棉花学报 ›› 2021, Vol. 33 ›› Issue (5): 422-434.doi: 10.11963/cs20200088
• 研究简报 • 上一篇
王燕1(),张谦1,王树林1,韩硕2,冯国艺1,董明1,钱玉源1,祁虹1,*(
)
收稿日期:
2020-12-17
出版日期:
2021-09-15
发布日期:
2022-01-27
通讯作者:
祁虹
E-mail:wangyan5611@126.com;qihong83@126.com
作者简介:
王燕(1987―),女,硕士, 基金资助:
Wang Yan1(),Zhang Qian1,Wang Shulin1,Han Shuo2,Feng Guoyi1,Dong Ming1,Qian Yuyuan1,Qi Hong1,*(
)
Received:
2020-12-17
Online:
2021-09-15
Published:
2022-01-27
Contact:
Qi Hong
E-mail:wangyan5611@126.com;qihong83@126.com
摘要:
【目的】研究耕层重构技术对棉田土壤微生态环境的影响,为改良土壤生态环境提供新途径和方法。【方法】2019年以冀棉315为试验材料,设置常规旋耕(对照)和耕层重构(将0~20 cm土层与20~40 cm土层土壤互换,同时松动40~60 cm土层土壤)2种耕作方式,调查棉花不同生育时期和不同土层的土壤养分含量,细菌、真菌和放线菌数量,脲酶、碱性磷酸酶和蔗糖酶活性,以及棉花产量和生物量。【结果】与对照相比,耕层重构棉田0~20 cm土层的全氮、全磷、全钾、碱解氮、速效磷、速效钾和有机质含量均降低,而20~80 cm土层的养分含量升高。耕层重构处理0~20 cm土层的细菌、真菌和放线菌数量低于对照,而20~40 cm土层的细菌、真菌和放线菌数量高于对照。与对照相比,耕层重构降低了0~20 cm土层的脲酶、碱性磷酸酶和蔗糖酶活性,提高了20~40 cm土层的脲酶、碱性磷酸酶和蔗糖酶活性。回归分析结果表明,土壤真菌数量、脲酶活性和碱性磷酸酶活性均与全磷、全氮、碱解氮、速效钾、有机质和速效磷含量呈显著线性关系。耕层重构处理棉花地上部生物量比对照显著提高8.91%,对棉花产量没有显著影响。【结论】上述研究结果初步表明,耕层重构能够提高较深土层的养分含量、微生物数量和土壤酶活性,促进较深土层的养分代谢,增加棉花生物量,改善土壤微生态环境。
王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434.
Wang Yan,Zhang Qian,Wang Shulin,Han Shuo,Feng Guoyi,Dong Ming,Qian Yuyuan,Qi Hong. Effects of restructuring soil layers on soil nutrients, microbial quantities and enzyme activities in cotton field[J]. Cotton Science, 2021, 33(5): 422-434.
表1
耕层重构对棉花吐絮期土壤养分含量的影响"
土层 Soil layer | 处理 Treatment | 全氮 Total N/(g·kg-1) | 全磷 Total P/ (g·kg-1) | 全钾 Total K/ (g·kg-1) | 碱解氮 Available N/(mg·kg-1) | 速效磷 Available P/(mg·kg-1) | 速效钾 Available K/(mg·kg-1) | 有机质 Organic matter/(g·kg-1) |
0~20 cm | CK | 0.84 a | 1.06 a | 15.26 a | 66.15 a | 46.48 a | 197.33 a | 10.70 a |
T | 0.61 b | 0.79 b | 15.22 a | 43.87 b | 16.37 b | 129.00 b | 7.53 b | |
20~40 cm | CK | 0.57 b | 0.71 b | 14.68 a | 44.68 b | 18.61 b | 92.67 b | 5.62 b |
T | 0.60 a | 0.83 a | 14.22 b | 47.25 a | 31.90 a | 120.33 a | 8.81 a | |
40~60 cm | CK | 0.56 b | 0.63 b | 15.34 a | 41.42 a | 3.25 b | 90.33 b | 5.45 b |
T | 0.59 a | 0.67 a | 15.39 a | 39.20 b | 8.56 a | 108.00 a | 6.75 a | |
60~80 cm | CK | 0.64 b | 0.60 a | 15.18 b | 43.87 b | 1.90 a | 118.00 b | 7.55 a |
T | 0.68 a | 0.61a | 15.93 a | 47.25 a | 2.33 a | 143.00 a | 7.72 a |
表2
耕层重构对棉田土壤细菌数量的影响"
土层 Soil layer | 处理 Treatment | 蕾期 Budding stage | 花铃期 Flowering and boll stage | 吐絮期 Boll opening stage |
0~20 cm | CK | 10.03 a | 23.28 a | 21.94 a |
T | 4.44 b | 10.14 b | 16.75 a | |
20~40 cm | CK | 4.54 b | 2.77 b | 6.46 b |
T | 10.45 a | 14.09 a | 12.86 a | |
40~60 cm | CK | 4.73 a | 1.29 b | 12.73 a |
