棉花学报 ›› 2019, Vol. 31 ›› Issue (3): 169-181.doi: 10.11963/1002-7807.zsywsf.20190412
• 研究与进展 • 下一篇
张松雨(),王敬敬,刘正文,张艳,杨君,马峙英,王省芬*(
)
收稿日期:
2018-02-28
发布日期:
2019-05-29
通讯作者:
王省芬
E-mail:303029052@qq.com;cotton@hebau.edu.cn
作者简介:
张松雨(1991―),女,硕士, 基金资助:
Zhang Songyu(),Wang Jingjing,Liu Zhengwen,Zhang Yan,Yang Jun,Ma Zhiying,Wang Xingfen*(
)
Received:
2018-02-28
Published:
2019-05-29
Contact:
Wang Xingfen
E-mail:303029052@qq.com;cotton@hebau.edu.cn
摘要:
【目的】通过对陆地棉及海岛棉GAE基因家族进行全基因组分析,为深入研究GAE基因家族在棉纤维发育中的功能提供理论依据。【方法】利用生物信息学分析软件,对GAE基因家族进行全基因组鉴定,根据转录组数据分析在纤维发育过程中的表达规律。【结果】陆地棉GhGAE家族包含21个成员,海岛棉GbGAE家族有22个成员,分为3个亚组,多数GhGAEs和GbGAEs基因没有内含子,共分布在12条染色体上。GAE氨基酸序列保守基序有4个,保守性较强,且GAE蛋白均定位于高尔基体膜。根据GAEs在陆地棉、海岛棉纤维发育不同时期的表达变化,将其分为纤维起始期高表达、纤维伸长期高表达、次生壁增厚期高表达、全时期低表达4类模式。其中GhGAE01、GhGAE02、GhGAE11、GhGAE12在陆地棉中高水平表达,GbGAE01、GbGAE02、GbGAE11、GbGAE12在海岛棉中高水平表达,推测这些基因可能在纤维发育过程中发挥着重要作用。【结论】上述结果为研究GAE基因家族在棉纤维发育中的功能提供了参考依据。
张松雨,王敬敬,刘正文,张艳,杨君,马峙英,王省芬. 四倍体棉花GAE基因家族的鉴定及其在棉纤维发育中的表达分析[J]. 棉花学报, 2019, 31(3): 169-181.
Zhang Songyu,Wang Jingjing,Liu Zhengwen,Zhang Yan,Yang Jun,Ma Zhiying,Wang Xingfen. Genome-wide Identification and Expression Analysis of GAE Gene Family in Fiber Developmental Stages of Tetraploid Cotton[J]. Cotton Science, 2019, 31(3): 169-181.
表1
四倍体棉花GAE基因家族信息"
基因名称 Gene name | 基因ID Gene ID | 染色体 Chromosome | 起始 Start | 结束 End | 正负链 Strand | 基因长度 Gene length/bp | |||||
GhGAE01 | Gh_A02G0188 | A02 | 2 087 283 | 2 088 644 | + | 1 362 | |||||
GhGAE02 | Gh_A05G3665 | scaffold1168_A05 | 808 089 | 809 384 | - | 1 296 | |||||
GhGAE03 | Gh_A07G1357 | A07 | 34 026 293 | 34 027 606 | - | 1 314 | |||||
GhGAE04 | Gh_A08G0266 | A08 | 3 146 256 | 3 147 563 | + | 1 308 | |||||
GhGAE05 | Gh_A08G1215 | A08 | 82 487 321 | 82 488 622 | - | 1 302 | |||||
GhGAE06 | Gh_A08G1563 | A08 | 93 761 589 | 93 762 890 | + | 1 302 | |||||
基因名称 Gene name | 基因 ID Gene ID | 染色体 Chromosome | 起始 Start | 结束 End | 正负链 Strand | 基因长度 Gene length/bp | |||||
GhGAE07 | Gh_A08G2086 | A08 | 102 118 419 | 102 119 711 | + | 1 293 | |||||
GhGAE08 | Gh_A10G1134 | A10 | 57 669 306 | 57 670 670 | + | 1 365 | |||||
GhGAE09 | Gh_A11G0732 | A11 | 7 083 415 | 7 084 728 | + | 1 314 | |||||
GhGAE10 | Gh_A11G1930 | A11 | 52 535 439 | 52 536 113 | - | 675 | |||||
GhGAE11 | Gh_D02G0251 | D02 | 2 891 062 | 2 892 423 | + | 1 362 | |||||
GhGAE12 | Gh_D04G0825 | D04 | 20 679 620 | 20 680 645 | + | 1 026 | |||||
GhGAE13 | Gh_D07G1467 | D07 | 25 168 767 | 25 170 080 | - | 1 314 | |||||
