棉花学报 ›› 2020, Vol. 32 ›› Issue (4): 305-315.doi: 10.11963/1002-7807.yyfpcy.20200703
杨永飞1,2,葛常伟2,沈倩2,张思平2,刘绍东2,马慧娟2,陈静2,刘瑞华2,李士丛2,赵新华2,李志坤1,*(),庞朝友2,*(
)
收稿日期:
2019-12-26
出版日期:
2020-07-15
发布日期:
2020-07-23
通讯作者:
李志坤,庞朝友
E-mail:lzhk@hebau.edu.cn;chypang@163.com
作者简介:
杨永飞(1994―),男,硕士研究生, 基金资助:
Yang Yongfei1,2,Ge Changwei2,Shen Qian2,Zhang Siping2,Liu Shaodong2,Ma Huijuan2,Chen Jing2,Liu Ruihua2,Li Shicong2,Zhao Xinhua2,Li Zhikun1,*(),Pang Chaoyou2,*(
)
Received:
2019-12-26
Online:
2020-07-15
Published:
2020-07-23
Contact:
Li Zhikun,Pang Chaoyou
E-mail:lzhk@hebau.edu.cn;chypang@163.com
摘要:
【目的】挖掘棉花耐冷相关基因,为培育棉花耐冷品种奠定基础。【方法】克隆陆地棉基因GhZAT10(Zinc finger of Arabidopsis thaliana 10),通过实时荧光定量聚合酶链反应(Quantitative real-time polymerase chain reaction,qRT-PCR)分析冷处理前后该基因在根、茎、叶的表达;通过生物信息学方法分析GhZAT10基因结构及其编码的蛋白质性质及进化关系;通过Gateway技术构建蛋白表达载体35S::GhZAT10-GFP进行亚细胞定位;利用病毒诱导的基因沉默技术研究低温胁迫下GhZAT10在棉花耐冷反应中的功能。【结果】GhZAT10基因开放阅读框长度为813 bp(base pair,碱基对),编码270个氨基酸;GhZAT10在根中表达量高于茎和叶,低温胁迫下在3种组织中均上调表达。GhZAT10蛋白无信号肽,不包含跨膜螺旋,且其活性与其磷酸化调控关系密切。陆地棉GhZAT10与可可、拟南芥、甜橙中的ZAT10蛋白亲缘关系较近;GhZAT10蛋白定位在细胞核;沉默GhZAT10基因使棉花的耐冷能力减弱。【结论】GhZAT10蛋白属于C2H2型锌指蛋白,在陆地棉冷胁迫响应信号途径中具有积极作用。
杨永飞,葛常伟,沈倩,张思平,刘绍东,马慧娟,陈静,刘瑞华,李士丛,赵新华,李志坤,庞朝友. 陆地棉苗期低温响应基因GhZAT10的克隆及功能研究[J]. 棉花学报, 2020, 32(4): 305-315.
Yang Yongfei,Ge Changwei,Shen Qian,Zhang Siping,Liu Shaodong,Ma Huijuan,Chen Jing,Liu Ruihua,Li Shicong,Zhao Xinhua,Li Zhikun,Pang Chaoyou. Cloning and Functional Analysis of Low Temperature Response Gene, GhZAT10, in Upland Cotton at Seedling Stage[J]. Cotton Science, 2020, 32(4): 305-315.