T | 4.37 a | 5.81 a | 11.47 a | |
60~80 cm | CK | 3.72 a | 5.41 b | 3.76 a |
T | 2.46 a | 11.76 a | 3.09 a |
表3
耕层重构对棉田土壤真菌数量的影响"
土层 Soil layer | 处理 Treatment | 蕾期 Budding stage | 花铃期 Flowering and boll stage | 吐絮期 Boll opening stage |
0~20 cm | CK | 2.19 a | 5.88 a | 4.75 a |
T | 1.49 b | 4.91 a | 2.81 b | |
20~40 cm | CK | 1.54 b | 0.57 b | 1.48 b |
T | 3.84 a | 2.30 a | 4.19 a | |
40~60 cm | CK | 0.15 b | 0.08 b | 0.54 a |
T | 1.64 a | 0.91 a | 0.62 a | |
60~80 cm | CK | 0.15 a | 0.61 a | 0.16 a |
T | 0.15 a | 0.61 a | 0.08 a |
表4
耕层重构对棉田土壤放线菌数量的影响"
土层 Soil layer | 处理 Treatment | 蕾期 Budding stage | 花铃期 Flowering and boll stage | 吐絮期 Boll opening stage |
0~20 cm | CK | 1.75 a | 2.27 a | 1.97 a |
T | 0.81 b | 2.21 a | 2.08 a | |
20~40 cm | CK | 0.85 b | 0.70 b | 1.27 b |
T | 1.47 a | 1.31 a | 2.28 a | |
40~60 cm | CK | 0.61 b | 0.40 b | 0.90 a |
T | 1.02 a | 1.19 a | 0.62 a | |
60~80 cm | CK | 0.80 a | 0.74 a | 0.56 a |
T | 0.77 a | 0.90 a | 0.61 a |
表5
耕层重构对棉田土壤脲酶活性的影响"
土层 Soil layer | 处理 Treatment | 苗期 Seedling stage | 蕾期 Budding stage | 花铃期 Flowering and boll stage | 吐絮期 Boll opening stage |
0~20 cm | CK | 1 531.99 a | 1 362.80 a | 2 467.24 a | 2 786.64 a |
T | 849.35 b | 1 388.30 a | 1 540.81 b | 1 873.06 b | |
20~40 cm | CK | 949.63 b | 998.17 a | 1 181.84 b | 1 792.18 b |
T | 1 200.57 a | 993.14 a | 1 872.59 a | 1 997.60 a | |
40~60 cm | CK | 966.74 a | 767.16 b | 1 161.32 b | 1 791.81 a |
T | 923.81 a | 861.82 a | 1 656.31 a | 1 774.11 a | |
60~80 cm | CK | 837.63 a | 638.28 b | 1 439.59 a | 1 582.53 b |
T | 693.15 a | 782.86 a | 1 490.76 a | 1 842.06 a |
表6
耕层重构对棉田土壤碱性磷酸酶活性的影响"
土层 Soil layer | 处理 Treatment | 苗期 Seedling stage | 蕾期 Budding stage | 花铃期 Flowering and boll stage | 吐絮期 Boll opening stage |
0~20 cm | CK | 9.89 a | 7.60 a | 8.96 a | 10.17 a |
T | 4.72 b | 4.65 b | 4.28 b | 5.58 b | |
20~40 cm | CK | 3.93 b | 4.20 b | 4.39 b | 5.22 b |
T | 7.47 a | 5.00 a | 5.42 a | 6.83 a | |
40~60 cm | CK | 3.48 b | 3.68 a | 3.87 a | 4.00 b |
T | 13.57 a | 3.60 a | 3.74 a | 4.56 a | |
60~80 cm | CK | 3.39 b | 3.58 a | 4.08 a | 4.28 a |
T | 4.40 a | 3.62 a | 4.19 a | 4.47 a |
表7
耕层重构对棉田土壤蔗糖酶活性的影响"
土层 Soil layer | 处理 Treatment | 苗期 Seedling stage | 蕾期 Budding stage | 花铃期 Flowering and boll stage | 吐絮期 Boll opening stage |
0~20 cm | CK | 62.91 a | 24.11 a | 29.43 a | 31.87 a |
T | 16.87 b | 17.93 b | 16.63 b | 14.81 b | |
20~40 cm | CK | 15.95 a | 10.08 b | 9.25 b | 8.23 b |
T | 16.33 a | 23.66 a | 20.03 a | 14.19 a | |
40~60 cm | CK | 9.14 a | 6.11 a | 6.52 a | 5.84 b |