GhGAE14 | Gh_D08G2643 | scaffold4246_D08 | 34 442 | 35 734 | - | 1 293 | |||||
GhGAE15 | Gh_D08G0358 | D08 | 3 677 295 | 3 678 602 | + | 1 308 | |||||
GhGAE16 | Gh_D08G0951 | D08 | 22 608 909 | 22 610 210 | + | 1 302 | |||||
GhGAE17 | Gh_D08G1498 | D08 | 48 297 925 | 48 299 226 | - | 1 302 | |||||
GhGAE18 | Gh_D08G1869 | D08 | 56 351 467 | 56 352 768 | + | 1 302 | |||||
GhGAE19 | Gh_D10G1364 | D10 | 26 732 408 | 26 733 772 | - | 1 365 | |||||
GhGAE20 | Gh_D11G0850 | D11 | 7 329 977 | 7 331 290 | + | 1 314 | |||||
GhGAE21 | Gh_D11G2045 | D11 | 27 910 635 | 27 912 195 | + | 1 561 | |||||
GbGAE01 | GOBAR_AA14816 | A02 | 1 452 713 | 1 454 074 | + | 1 362 | |||||
GbGAE02 | GOBAR_AA14388 | A05 | 79 544 094 | 79 545 389 | - | 1 296 | |||||
GbGAE03 | GOBAR_AA20553 | A07 | 34 785 514 | 34 786 827 | + | 1 314 | |||||
GbGAE04 | GOBAR_AA30469 | A08 | 3 847 003 | 3 848 310 | + | 1 308 | |||||
GbGAE05 | GOBAR_AA07847 | A08 | 94 867 417 | 94 868 679 | - | 1 263 | |||||
GbGAE06 | GOBAR_AA11853 | A08 | 106 694 793 | 106 697 068 | + | 2 276 | |||||
GbGAE07 | GOBAR_AA16747 | A08 | 114 650 493 | 114 651 527 | + | 1 035 | |||||
GbGAE08 | GOBAR_AA18409 | A10 | 66 170 970 | 66 172 334 | + | 1 365 | |||||
GbGAE09 | GOBAR_AA15397 | A11 | 7 544 121 | 7 547 075 | - | 2 955 | |||||
GbGAE10 | GOBAR_AA01034 | A11 | 58 750 135 | 58 751 432 | - | 1 298 | |||||
GbGAE11 | GOBAR_DD03925 | scaffold_1714.D02 | 142 014 | 143 375 | - | 1 362 | |||||
GbGAE12 | GOBAR_DD07164 | D04 | 18 368 064 | 18 369 359 | - | 1 296 | |||||
GbGAE13 | GOBAR_DD16379 | D07 | 26 645 567 | 26 646 880 | + | 1 314 | |||||
GbGAE14 | GOBAR_DD35403 | D08 | 3 636 334 | 3 637 641 | - | 1 308 | |||||
GbGAE15 | GOBAR_DD35402 | D08 | 3 639 960 | 3 641 267 | - | 1 308 | |||||
GbGAE16 | GOBAR_DD04906 | D08 | 20 166 196 | 20 167 497 | - | 1 302 | |||||
GbGAE17 | GOBAR_DD15982 | D08 | 46 615 876 | 46 617 138 | + | 1 263 | |||||
GbGAE18 | GOBAR_DD03498 | D08 | 54 225 052 | 54 227 332 | + | 2 281 | |||||
GbGAE19 | GOBAR_DD21430 | D08 | 62 145 468 | 62 146 082 | + | 615 | |||||
GbGAE20 | GOBAR_DD00120 | scaffold_1910.D10 | 221 244 | 222 608 | - | 1 365 | |||||
GbGAE21 | GOBAR_DD17456 | D11 | 7 063 278 | 7 067 530 | - | 4 253 | |||||
GbGAE22 | GOBAR_DD18142 | D11 | 26 455 969 | 26 457 524 | + | 1 556 |
表2
四倍体棉花GAE基因家族保守基序"
序号 | 保守基序 Conservative motif | 整体序列 Whole representation |
1 | TDQPASLYAATKKAGEEIAHTYNHIYGLSLTGLRFFTVYGPWGRPDMAYF | TDQPASLYAATKKAGEEI[AT]HTYNHIYGLS[LI]TGLRFFTVYGPWGRPDMAYF |
