
不同种植模式棉花产量、种植效益与氮素利用率比较分析
杨长琴,张国伟,王晓婧,刘瑞显,倪万潮
不同种植模式棉花产量、种植效益与氮素利用率比较分析
Comparative analysis of cotton yield, benefit and nitrogen efficiency in different planting systems
【目的】 研究长江流域棉区麦棉两熟种植制度下,不同种植模式对棉花产量、种植效益及氮素利用率的影响,为棉花高产高效生产提供依据。【方法】 采用裂区设计,研究麦后棉花不同种植方式(育苗移栽和直播)、品种(中熟和早熟)和氮肥运筹(不施氮和适宜氮肥运筹)对其生育进程、生物量累积与分配、产量、种植效益与氮素利用率的影响。【结果】 与育苗移栽方式相比,直播棉花生育进程快,尤其苗期缩短10~17 d;直播棉花生育中后期生物量和氮素累积量较高,且经济系数均以早熟品种较高。适宜氮肥运筹下,直播早熟品种与移栽中熟品种霜前皮棉产量均较高,且两者间差异不显著。适宜氮肥运筹下,移栽棉花的籽棉产值是直播方式的1.0~1.2倍,总成本是直播方式的1.8~2.0倍,收益仅为直播方式的23.0%~43.1%。氮素效率的结果表明,种植方式对农学利用率和氮素表观利用率的影响大于品种和氮肥运筹,直播方式的氮素农学利用率和表观利用率分别比移栽方式提高40.0%和76.4%(2017年);品种对氮素生产效率的影响大于种植方式与氮肥运筹,早熟品种的氮素生产效率比中熟品种提高45.3%(2017年)。【结论】 长江流域棉区,适宜氮肥运筹下早熟品种麦后直播有利于实现棉花高产稳产、生产总成本低而效益高;其氮素农学利用率、表观利用率和生产效率均较高,是该棉区麦后棉高产高效生产模式。
[Objective] Field experiment was carried out to study the effect of different planting systems on lint yield, economic benefit, and nitrogen efficiency of cotton (Gossypium hirsutum L.) in the Yangtze River valley and to provide theoretical support for high yield and efficiency production of cotton. [Method] A split-plot experiment was conducted to explore the biomass accumulation and allocation characteristics, lint yield, economic benefit and nitrogen efficiency of cotton in response to different planting patterns (transplanting and field-seeded), varieties (early-maturing and medium-maturing) and nitrogen applications(no nitrogen and optimum nitrogen). [Result] The growing process fasted especially for the seedling stage under field-seeded pattern compared with that under transplanting pattern. The biomass and nitrogen accumulation at the medium-late stage of cotton under field-seeded pattern were higher than those under transplanting pattern, and the economic coefficients of early-maturing variety were higher than those of medium-maturing variety. The lint yield of the early-maturing variety under field-seeded pattern and the medium-maturity variety under transplanting pattern were higher under nitrogen application, and the difference between them was not significant. Under nitrogen application, the output value of seed cotton under transplanting pattern was 1.0-1.2 times of that under field-seeded pattern, but the cost of the former was 1.8-2.0 times of that of the latter, and the benefit of the former was only 23.0%-43.1% of the latter. The effects of planting pattern on the nitrogen agronomic efficiency (NAE) and nitrogen apparent recovery efficiency (NARE) were greater than those of variety and nitrogen application, and the NAE and NARE under field-seeded pattern were 40.0% and 76.4% (2017) higher than those under transplanting pattern. The effects of variety on nitrogen production efficiency (NPE) were greater than those of planting pattern and nitrogen application, and the NPE of early-maturing variety was 45.3% higher than medium-maturing variety in 2017. [Conclusion] The early-maturing variety with optimum nitrogen application under field-seeded pattern was conducive to higher yield, lower cost and higher benefit, and has higher NAE, NARE and NPE, which is the high yield and efficiency planting system for cotton after wheat in the Yangtze River valley.