T | 7.93 a | 7.19 a | 9.21 a | 8.47 a | |
60~80 cm | CK | 5.94 a | 6.10 a | 7.07 a | 5.87 a |
T | 5.89 a | 6.20 a | 6.16 a | 6.00 a |
表8
土壤微生物数量、土壤酶活性和土壤养分之间的相关性"
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | X1 | X2 | X3 | X4 | X5 | X6 | |
X1 | 0.428 | 0.742* | 0.037 | 0.406 | 0.494 | 0.589 | 0.496 | 1 | 0.782* | 0.697 | 0.686 | 0.633 | 0.769* |
X2 | 0.652 | 0.990** | -0.322 | 0.725* | 0.820* | 0.949** | 0.707* | 0.782* | 1 | 0.929** | 0.899** | 0.953** | 0.968** |
X3 | 0.392 | 0.896** | -0.513 | 0.570 | 0.634 | 0.890** | 0.492 | 0.697 | 0.929** | 1 | 0.726* | 0.820* | 0.819* |
X4 | 0.841** | 0.931** | -0.039 | 0.793* | 0.941** | 0.876** | 0.849** | 0.686 | 0.899** | 0.726* | 1 | 0.957** | 0.957** |
X5 | 0.791* | 0.979** | -0.267 | 0.850** | 0.924** | 0.962** | 0.817* | 0.633 | 0.953** | 0.820* | 0.957** | 1 | 0.977** |
X6 | 0.800* | 0.981** | -0.152 | 0.829* | 0.897** | 0.915** | 0.837** | 0.769* | 0.968** | 0.819* | 0.957** | 0.977** | 1 |
[1] | 孙国峰, 张海林, 徐尚起, 等. 轮耕对双季稻田土壤结构及水贮量的影响[J/OL]. 农业工程学报, 2010,26(9): 66-71[2020-12-15]. https://doi.org/10.3969/j.issn.1002-6819.2010.09.011. |
Sun Guofeng, Zhang Hailin, Xu Shangqi, et al. Effects of rotational tillage treatments on soil structure and water storage in double rice cropping region[J/OL]. Transactions of the China Society of Agriculture Engineering, 2010,26(9): 66-71[2020-12-15]. https://doi.org/10.3969/j.issn.1002-6819.2010.09.011. | |
[2] | 孙国跃, 周萍, 王祝余. 响水县耕地地力变化趋势及应用对策[J/OL]. 河北农业科学, 2011,15(4): 29-32[2020-12-15]. https://doi.org/10.3969/j.issn.1088-1631.2011.04.010. |
Sun Guoyue, Zhou Ping, Wang Zhuyu. Changing trend and application countermeasures of cultivated land fertility in Xiangshui county[J/OL]. Journal of Hebei Agricultural Sciences, 2011,15(4): 29-32[2020-12-15]. https://doi.org/10.3969/j.issn.1088-1631.2011.04.010. | |
[3] | 李彰, 熊瑛, 吕强, 等. 微生物土壤改良剂对烟草生长及耕层环境的影响[J/OL]. 河南农业科学, 2010 (9): 56-60[2020-12-15]. https://doi.org/10.3969/j.issn.1004-3268.2010.09.017. |
Li Zhang, Xiong Ying, Lü Qiang, et al. Effects of microbial soil conditioner on tobacco growth and topsoil environment[J/OL]. Journal of Henan Agricultural Sciences, 2010 (9): 56-60[2020-12-15]. https://doi.org/10.3969/j.issn.1004-3268.2010.09.017. | |
[4] | 王树林, 祁虹, 王燕, 等. 土壤耕层重构与灌水对棉田水分含量及棉花产量性状的影响[J/OL]. 中国农业大学学报, 2018,23(1): 27-36[2020-12-15]. https://doi.org/10.11841/j.issn.1007-4333.2018.01.04. |
Wang Shulin, Qi Hong, Wang Yan, et al. Effects of restructuring tilth layer and irrigation on soil water content and cotton yield traits[J/OL]. Journal of China Agricultural University, 2018,23(1): 27-36[2020-12-15]. https://doi.org/10.11841/j.issn.1007-4333.2018.01.04. | |