2 | FTHVMHLAAQAGVRYAMZNPGSYVHSNIAGFVNLLEVCKSANPQPAIVWA | FTHV[ML]HLAAQAGVRYAM[EQ]NP[GQ]SYVHSNIAG[FL]V[NST]LLEV[CA]K[SA]ANPQPAIVWA |
3 | MKLPRNGDVPFTHANISLAQRELGYKPTTDLQTGLKKFVRW | [MV]K[LM]P[RG]NGDV[PQ]FTHAN[IV][ST]LAQ[RK][ED][LF]GYKP[TS]TDLQ[TA]GL[KR]KFV[RK]W |
4 | KGCLGALDTAEKSTGSGGKKKGPAQLRVYNLG | KGCL[GA][AS]LDT[AS][EKG]KSTGSGGKK[KR]GPA[QP][LY]R[VI][YF]NLG |
表3
四倍体棉花GAE基因家族理化性质及亚细胞定位"
基因名称 Gene name | 氨基酸数量 Number of amino acids | 分子量Molecular weight/kDa | 理论等电点 Theoretical pI | 蛋白不稳定指数 Instability index | 脂溶指数 Aliphatic index | 总平均疏水性 GRAVY | 亚细胞定位Subcellular location | 跨膜区数量 Numbers of transmembrane domain |
GhGAE01 | 453 | 50.263 | 9.61 | 29.92 | 84.59 | -0.257 | Golgi membrane | 3 |
GhGAE02 | 431 | 47.757 | 9.62 | 33.90 | 80.77 | -0.248 | Golgi membrane | 2 |
GhGAE03 | 437 | 48.519 | 9.96 | 49.90 | 82.38 | -0.242 | Golgi membrane | 1 |
GhGAE04 | 435 | 48.612 | 9.93 | 47.15 | 81.38 | -0.234 | Golgi membrane | 1 |
GhGAE05 | 433 | 48.289 | 9.94 | 47.22 | 80.65 | -0.251 | Golgi membrane | 2 |
GhGAE06 | 433 | 47.615 | 9.91 | 42.92 | 86.49 | -0.208 | Golgi membrane | 2 |
基因名称 Gene name | 氨基酸数量 Number of amino acids | 分子量Molecular weight/kDa | 理论等电点 Theoretical pI | 蛋白不稳定指数 Instability index | 脂溶指数 Aliphatic index | 总平均疏水性 GRAVY | 亚细胞定位Subcellular location | 跨膜区数量 Numbers of transmembrane domain |
GhGAE07 | 430 | 47.884 | 9.69 | 37.54 | 80.30 | -0.272 | Golgi membrane | 2 |
GhGAE08 | 454 | 50.082 | 9.70 | 30.01 | 85.51 | -0.248 | Golgi membrane | 1 |
GhGAE09 | 437 | 48.481 | 9.83 | 46.73 | 83.71 | -0.228 | Golgi membrane | 1 |
GhGAE10 | 224 | 24.865 | 10.34 | 42.42 | 94.46 | -0.140 | Golgi membrane | 2 |
GhGAE11 | 453 | 50.322 | 9.61 | 28.63 | 83.93 | -0.275 | Golgi membrane | 3 |
GhGAE12 | 275 | 30.004 | 9.70 | 28.75 | 91.42 | -0.217 | Golgi membrane | 0 |
GhGAE13 | 437 | 48.533 | 9.98 | 49.07 | 82.38 | -0.243 | Golgi membrane | 1 |
GhGAE14 | 430 | 47.916 | 9.69 | 37.74 | 79.63 | -0.277 | Golgi membrane | 2 |
GhGAE15 | 435 | 48.606 | 9.86 | 44.06 | 81.15 | -0.225 | Golgi membrane | 1 |
GhGAE16 | 355 | 39.586 | 9.02 | 49.04 | 72.03 | -0.334 | Golgi membrane | 1 |
GhGAE17 | 433 | 48.161 | 9.91 | 47.34 | 80.65 | -0.253 | Golgi membrane | 2 |
GhGAE18 | 433 | 47.609 | 9.90 | 39.32 | 88.52 | -0.185 | Golgi membrane | 2 |
GhGAE19 | 454 | 50.167 | 9.72 | 29.51 | 85.51 | -0.256 | Golgi membrane | 1 |
GhGAE20 | 437 | 48.397 | 9.76 | 47.37 | 83.71 | -0.211 | Golgi membrane | 1 |