麦棉两熟 / 种植模式 / 产量 / 效益 / 氮素利用率 {{custom_keyword}} /
cotton planting after wheat / planting system / yield / benefit / nitrogen efficiency {{custom_keyword}} /
表1 棉花生育期间气象信息Table 1 Meteorological information during the cotton growth period in 2016 and 2017 |
月份 Month | 2016 | 2017 | |||||
降水量 Precipitation/ mm | 日均气温 Daily mean temperature/℃ | 有效辐射 Solar radiation/(MJ·m-2·d-1) | 降水量 Precipitation/ mm | 日均气温 Daily mean temperature/℃ | 有效辐射 Solar radiation/(MJ·m-2·d-1) | ||
4月April | 84.5 | 14.8 | 14.1 | 26.3 | 15.2 | 17.1 | |
5月May | 84.5 | 18.9 | 15.1 | 62.9 | 21.1 | 17.8 | |
6月June | 103.4 | 23.4 | 14.7 | 49.6 | 23.4 | 17.2 | |
7月July | 146.4 | 27.7 | 15.5 | 16.5 | 30.0 | 16.9 | |
8月August | 49.4 | 28.1 | 19.6 | 177.8 | 27.8 | 14.4 | |
9月September | 192.6 | 23.5 | 12.8 | 131.8 | 23.0 | 12.3 | |
10月October | 285.6 | 18.5 | 6.7 | 109.9 | 16.8 | 9.4 |
表2 不同种植模式对生育进程的影响Table 2 The effects of different planting systems on cotton growth process |
种植 方式 Planting pattern | 品种 Variety | 氮肥运筹 水平 Nitrogen application | 2016 | 2017 | |||||||
苗期 Seedling stage/d | 蕾期 Budding stage/d | 铃期 Boll stage/d | 生育期 Growth stage/d | 苗期 Seedling stage/d | 蕾期 Budding stage/d | 铃期 Boll stage/d | 全生育期 Whole growth stage/d | ||||
P1 | V1 | N0 | 57 | 28 | 45 | 130 | 59 | 29 | 47 | 135 | |
N1 | 58 | 30 | 46 | 134 | 60 | 30 | 48 | 138 | |||
V2 | N0 | 50 | 21 | 43 | 114 | ||||||
N1 | 52 | 22 | 45 | 119 | |||||||
P2 | V1 | N0 | 48 | 25 | 53 | 126 | |||||
N1 | 50 | 25 | 55 | 130 | |||||||
V2 | N0 | 40 | 21 | 43 | 104 | 41 | 20 | 44 | 105 | ||
N1 | 41 | 21 | 44 | 106 | 42 | 21 | 45 | 108 |
注: P1:移栽,P2:直播;V1:中熟品种,V2:早熟品种;N0:不施氮,N1:适宜氮肥运筹。 | |
Note: P1: transplanting pattern, P2: field-seeded pattern; V1: medium-maturity variety, V2: early-maturity variety; N0: no nitrogen application, N1: nitrogen application. |
图1 不同种植模式对棉花群体生物量累积及其分配的影响P1:移栽,P2:直播;V1:中熟品种,V2:早熟品种;N0:不施氮,N1:适宜氮肥运筹。Fig. 1 The effects of different planting systems on cotton biomass accumulation and allocation P1: transplanting pattern, P2: field-seeded pattern; V1: medium-maturity variety, V2: early-maturity variety; N0: no nitrogen application, N1: nitrogen application. |
表3 不同种植模式对棉花皮棉产量与霜前皮棉产量的影响Table 3 The effects of different planting system on cotton lint yield and pre-frost lint yield |
种植 方式Planting pattern | 品种 Variety | 氮肥运筹 Nitrogen application | 2016 | 2017 | |||||
皮棉产量 Lint yield / (kg·hm-2) | 霜前花率 Ratio of Pre-frost seed cotton /% | 霜前皮棉产量 Pre-frost lint yield/ (kg·hm-2) | 皮棉产量 Lint yield/ (kg·hm-2) | 霜前花率 Ratio of Pre-frost seed cotton /% | 霜前皮棉产量 Pre-frost lint yield/ (kg·hm-2) | ||||