[5] | 王树林, 祁虹, 林永增, 等. 一种棉田土壤耕层重构及其配套栽培方法: 201610070374.X[P]. 2017-05-24. |
Wang Shulin, Qi Hong, Lin Yongzeng, et al. The invention relates to soil surface reconstruction of cotton field and its supporting cultivation methods: 201610070374.X[P]. 2017-05-24. | |
[6] | 王树林, 王燕, 祁虹, 等. 土壤耕层重构对棉田杂草的控制效果研究[J/OL]. 山西农业大学学报(自然科学版), 2017,37(4): 235-239[2020-12-15]. https://doi.org/10.3969/j.issn.1671-8151.2017.04.002. |
Wang Shulin, Wang Yan, Qi Hong, et al. Study of restructuring soil layers on weeds control in cotton fields[J/OL]. Journal of Shanxi Agricultural University (Natural Science Edition), 2017,37(4): 235-239[2020-12-15]. https://doi.org/10.3969/j.issn.1671-8151.2017.04.002. | |
[7] |
王树林, 祁虹, 王燕, 等. 耕层重构对连作棉田土壤理化性状及棉花生长发育的影响[J/OL]. 作物学报, 2017, 43(5): 741-753[2020-12-15]. https://doi.org/10.3724/SP.J.1006.2017.00741.
doi: 10.3724/SP.J.1006.2017.00741 |
Wang Shulin, Qi Hong, Wang Yan, et al. Effects of restructuring tilth layers on soil physical and chemical properties and cotton development in continuous cropping cotton fields[J/OL]. Acta Agronomica Sinica, 2017,43(5): 741-753[2020-12-15]. https://doi.org/10.3724/SP.J.1006.2017.00741.
doi: 10.3724/SP.J.1006.2017.00741 |
|
[8] | 张向前, 杨文飞, 徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述[J/OL]. 生态环境学报, 2019,28(12): 2464-2472[2020-12-15]. https://doi.org/CNKI:SUN:TRYJ.0.2019-12-020. |
Zhang Xiangqian, Yang Wenfei, Xu Yunji. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: a review[J/OL]. Ecology and Environmental Sciences, 2019,28(12): 2464-2472[2020-12-15]. https://doi.org/CNKI:SUN:TRYJ.0.2019-12-020. | |
[9] |
Sun M, Ren A X, Gao Q, et al. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau[J/OL]. Field Crops Research, 2018,218: 24-32[2020-12-15]. https://doi.org/10.1016/j.fcr.2017.12.021.
doi: 10.1016/j.fcr.2017.12.021 |
[10] | 张霞, 张育林, 刘丹, 等. 种植方式和耕作措施对土壤结构与水分利用效率的影响[J/OL]. 农业机械学报, 2019,50(3): 250-261[2020-12-15]. https://doi.org/CNKI:SUN:NYJX.0.2019-03-027. |
Zhang Xia, Zhang Yulin, Liu Dan, et al. Effects of planting methods and tillage systems on soil structure and water use efficiency[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(3): 250-261[2020-12-15]. https://doi.org/CNKI:SUN:NYJX.0.2019-03-027. | |
[11] |
Hartman K, van der Heijden, Wittwer R A, et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming[J/OL]. Microbiome, 2018,6(1): 14[2020-12-15]. https://doi.org/10.1186/s40168-017-0389-9.