GhGAE21 | 389 | 42.762 | 10.00 | 45.10 | 94.47 | -0.133 | Golgi membrane | 1 |
GbGAE01 | 453 | 50.277 | 9.61 | 29.92 | 84.59 | -0.257 | Golgi membrane | 3 |
GbGAE02 | 431 | 47.772 | 9.62 | 34.10 | 81.00 | -0.248 | Golgi membrane | 2 |
GbGAE03 | 437 | 48.535 | 9.96 | 49.90 | 81.92 | -0.249 | Golgi membrane | 1 |
GbGAE04 | 435 | 48.711 | 9.93 | 47.15 | 81.38 | -0.235 | Golgi membrane | 1 |
GbGAE05 | 402 | 44.774 | 9.84 | 44.61 | 81.04 | -0.276 | Golgi membrane | 0 |
GbGAE06 | 438 | 48.609 | 9.41 | 39.22 | 86.80 | -0.151 | Golgi membrane | 0 |
GbGAE07 | 344 | 37.801 | 9.40 | 34.69 | 80.84 | -0.164 | Golgi membrane | 2 |
GbGAE08 | 454 | 50.116 | 9.72 | 29.32 | 84.65 | -0.253 | Golgi membrane | 1 |
GbGAE09 | 491 | 54.175 | 9.71 | 41.44 | 88.19 | -0.095 | Golgi membrane | 2 |
GbGAE10 | 407 | 44.842 | 9.97 | 37.73 | 92.26 | -0.148 | Golgi membrane | 2 |
GbGAE11 | 453 | 50.301 | 9.57 | 28.23 | 84.37 | -0.266 | Golgi membrane | 3 |
GbGAE12 | 431 | 47.757 | 9.62 | 34.54 | 81.00 | -0.248 | Golgi membrane | 2 |
GbGAE13 | 437 | 48.549 | 9.98 | 49.07 | 81.92 | -0.249 | Golgi membrane | 2 |
GbGAE14 | 435 | 48.621 | 9.86 | 44.81 | 81.38 | -0.226 | Golgi membrane | 1 |
GbGAE15 | 435 | 48.606 | 9.88 | 44.03 | 82.05 | -0.218 | Golgi membrane | 1 |
GbGAE16 | 388 | 43.167 | 9.33 | 43.75 | 74.18 | -0.313 | Golgi membrane | 2 |
GbGAE17 | 402 | 44.778 | 9.82 | 45.41 | 80.07 | -0.280 | Golgi membrane | 0 |
GbGAE18 | 536 | 60.253 | 9.47 | 41.77 | 83.47 | -0.298 | Golgi membrane | 0 |
GbGAE19 | 204 | 22.55 | 9.01 | 43.29 | 86.57 | -0.069 | Golgi membrane | 1 |
GbGAE20 | 454 | 50.096 | 9.72 | 29.41 | 85.51 | -0.249 | Golgi membrane | 1 |
GbGAE21 | 569 | 62.529 | 9.64 | 42.12 | 86.91 | -0.191 | Golgi membrane | 1 |
GbGAE22 | 340 | 37.455 | 9.51 | 36.68 | 84.32 | -0.225 | Golgi membrane | 0 |
[1] | 喻树迅, 范术丽, 王寒涛, 等. 中国棉花高产育种研究进展[J]. 中国农业科学, 2016, 49(18): 3465-3476. https://doi.org/10.3864/j.issn.0578-1752.2016.18.001 |
Yu Shuxun, Fan Shuli, Wang Hantao, et al. Progresses in research on cotton high yield breeding in China[J]. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476. | |
[2] | 姚贺盛, 张亚黎, 易小平, 等. 海岛棉和陆地棉叶片光合特性、冠层结构及物质生产的差异[J]. 中国农业科学, 2015, 48(2): 251-261. https://doi.org/10.3864/j.issn.0578-1752.2015.02.05 |
Yao Hesheng, Zhang Yali, Yi Xiaoping, et al. Study on differences in comparative canopy structure characteristics and photosynthetic carbon assimilation of field-grown Pima cotton (Gossypium barbadense) and upland cotton(G. hirsutum)[J]. Scientia Agricultura Sinica, 2015, 48(2): 251-261. | |