P1 | V1 | N0 | 1 468.0 c | 82.0 b | 1 204.2 c | 1 285.8 g | 76.3 c | 980.5 d | |
N1 | 2 218.8 a | 86.0 ab | 1 908.3 a | 2 162.6 a | 76.2 c | 1 648.7 a | |||
V2 | N0 | 841.6 h | 88.5 a | 745.2 e | |||||
N1 | 1 808.6 d | 87.2 a | 1 576.7 a | ||||||
P2 | V1 | N0 | 1 484.0 e | 67.3 e | 999.2 d | ||||
N1 | 1 996.9 b | 69.9 d | 1 395.7 b | ||||||
V2 | N0 | 1 129.3 d | 93.4 a | 1 054.1 c | 1 369.4 f | 83.7 b | 1 146.5 c | ||
N1 | 1 849.1 b | 92.5 a | 1 710.4 b | 1 905.7 c | 84.0 b | 1 601.4 a | |||
F | P | 336.6** | 24.3* | 27.0* | 96.0* | 126.0** | 7.8 | ||
V | 214.8** | 1 143.7** | 0.6 | ||||||
N | 7 379.7** | 13.4* | 6 794.4** | 1 173.2** | 0.5 | 807.5** | |||
P×V | 74.8** | 21.3** | 118.9** | ||||||
P×N | 3.3 | 32.5** | 8.4* | 88.4** | 4.0 | 61.4** | |||
V×N | 1.8 | 2.9 | 7.2* | ||||||
P×V×N | 0.6 | 0.2 | 1.6 |
注:P1:移栽,P2:直播;V1:中熟品种,V2:早熟品种;N0:不施氮,N1:适宜氮肥运筹。同列不同小写字母表示在0.05水平上差异显著。*和**分别表示在0.05和0.01水平上显著。 | |
Note: P1: transplanting pattern, P2: field-seeded pattern; V1: medium-maturity variety, V2: early-maturity variety; N0: no nitrogen application, N1: nitrogen application. Values followed by different lower letters within the same column are significantly different at the 0.05 probability leve1. * and ** mean significant differences at 0.05 and 0.01 probability levels, respectively. |
表4 不同种植模式棉花经济效益的比较Table 4 Comparison of different planting systems on output value and benefit of seed cotton (元·hm-2) |
年份 Yield | 种植方式 Planting pattern | 品种 Variety | 氮肥运筹 Nitrogen application | 籽棉产值 Output value of seed cotton | 人工费 Labor cost | 机械费 Machinery cost | 农资投入 Agricultural expenses | 总成本 Total cost | 收益 Benefit |
2016 | P1 | V1 | N0 | 24 206 | 23 749 | 2 021 | 1 959 | 27 729 | -3 523 |
N1 | 36 970 | 25 549 | 2 021 | 2 665 | 30 234 | 6 736 | |||
P2 | V2 | N0 | 19 322 | 11 321 | 1 418 | 1 781 | 14 519 | 4 803 | |
N1 | 31 956 | 12 521 | 1 418 | 2 407 | 16 346 | 15 610 | |||
2017 | P1 | V1 | N0 | 23 673 | 26 784 | 1 880 | 2 202 | 30 865 | -7 192 |
N1 | 39 142 | 27 984 | 1 880 | 2 963 | 32 825 | 6 317 | |||
V2 | N0 | 16 693 | 25 584 | 1 880 | 2 202 | 29 665 | -12 972 | ||
N1 | 34 689 | 26 784 | 1 880 | 2 963 | 31 625 | 3 064 | |||
P2 | V1 | N0 | 28 364 | 11 472 | 1 269 | 1 882 | 14 622 | 13 742 | |
N1 | 37 776 | 12 672 | 1 269 | 2 557 | 16 497 | 21 279 | |||
V2 | N0 | 26 298 | 11 472 | 1 269 | 1 882 | 14 622 | 11 676 | ||
N1 | 36 090 | 12 672 | 1 269 | 2 557 | 16 497 | 19 593 |
注: P1:移栽,P2:直播;V1:中熟品种,V2:早熟品种;N0:不施氮,N1:适宜氮肥运筹。 | |
Note: P1: transplanting pattern, P2: field-seeded pattern; V1: medium-maturity variety, V2: early-maturity variety; N0: no nitrogen application, N1: nitrogen application. |
