluation of different cotton varieties[J]. Agricultural Research in the Arid Areas, 2018, 36(5): 7-13, 20. | |
[22] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J/OL]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549 [2020-12-20]. https://doi.org/10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096 |
[23] | Bailey T L, Boden M, Buske F A, et al. MEME Suite: tools for motif discovery and searching[J/OL]. Narnia, 2009, 37(Sl2): w202-w208 [2020-12-20]. https://doi.org/10.1093/nar/gkp335. |
[24] | Senchina D S, Alvarez I, Cronn R C, et al. Rate variation among nuclear genes and the age of polyploidy in Gossypium[J/OL]. Molecular Biology and Evolution, 2003, 20(4): 224-229 [2020-12-20]. https://doi.org/10.1093/molbev/msg065. |
[25] | 贺望兴, 杨普香, 李延升, 等. 灵芝尿苷二磷酸葡萄糖焦磷酸化酶基因的电子克隆与生物信息学分析[J/OL]. 江西农业学报, 2019, 31(9): 86-94 [2020-12-20]. https://doi.org/10.19386/j.cnki.jxnyxb.2019.09.15. |
He Wangxing, Yang Puxiang, Li Yansheng, et al. Silico cloning and characterization analysis of UDP glucose pyrophosphorylase gene from Ganoderma lucidum by bioinformatics[J/OL]. Jiangxi Journal of Agriculture, 2019, 31(9): 86-94 [2020-12-20]. https://doi.org/10.19386/j.cnki.jxnyxb.2019.09.15. | |
[26] | Muchut R J, Calloni R D, Herrera F E, et al. Elucidating paramylon and other carbohydrate metabolism in Euglena gracilis: kinetic characterization, structure and cellular localization of UDP-glucose pyrophosphorylase[J/OL]. Bio-chimie, 2018, 154(11): 176-186 [2020-12-20]. https://doi.org/10.1016/j.biochi.2018.09.006. |
[27] |
Park J I, Ishimizu T, Suwabe K, et al. UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana[J/OL]. Plant and Cell Physiology, 2010, 51: 981-996 [2020-12-20]. https://doi.org/10.1093/pcp/pcq057.
doi: 10.1093/pcp/pcq057 |
[28] |
Chivasa S, Tomé D F A, Slabas A R. UDP-glucose pyrophosphorylase is a novel plant cell death regulator[J/OL]. Journal of Proteome Research, 2013, 12: 1743-1753[2020-12-20]. https://doi.org/10.1021/pr3010887.
doi: 10.1021/pr3010887 |
[29] |
Yi D G, Huh W K. UDP-glucose pyrophosphorylase Ugp1 is involved in oxidative stress response and long-term survival during stationary phase in Saccharomyces cerevisiae[J/OL]. Biochemical and Biophysical Research Communications, 2015, 467(4): 657-663[2020-12-20]. https://doi.org/10.1016/j.bbrc.2015.10.090.
doi: 10.1016/j.bbrc.2015.10.090 |
[30] | 吕楠, 安红强, 裴薇, 等. 铁皮石斛尿苷二磷酸葡萄糖焦磷酸化酶基因的克隆与分析[J]. 现代生物医学进展, 2017, 17(7): 1215-1219, 1232. |
Lü Nan, An Hongqiang, Pei Wei, et al. Cloning and analysis of uridine diphosphate glucose pyrophosphorylase gene from Dendrobium candidum[J]. Progress in Modern Biomedicine, 2017, 17(7): 1215-1219, 1232. | |
[31] |
Ciereszko I, Johansson H, Kleczkowski L A. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis[J/OL]. Biochemical Journal, 2001, 354(Pt 1): 67-72[2020-12-20]. https://doi.org/10.1042/0264-6021:3540067.
pmid: 11171080 |
[32] |
Ciereszko I, Johansson H, Hurry V, et al. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and phomutants of Arabidopsis[J/OL]. Planta, 2001, 212(4): 598-605 [2020-12-20]. https://doi.org/10.1007/s004250000424.
pmid: 11525517 |
[33] | 刘峻玲, 梁珂豪, 苗雅慧, 等. 青杄PwUSP1基因特征及对干旱和盐胁迫的响应[J]. 北京林业大学学报, 2020, 42(10): 62-70. |
Liu Junling, Liang Kehao, Miao Yahui, et al. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. | |
[34] | 闫岩. 胡杨/灰杨尿苷二磷酸葡萄糖焦磷酸化酶基因家族的克隆和功能研究[D]. 兰州: 兰州大学, 2015. |
Yan Yan. Cloning and functional analysis of uridine diphosphate glucose pyrophosphorylase gene family from Populus euphratica and Populus alba[D]. Lanzhou: Lanzhou University, 2015. | |
[35] |
Liu S, Zhong H, Wang Q, et al. Global analysis of UDP glucose pyrophosphorylase (UDPGP) gene family in plants: conserved evolution involved in cell death[J/OL]. Frontiers in Plant Science, 2021, 12: 681719[2021-12-20]. https://doi.org/10.3389/fpls.2021.681719.
doi: 10.3389/fpls.2021.681719 |
[1] | 赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186. |
[2] | 吴健锋,樊志浩,武连杰,胡晓旺,韩知里,高巍,龙璐. 陆地棉衰老相关基因GhSAG101的克隆及抗病功能分析[J]. 棉花学报, 2022, 34(3): 187-197. |
[3] | 田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226. |
[4] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[5] | 张素君,李兴河,王海涛,唐丽媛,蔡肖,刘存敬,张香云,张建宏. 陆地棉主要育种性状SSR关联位点的验证及优异材料鉴定[J]. 棉花学报, 2022, 34(2): 120-136. |
[6] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[7] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[8] | 李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. |
[9] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[10] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[11] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[12] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[13] | 薛羽君,魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[14] | 吕丽敏,左东云,王省芬,张友平,程海亮,王巧连,宋国立,马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[15] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
|