[3] | 刘艳. 海岛棉枯萎病抗性相关基因的克隆及功能验证[D]. 乌鲁木齐: 新疆农业大学, 2013. |
Li Yan. Fusarium Wilt Resistance related-gene cloning and functional analysis of Gossypium barbadense L.[D]. Urumqi: Xinjiang Agricultural University, 2013. | |
[4] |
Cosgrove D J. Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861. https://doi.org/10.1038/nrm1746
pmid: 16261190 |
[5] |
Usadel B, Schlüter U, Molhoj M, et al. Identification and characterization of a UDP-D-glucuronate 4-epimerase in Arabidopsis[J]. Febs Letters, 2004, 569(1-3): 327-331.
pmid: 15225656 |
[6] | 王敬敬. 棉纤维发育果胶多糖及半纤维素合成相关基因的克隆及表达分析[D]. 保定: 河北农业大学, 2012. |
Wang Jingjing. Cloning and experession profile of the genes related to synthesis of pectin and hemicellulose during cotton fibre development[D]. Baoding: Hebei Agricultural University, 2012. | |
[7] |
Thoden J B, Hegeman A D, Wesenberg G, et al. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli[J]. Biochemistry, 1997, 36(21): 6294-6304. https://doi.org/10.1021/bi970025j
pmid: 9174344 |
[8] | 鄢巧灵. AtUGAE4反义基因对番茄、拟南芥和烟草离体培养细胞粘连性的影响[D]. 重庆: 西南大学, 2007. |
Yan Qiaoling. Effect of AtUGAE4 antisense gene on the intercellular adhesion in vitro of tomato, Arabidopsis thaliana and tobacco[D]. Chongqing: Southwest University, 2007. | |
[9] | Jrnvall H, Persson B, Krook M, et al. Short-chain dehydrogenases/reductases (SDR)[J]. Advances in Experimental Medicine & Biology, 1995, 372(18): 383. https://doi.org/10.1007/978-1-4615-1965-2-46 |
[10] |
Molhoj M, Verma R, Reiter W D. The biosynthesis of D-Galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-D-Glucuronate 4-epimerase from Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1221-1230. http://www.plantphysiol.org/cgi/doi/10.1104/pp.104.043745
doi: 10.1104/pp.104.043745 |
[11] |
Neufeld E F, Feingold D S, Hassid W Z. Enzymatic conversion of uridine diphosphate d-glucuronic acid to uridine diphosphate galacturonic acid, uridine diphosphate xylose, and uridine diphosphate arabinose1,2[J]. Journal of the American Chemical Society, 1958, 80(16): 4430-4431. https://doi.org/10.1021/ja01549a089
doi: 10.1021/ja01549a089 |
[12] |
Muoz R, López R, Frutos M D, et al. First molecular characterization of a uridine diphosphate galacturonate 4-epimerase: an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1[J]. Molecular Microbiology, 1999, 31(2): 703. https://doi.org/10.1046/j.1365-2958.1999.01211 .