doi: 10.1186/s40168-017-0389-9 pmid: 29338764 |
[12] | 刘淑梅, 孙武, 张瑜, 等. 小麦季不同耕作方式对砂姜黑土玉米农田土壤微生物特性及酶活性的影响[J/OL]. 玉米科学, 2018,26(1): 103-107[2020-12-15]. https://doi.org/10.13597/j.cnki.maize.science.20180116. |
Liu Shumei, Sun Wu, Zhang Yu, et al. Effects of wheat tillage managements on soil microbial characters and soil enzyme activities in summer maize season in shajiang black soil[J/OL]. Journal of Maize Sciences, 2018,26(1): 103-107[2020-12-15]. https://doi.org/10.13597/j.cnki.maize.science.20180116. | |
[13] | 刘琪, 乔月静, 高志强. 夏闲期不同耕作措施对旱地小麦根际土壤微生物的影响[J/OL]. 山西农业科学, 2019,47(1): 65-68[2020-12-15]. https://doi.org/10.3969/j.issn.1002-2481.2019.01.16. |
Liu Qi, Qiao Yuejing, Gao Zhiqiang. Effects of different tillage practices on rhizosphere soil microorganisms in dryland wheat during summer leisure period[J/OL]. Journal of Shanxi Agricultural Sciences, 2019,47(1): 65-68[2020-12-15]. https://doi.org/10.3969/j.issn.1002-2481.2019.01.16. | |
[14] | 李小飞, 孙永明, 叶川, 等. 不同耕作深度对茶园土壤理化性状的影响[J/OL]. 南方农业学报, 2018,49(5): 877-883[2020-12-15]. https://doi.org/10.3969/j.issn.2095-1191.2018.05.08. |
Li Xiaofei, Sun Yongming, Ye Chuan, et al. Effects of various tillage depths on soil physical and chemical properties of tea plantation[J/OL]. Journal of Southern Agriculture, 2018,49(5): 877-883[2020-12-15]. https://doi.org/10.3969/j.issn.2095-1191.2018.05.08. | |
[15] | 胡一. 保护性耕作对土壤酶活性动态变化的影响[J/OL]. 土地开发工程研究, 2017,2(3): 51-56[2020-12-15]. https://doi.org/CNKI:SUN:XBTG.0.2017-03-011. |
Hu Yi. Effects of conservation tillage on soil enzyme activity[J/OL]. Land Development and Engineering Research, 2017,2(3): 51-56[2020-12-15]. https://doi.org/CNKI:SUN:XBTG.0.2017-03-011. | |
[16] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. |
Bao Shidan. Analysis of soil agro-chemistry[M]. Beijing: China Agriculture Press, 2005. | |
[17] | 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985. |
Department of Micobiology, Institute of Soil Science, Chinese Academy of Sciences. Methods of soil microorganism[M]. Beijing: Sciences Press, 1985. | |
[18] | Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J/OL]. Soil Biology and Biochemistry, 2001(12): 1633-1640[2020-12-15]. https://doi.org/10.1016/S0038-0717(01)00079-7. |
[19] | 胡诚, 曹志平, 叶钟年, 等. 不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响[J/OL]. 生态学报, 2006,26(3): 808-814[2020-12-15]. https://doi.org/10.3321/j.issn:1000-0933.2006.03.024. |
Hu Cheng, Cao Zhiping, Ye Zhongnian, et al. Impact of soil fertility maintaining practice on soil microbial biomass carbon in low production agro-ecosystem in northern China[J/OL]. Acta Ecologica Sinica, 2006,26(3): 808-814[2020-12-15]. https://doi.org/10.3321/j.issn:1000-0933.2006.03.024. | |
[20] |
Mazzoncini M, Antichi D, Bene C D, et al. Soil carbon and nitrogen changes after 28 years of no-tillage management under mediterranean conditions[J/OL]. European Journal of Agronomy, 2016,77: 156-165[2020-12-15]. https://doi.org/10.1016/j.eja.2016.02.011.