图2 不同种植模式对氮素累积及分配的影响P1:移栽,P2:直播;V1:中熟品种,V2:早熟品种;N0:不施氮,N1:适宜氮肥运筹;NARO:生殖器官氮累积量。Fig. 2 The effects of different planting systems on nitrogen accumulation and allocation P1: transplanting pattern, P2: field-seeded pattern; V1: medium-maturity variety, V2: early-maturity variety; N0: no nitrogen application, N1: nitrogen application. NARO: nitrogen accumulation of reproductive organs. |
表5 不同种植模式棉花氮素效率的比较Table 5 Comparison of different planting systems on cotton nitrogen efficiency |
种植 方式 Planting pattern | 品种Variety | 氮肥运筹 Nitrogen level | 2016 | 2017 | |||||
农学利用率NAE/ (kg· kg-1) | 表观利用率NARE/% | 生产效率NPE/ (kg· kg-1) | 农学利用率NAE/ (kg· kg-1) | 表观利用率NARE/% | 生产效率NPE/ (kg· kg-1) | ||||
P1 | V1 | N0 | 9.0 c | 7.0 d | |||||
N1 | 2.0 b | 31.7 b | 7.8 d | 2.4 c | 29.8 c | 6.6 e | |||
V2 | N0 | 10.5 a | |||||||
N1 | 2.6 b | 30.8 c | 8.5 c | ||||||
P2 | V1 | N0 | 6.3 e | ||||||
N1 | 3.4 a | 56.4 a | 5.8 f | ||||||
V2 | N0 | 11.0 a | 9.9 b | ||||||
N1 | 4.8 a | 61.3 a | 9.5 b | 3.6 a | 50.5 b | 8.4 c | |||
F | P | 806.3** | 3728.8** | 630.6** | 890.2** | 9 117.4** | 79.3* | ||
V | 13.0* | 8.6* | 34 901.8** | ||||||
N | 669.2** | 234.6** | |||||||
P×V | 0.7 | 17.0** | 166.0** | ||||||
P×N | 10.3** | 1.7 | |||||||
V×N | 71.7** | ||||||||
P*V*N | 4.1 |
注:P1:移栽,P2:直播;V1:中熟品种,V2:早熟品种;N0:不施氮,N1:适宜氮肥运筹。NARE:氮素表观利用率,NAE:氮素农学利用率;NPE:氮素生产效率。 同列不同小写字母表示在0.05水平上差异显著。*和** 分别表示在0.05和0.01水平上显著。 | |
Note: P1: transplanting pattern, P2: field-seeded pattern; V1: medium-maturity variety, V2: early-maturity variety; N0: no nitrogen application, N1: nitrogen application. NAE: nitrogen agronomic efficiency; NARE: nitrogen apparent recovery efficiency; NPE: nitrogen production efficiency. Values followed by different lower letters within the same column are significantly different at the 0.05 probability leve1. * and ** mean significant differences at 0.05 and 0.01 probability levels, respectively. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
沈天垚, 杜祥备, 杨洪坤, 等. 麦棉两熟种植模式对棉仁脂肪及蛋白质代谢的影响[J/OL]. 作物学报, 2015, 41(8): 1237-1245[2020-09-30]. https://doi.org/l0.3724/SP.J.1006.2015.01237.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
杨长琴, 周治国, 陈德华, 等. 长江流域棉区麦(油)棉两熟种植的棉花增密减肥轻简高效技术[J]. 中国棉花, 2018, 45(10):1-4.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
刘瑞显, 周治国, 陈德华, 等. 长江流域棉区棉花“三集中”的轻简高效理论与栽培途径[J]. 中国棉花, 2018, 45(9):11-12, 17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
张常赫, 戴艳娇, 杨洪坤, 等. 不同栽培方式对长江下游棉田资源利用效率的影响[J/OL]. 作物学报, 2015, 41(7):1105-1111[2020-09-30]. https://doi.org /l0.3724/SP.J.1006.2015.01105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