doi: 10.1046/j.1365-2958.1999.01211.x |
[13] |
Gu X, Barpeled M. The biosynthesis of UDP-galacturonic acid in plants. Functional cloningand characterization of Arabidopsis UDP-D-glucuronic acid 4-epimerase[J]. Plant Physiol, 2004, 136: 4256-4264. http://www.plantphysiol.org/cgi/doi/10.1104/pp.104.052365 .
doi: 10.1104/pp.104.052365 |
[14] |
Wierenga R K, Terpstra P, Hol W G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint[J]. Journal of Molecular Biology, 1986, 187(1): 101-107. http://linkinghub.elsevier.com/retrieve/pii/0022283686904092 .
pmid: 3959077 |
[15] | Rhee S Y, Somerville C R. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall[J]. Plant Journal for Cell & Molecular Biology, 1998, 15(1): 79-88. https://doi.org/10.1046/j.1365-313X.1998.00183 . |
[16] | 童超, 张兴国, 鄢巧灵, 等. AtUGAE4基因反义表达载体构建及对烟草(N. tabacum L.)的转化[J]. 南方农业, 2008, 2(3): 12-14. https://doi.org/10.3969/j.issn.1673-890X.2008.03.004 |
Tong Chao, Zhang Xingguo, Yan Qiaoling, et al. Construction of the AtUGAE4 antisense gene expression vector and its transformation into Tobacco (N. tabacum L.)[J]. South China Agriculture, 2008, 2(3): 12-14. | |
[17] |
Pang C Y, Wang H, Pang Y, et al. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation[J]. Molecular & Cellular Proteomics, 2010, 9(9): 2019. https://doi.org/10.1074/mcp.m110.000349
doi: 10.1074/mcp.M110.000349 |
[18] | Liu X, Zhao B, Zheng H J, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J]. Scientific Reports, 2015, 30(5): 14139. https://doi.org/10.1038/srep14139 |
[19] | 郭庆勋, 张春雨, 王晶莹, 等. 九台晚李PGIP基因的克隆及生物信息学分析[J]. 植物遗传资源学报, 2010, 11(5): 650-653. |
Guo Qingxun, Zhang Chunyu, Wang Jingying, et al. Cloning and bioinformatic analysis of PGIP gene from Jiutaiwanli[J]. Journal of Plant Genetic Resources, 2010, 11(5): 650-653. | |
[20] |
Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. https://doi.org/10.1093/molbev/mst197
doi: 10.1093/molbev/mst197 |
[21] |
Crooks G E, Hon G, Chandonia J M, et al. WebLogo: a sequence logo generator[J]. Genome Research, 2004, 14(6): 1188-1190. https://doi.org/10.1101/gr.849004
pmid: 15173120 |
[22] |
Godoy F D, Bermúdez L, Lira B S, et al. Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato[J]. Journal of Experimental Botany, 2013, 64(8): 2449-2466. https://doi.org/10.1093/jxb/ert106
doi: 10.1093/jxb/ert106 |
[23] | 樊连梅, 刘更森, 刘成连, 等. 苹果金属硫蛋白基因MdFjMT2克隆及生物信息学分析[J]. 植物遗传资源学报, 2011, 12(5): 782-789. |
Fan Lianmei, Liu Gengsen, Liu Chenglian, et al. Cloning and bioinformatic analysis of metallothionein-like protein gene (MdFjMT2) from apple (Malus domestica)[J]. Journal of Plant Genetic Resources, 2011, 12(5): 782-789. | |
[24] | 沈知临, 许磊, 陈文, 等. 亚洲棉和雷蒙德氏棉MATE基因家族生物信息学及其同源基因在陆地棉中的表达分析[J]. 棉花学报, 2016, 28(3): 215-226. https://doi.org/10.11963/issn.1002-7807.201603004 |
Shen Zhilin, Xu Lei, Chen Wen, et al. Bioinformatic analysis of the multidrug and toxic compound extrusion gene family in Gossypium arboreum and Gossypium raimondii, and expression of orthologs in Gossypium hirsutum[J]. Cotton Science, 2016, 28(3): 215-226. | |
[25] |
Wilkins T A, Arpat A B. The cotton fiber transcriptome[J]. Physiologia Plantarum, 2005, 124(3): 295-300. https://doi.org/10.1111/j.1399-3054.2005.00514 .