doi: 10.1016/j.eja.2016.02.011 |
[21] | 贾凤梅, 张淑花, 魏雅冬. 不同耕作方式下玉米农田土壤养分及土壤微生物活性变化[J/OL]. 水土保持研究, 2018,25(5): 112-117[2020-12-15]. https://doi.org/10.1016/j.eja.2016.02.011. |
Jia Fengmei, Zhang Shuhua, Wei Yadong. Variation of soil nutrients and soil microbial activities of different tillage systems in farmland[J/OL]. Research of Soil and Water Conservation, 2018,25(5): 112-117[2020-12-15]. https://doi.org/10.1016/j.eja.2016.02.011. | |
[22] | 马冬云, 郭天财, 宋晓, 等. 尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响[J/OL]. 生态学报, 2007,27(12): 5222-5228[2020-12-15]. https://doi.org/CNKI:SUN:STXB.0.2007-12-033. |
Ma Dongyun, Guo Tiancai, Song Xiao, et al. Effects of urea application rate on the quantity of microorganisms and activity of enzymes in wheat rhizosphere[J/OL]. Acta Ecologica Sinica, 2007,27(12): 5222-5228[2020-12-15]. https://doi.org/CNKI:SUN:STXB.0.2007-12-033. | |
[23] | 任天志. 持续农业中的土壤生物指标研究[J/OL]. 中国农业科学, 2000,33(1): 68-75[2020-12-15]. https://doi.org/CNKI:SUN:ZNYK.0.2000-01-010. |
Ren Tianzhi. Soil bioindicators in sustainable agriculture[J/OL]. Scientia Agricultura Sinica, 2000,33(1): 68-75[2020-12-15]. https://doi.org/CNKI:SUN:ZNYK.0.2000-01-010. | |
[24] | 王小玲, 马琨, 汪志琴, 等. 冬小麦免耕覆盖与有机栽培对土壤微生物群落组成的影响[J/OL]. 中国生态农业学报, 2019,27(2): 267-276[2020-12-15]. https://doi.org/10.13930/j.cnki.cjea.180583. |
Wang Xiaoling, Ma Kun, Wang Zhiqin, et al. Effects of no-tillage, mulching and organic fertilization on soil microbial composition in winter wheat field[J/OL]. Chinese Journal of Eco-Agriculture, 2019,27(2): 267-276[2020-12-15]. https://doi.org/10.13930/j.cnki.cjea.180583. | |
[25] | 熊鸿焰, 李廷轩, 张锡洲, 等. 水旱轮作后免耕水稻土微生物数量和生物量的变化特征研究[J/OL]. 土壤, 2008,40(6): 920-925[2020-12-15]. https://doi.org/10.3321/j.issn:0253-9829.2008.06.012. |
Xiong Hongyan, Li Yanxuan, Zhang Xizhou, et al. Amount changes of microorganism and microbial biomass of no-tillage paddy soil after paddy-upland rotation[J/OL]. Soils, 2008,40(6): 920-925[2020-12-15]. https://doi.org/10.3321/j.issn:0253-9829.2008.06.012. | |
[26] | 黄炳林, 王孟雪, 金喜军, 等. 不同耕作处理对土壤微生物、酶活性及养分的影响[J/OL]. 作物杂志, 2019(6): 104-113[2020-12-15]. https://doi.org/10.16035/j.issn.1001-7283.2019.06.017. |
Huag Binglin, Wang Mengxue, Jin Xijun, et al. Effects of different tillage treatments on soil microorganisms, enzyme activities and nutrients[J/OL]. Crops, 2019(6): 104-113[2020-12-15]. https://doi.org/10.16035/j.issn.1001-7283.2019.06.017. | |
[27] | 梁金凤, 齐庆振, 贾小红, 等. 不同耕作方式对土壤性质与玉米生长的影响研究[J/OL]. 生态环境学报, 2010,19(4): 945-950[2020-12-15]. https://doi.org/10.3969/j.issn.1674-5906.2010.04.036. |
Liang Jinfeng, Qi Qingzhen, Jia Xiaohong, et al. Effects of different tillage managements on soil properties and corn growth[J/OL]. Ecology and Environmental Sciences, 2010,19(4): 945-950[2020-12-15]. https://doi.org/10.3969/j.issn.1674-5906.2010.04.036. | |
[28] |
Li Pengcheng, Wang Shulin, Qi Hong, et al. Soil replacement combined with subsoiling improves cotton yields[J/OL]. Journal of Cotton Research, 2019,2: 25[2020-12-15]. https://doi.org/10.1186/s42397-019-0038-x.