杨长琴, 张国伟, 刘瑞显, 等. 氮肥运筹对麦后直播棉产量与氮素利用的影响[J/OL]. 中国生态农业学报, 2016, 24(12): 1607-1613[2020-09-30]. https://doi.org/10.13930/j.cnki.cjea.160180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
杨长琴, 张国伟, 刘瑞显, 等. 种植密度和缩节胺调控对麦后直播棉产量和冠层特征的影响[J/OL]. 棉花学报, 2016, 28(4): 331-338[2020-09-30]. https://doi.org/10.11963/issn.1002-7807.201604003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
邹芳刚, 郭文琦, 王友华, 等. 施氮量对长江流域滨海盐土棉花氮素吸收利用的影响[J/OL]. 植物营养与肥料学报, 2015, 21(5): 1150-1158[2020-09-30]. https://doi.org/10.11674/zwyf.2015.0507.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
白灯莎·买买提艾力, 孙良斌, 刘忠山, 等. 不同年代培育的棉花品种产量性状及氮利用效率特征[J/OL]. 中国生态农业学报, 2019, 27(6): 880-889[2020-09-30]. https://doi.org/10.13930/j.cnki.cjea.180929.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
张祥, 刘晓飞, 王桂霞, 等. 长江流域棉花主推品种氮素吸收与利用效率比较与分类[J]. 棉花学报, 2012, 24(3):253-258.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
董合忠, 李维江, 辛承松, 等. 不同类型抗虫棉品种的产量表现和氮素营养效率研究[J]. 植物营养与肥料学报, 2010, 16(4):947-952.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
张国伟, 杨长琴, 倪万潮, 等. 施氮量对麦后直播棉氮素吸收利用的影响[J/OL]. 应用生态学报, 2016, 27(1): 157-164[2020-09-30]. https://doi.org/10.13287/j.1001-9332.201601.037.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
刘瑞显, 史伟, 徐立华, 等. 长江下游棉区抗虫杂交棉适宜密度研究[J]. 棉花学报, 2010, 22(6):634-638.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
杨长琴, 张国伟, 刘瑞显, 等. 播期对麦(油)后直播棉产量、品质及氮磷钾利用的影响[J/OL]. 中国生态农业学报, 2020, 28(1): 42-49[2020-09-30]. https://doi.org/10.13930/j.cnki.cjea.190534.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
喻树迅, 王寒涛, 魏恒玲, 等. 棉花早熟性研究进展及其应用[J/OL]. 棉花学报, 2017, 29(S1): 1-10[2020-09-30]. https://doi.org/10.11963/1002-7807.ysxysx.20170825.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
董合忠, 李维江, 唐薇, 等. 棉花不同熟性品种栽培技术新途径的探讨[J]. 棉花学报, 2000, 12(3):132-135.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
李大跃, 江先炎. 杂种棉养分吸收、光合物质生产特性的研究[J]. 作物学报, 1992, 18(3):196-204.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
王寅, 鲁剑巍, 李小坤, 等. 移栽和直播油菜的氮肥施用效果及适宜施氮量[J/OL]. 中国农业科学, 2011, 44(21): 4406-4414[2020-09-30]. https://doi.org/10.3864/j.issn.0578-1752.2011.21.009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王春雨, 余华清, 何艳, 等. 播栽方式与施氮量对杂交籼稻氮肥利用特征及产量的影响[J/OL]. 中国生态农业学报, 2017, 25(12): 1792-1801[2020-09-30]. https://doi.org/10.13930/j.cnki.cjea.170484.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
刘波, 鲁剑巍, 李小坤, 等. 不同栽培模式及施氮方式对油菜产量和氮肥利用率的影响[J/OL]. 中国农业科学, 2016, 49(18): 3551-3560[2020-09-30]. https://doi.org/10.3864/j.issn.0578-1752.2016.18.009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
感谢江苏省现代作物生产协同创新中心对本研究的支持!
/
〈 |
|
〉 |