doi: 10.1111/ppl.2005.124.issue-3 |
[26] | 刘继华, 杨洪博, 曹鸿鸣. 棉纤维的加厚发育与脱水成熟[J]. 中国棉花, 1995, 22(8): 37-39. |
Liu Jihua, Yang Hongbo, Cao Hongming. Thickening development and dehydration maturity of cotton fiber[J]. China Cotton, 1995, 22(8): 37-39. | |
[27] | 安亚茹, 杨君, 刘正文, 等. 陆地棉XTH基因家族全基因组鉴定及在纤维发育过程的表达分析[J]. 植物遗传资源学报, 2017, 18(6): 1179-1192. https://doi.org/10.13430/j.cnki.jpgr.2017.06.020 |
An Yaru, Yang Jun, Liu Zhengwen, et al. Genome-wide identification and expression analysis of the XTH gene family in fiber development process in Gossypium hirsutum L.[J]. Journal of Plant Genetic Resources, 2017, 18(6): 1179-1192. | |
[28] | 武耀廷, 刘进元. 棉纤维细胞发育过程中非纤维素多糖的生物合成[J]. 棉花学报, 2004, 16(3): 189-192. https://doi.org/10.3969/j.issn.1002-7807.2004.03.012 |
Wu Yaoting, Liu Jinyuan. Noncellulosic polysaccharides biosynthesis in cotton fiber developing[J]. Cotton Science, 2004, 16(3): 189-192. |
[1] | 赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186. |
[2] | 吴健锋,樊志浩,武连杰,胡晓旺,韩知里,高巍,龙璐. 陆地棉衰老相关基因GhSAG101的克隆及抗病功能分析[J]. 棉花学报, 2022, 34(3): 187-197. |
[3] | 田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226. |
[4] | 张素君,李兴河,王海涛,唐丽媛,蔡肖,刘存敬,张香云,张建宏. 陆地棉主要育种性状SSR关联位点的验证及优异材料鉴定[J]. 棉花学报, 2022, 34(2): 120-136. |
[5] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[6] | 陈琴,李多露,赵杰银,高文举,陈全家,曲延英. 陆地棉UDPGP基因家族的鉴定及抗旱性分析[J]. 棉花学报, 2022, 34(1): 12-22. |
[7] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[8] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[9] | 李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. |
[10] | 王雪慧,陈丽锦,赵若林,程海亮,张友平,王巧连,吕丽敏,宋国立,左东云. 陆地棉纤维起始期优势表达基因GhCRPK1的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 459-468. |
[11] | 王艳情, 郑杰, 许艳超, 蔡小彦, 周忠丽, 侯宇清, 王坤波, 王玉红, 陈浩东, 刘方, 李志坤. 棉花HDAC基因家族鉴定及其在黄萎病菌侵染下的表达分析[J]. 棉花学报, 2021, 33(6): 469-481. |
[12] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[13] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[14] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[15] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
|