doi: 10.1186/s42397-019-0038-x |
[29] | 胡心意, 傅庆林, 刘琛, 等. 秸秆还田和耕作深度对稻田耕层土壤的影响[J/OL]. 浙江农业学报, 2018,30(7): 1202-1210[2020-12-15]. https://doi.org/CNKI:SUN:JCCR.0.2019-04-003. |
Hu Xinyi, Fu Qinglin, Liu Chen, et al. Effects of straw-returning and tillage depth on soil properties in plough layer of paddy soil[J/OL]. Acta Agriculturae Zhejiangensis, 2018,30(7): 1202-1210[2020-12-15]. https://doi.org/CNKI:SUN:JCCR.0.2019-04-003. | |
[30] | 张德喜, 吴卿. 不同耕作方式对农田土壤养分含量及土壤酶活性的影响[J/OL]. 江苏农业科学, 2018,46(11): 234-237[2020-12-15]. https://doi.org/10.15889/j.issn.1002-1302.2018.11.058. |
Zhang Dexi, Wu Qing. Effects of different tillage methods on soil nutrients contents and enzyme activity in farmland[J/OL]. Jiangsu Agricultural Sciences, 2018,46(11): 234-237[2020-12-15]. https://doi.org/10.15889/j.issn.1002-1302.2018.11.058. | |
[31] | 潘孝晨, 唐海明, 肖小平, 等. 不同土壤耕作方式下稻田土壤微生物多样性研究进展[J]. 中国农学通报, 2019,35(23): 51-57. |
Pan Xiaochen, Tang Haiming, Xiao Xiaoping, et al. Paddy soil microbial diversity under tillage practices: research progress[J]. Chinese Agricultural Science Bulletin, 2019,35(23): 51-57. | |
[32] | 王灿, 王德建, 孙瑞娟, 等. 长期不同施肥方式下土壤酶活性与肥力因素的相关性[J/OL]. 生态环境学报, 2008,17(2): 688-692[2020-12-15]. https://doi.org/10.3969/j.issn.1674-5906.2008.02.047. |
Wang Can, Wang Dejian, Sun Ruijuan, et al. The relationship between soil enzyme activities and soil nutrients by long-term fertilizer experiments[J/OL]. Ecology and Environment, 2008,17(2): 688-692[2020-12-15]. https://doi.org/10.3969/j.issn.1674-5906.2008.02.047. | |
[33] | 赵瑞华, 昌蕊蕊, 贺晓龙. 延安不同种植年限枣园土壤微生物、养分及pH的相关性[J/OL]. 安徽农业科学, 2014,42(28): 9749-9751[2020-12-15]. https://doi.org/10.3969/j.issn.0517-6611.2014.28.034. |
Zhao Ruihua, Chang Ruirui, He Xiaolong. Correlation of soil microbes, nutrients and pH of different jujube planting life orchards in Yan’an area[J/OL]. Journal of Anhui Agricultural Sciences, 2014,42(28): 9749-9751[2020-12-15]. https://doi.org/10.3969/j.issn.0517-6611.2014.28.034. | |
[34] | 田稼, 孙超, 杨明琰, 等. 黄土高原不同树龄苹果园土壤微生物、养分及pH的相关性[J/OL]. 西北农业学报, 2012,21(7): 138-141, 148[2020-12-15]. https://doi.org/CNKI:SUN:XBNX.0.2012-07-028. |
Tian Jia, Sun Chao, Yang Mingyan, et al. The correlation of soil microbes, soil nutrient and soil pH of different apple tree-age orchards in Loess Plateau[J/OL]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012,21(7): 138-141, 148[2020-12-15]. https://doi.org/CNKI:SUN:XBNX.0.2012-07-028. | |
[35] | 刘艳, 马风云, 宋玉民, 等. 黄河三角洲冲积平原湿地土壤酶活性与养分相关性研究[J/OL]. 水土保持研究, 2008,15(1): 90-92[2020-12-15]. https://doi.org/CNKI:SUN:STBY.0.2008-01-017. |
Liu Yan, Ma Fengyun, Song Yumin, et al. Correlative research on the activity of enzyme and soil nutrient of different wetlands in Yellow River Delta[J/OL]. Research of Soil and Water Conservation, 2008,15(1): 90-92[2020-12-15]. https://doi.org/CNKI:SUN:STBY.0.2008-01-017. |
[1] | 李飞,郭莉莉,赵瑞元,尹凌洁,王家珍,李彩红,何叔军,梅正鼎. 氮肥减量深施对油后直播棉花干物质与氮素积累、分配及产量的影响[J]. 棉花学报, 2022, 34(3): 198-214. |
[2] | 王亚茹,杨北方,雷亚平,熊世武,韩迎春,王占彪,冯璐,李小飞,邢芳芳,辛明华,吴沣槭,陈家乐,李亚兵. 基于红外传感器的棉花叶片温度变化特征及其影响因子分析[J]. 棉花学报, 2022, 34(3): 235-246. |
[3] | 胡宇凯,赵书珍,董红强,魏永海,田玉刚,陈佳林,董合林,马小艳,冯璐,翟云龙,陈国栋. 化学打顶对南疆棉花干物质积累与分配的影响[J]. 棉花学报, 2022, 34(3): 247-255. |
[4] | 龚明贵,刘凯洋,魏亚楠,白娜,邱智军,张巧明. 砷胁迫下接种丛枝菌根真菌对棉花光合特性和叶肉细胞超微结构的影响[J]. 棉花学报, 2022, 34(3): 256-266. |
[5] | 卢合全,唐薇,张冬梅,罗振,孔祥强,李振怀,徐士振,代建龙,李维江,辛承松. 化肥减施和秸秆还田对土壤肥力、棉花养分吸收利用及产量的影响[J]. 棉花学报, 2022, 34(2): 137-150. |
[6] | 周雪慧,高二林,王钰静,李焱龙,袁道军,朱龙付. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J]. 棉花学报, 2022, 34(2): 79-92. |
[7] | 张雪, 孙瑞斌, 马聪聪, 马丹, 张晓睿, 刘志红, 刘传亮. 棉花SRS基因家族的全基因组鉴定及生物信息学分析[J]. 棉花学报, 2022, 34(2): 107-119. |
[8] | 苏星, 苏振贺, 宣立锋, 李社增, 王培培, 郭庆港, 马平. 生防菌NCD-2菌株定量检测体系的建立及其在棉花根际定植检测中的应用[J]. 棉花学报, 2022, 34(2): 162-172. |
[9] | 李秀青,王倩,胡子曜,雷建峰,代培红,刘超,刘晓东,李月. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J]. 棉花学报, 2022, 34(1): 1-11. |
[10] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[11] | 席凯鹏,席吉龙,杨苏龙,张建诚. 长期秸秆配施鸡粪对棉田土壤重金属累积的影响及生态风险评价[J]. 棉花学报, 2022, 34(1): 48-59. |
[12] | 李世梅,李自良,冯旭飞,向导,杨明凤,张旺锋,张亚黎. 棉花盛铃期不同器官氮磷化学计量特征及异速关系[J]. 棉花学报, 2022, 34(1): 60-68. |
[13] | 陈凯丽,田秋恒,刘志洋,王海,熊杰,雷勇辉,孙燕飞. 新疆石河子及周边地区棉花根际土壤丛枝菌根真菌多样性[J]. 棉花学报, 2022, 34(1): 69-78. |
[14] | 王艳情, 郑杰, 许艳超, 蔡小彦, 周忠丽, 侯宇清, 王坤波, 王玉红, 陈浩东, 刘方, 李志坤. 棉花HDAC基因家族鉴定及其在黄萎病菌侵染下的表达分析[J]. 棉花学报, 2021, 33(6): 469-481. |
[15] | 李秋琳,李燕,陈伟,姚金波,朱守鸿,袁黎,张永山. 基于广泛靶向代谢组学的不同颜色棉花花瓣中类黄酮成分差异分析[J]. 棉花学报, 2021, 33(6): 482-492. |
|