表1
本研究所使用的引物"
引物名称 Primer name | 正向引物(5'-3') Forward primer (5'-3') | 反向引物(5'-3') Reverse primer (5'-3') |
pGhZAT10 | ATGGCTTTAGAAGCTCTCAACTC | ATTTGTTTCGTTGACTTGCATTT |
pGVZAT10 | AGCGCCAGCGGCGTGACGACA | GTGGCATCCGCCCCAAGAGAC |
pGqZAT10 | TCACCAAGCGTAAGCGTTCCAA | GAACGATGGCGGTGTGGGATAA |
pGhActin7 | TATGTTGCCATCCAGGCCGTTC | AACACCATCACCGGAATCCAGC |
[1] |
Ding Y L, Shi Y T, Yang S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, 222(4):1690-1704. https://doi.org/10.1111/nph.15696
doi: 10.1111/nph.2019.222.issue-4 |
[2] | Hon W C, Griffith M, Chong P, et al. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves[J]. New Phytologist, 1994, 104(3):971-980. https://doi.org/10.1104/pp.104.3.971 971 |
[3] |
Uemura M, Joseph R A, Steponkus P L. Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions)[J]. Plant Physiology, 1995, 109(1):15-30. https://doi.org/10.1104/pp.109.1.15
pmid: 12228580 |
[4] | Tatsumi Y, Murata T. Relation between chilling sensitivity of cucurbitaceae fruits and the membrane permeability[J]. Society for Horticultural Science, 1981, 50(1):108-113. https://doi.org/10.2503/jjshs.50.108 |
[5] | 余海波. 不同生育时期低温对小麦生理生化特性的影响[D]. 新乡: 河南师范大学, 2012. |
Yu Haibo. Effect of low temperature on physiological and biochemical characteristics of wheat in different growth stage[D]. Xinxiang: Henan Normal University, 2012. | |
[6] | 王进, 张勇, 颜霞, 等. 光照、温度、土壤水分和播种深度对披针叶黄华种子萌发及幼苗生长的影响[J]. 草业科学, 2011, 28(9):1640-1644. |
Wang Jin, Zhang Yong, Yan Xia. Influence of light, temperature, soil moisture and sowing depths on the seed germination and seeding growth of Thermopsis lanceolate[J]. Pratacultural Science, 2011, 28(9):1640-1644. | |
[7] | 乌凤章, 王贺新, 徐国辉, 等. 木本植物低温胁迫生理及分子机制研究进展[J]. 林业科学, 2015, 51(7):116-128. https://doi.org/10.11707/j.1001-7488.20150713 |
Wu Fengzhang, Wang Hexin, Xu Guohui, et al. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J]. Scientia Silvae Sinicae, 2015, 51(7):116-128. | |
[8] | 丁红映, 王明, 谢洁, 等. 植物低温胁迫响应及研究方法进展[J]. 江苏农业科学, 2019, 47(14):31-36. https://doi.org/10.15889/j.issn.1002-1302.2019.14.007 |
Ding Hongying, Wang Ming, Xie Jie, et al. Research progress on the response and methods of plants under low temperature stress[J]. Jiangsu Agricultural Sciences, 2019, 47(14):31-36. | |
[9] |
Kargiotidou A, Deli D, Galanopoulou D, et al. Low temperature and light regulate delta 12 fatty acid desaturases(FAD2) at a transcriptional level in cotton (Gossypium hirsutum)[J]. Journal of Experimental Botany, 2008, 59(8):2043-2056. https://doi.org/10.1093/jxb/ern065
doi: 10.1093/jxb/ern065 pmid: 18453533 |
[10] | 沈仍愚, 张雄伟. 棉花生长发育知识讲座(五)棉花生育的适宜环境[J]. 中国棉花, 1975(5):28-32. |
Shen Rengyu, Zhang Xiongwei. Knowledge lecture on cotton growth and development(Ⅴ) suitable environment for cotton growth[J]. China Cotton, 1975(5):28-32. | |
[11] | 付小琼, 彭军. 国家棉花区域试验工作十年回顾与展望[J]. 棉花学报, 2017, 29(S1):113-117. https://doi.org/10.11963/1002-7807.fxqpj.20170825 |
Fu Xiaoqiong, Peng Jun. Prospect and retrospection of national cotton regional test of China in last decade[J]. Cotton Science, 2017, 29(S1):113-117. | |
[12] | 龚双军, 李国英, 杨德松, 等. 不同棉花品种苗期抗寒性及其生理指标测定[J]. 中国棉花, 2005, 32(3):16-17. |
Gong Shuangjun, Li Guoying, Yang Desong, et al. Determination of cold resistance and physiological indexes of different cotton varieties at seedling stage[J]. China Cotton, 2005, 32(3):16-17. | |
[13] |
Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1):247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
doi: 10.1146/annurev.arplant.53.091401.143329 |
[14] |
Testerink C, Munnik T. Phosphatidic acid: A multifunctional stress signaling lipid in plants[J]. Trends in Plant Science, 2005, 10(8):368-375. Phosphatidic acid: A multifunctional stress signaling lipid in plants
pmid: 16023886 |
[15] | 刘辉, 李德军, 邓治. 植物应答低温胁迫的转录调控网络研究进展[J]. 中国农业科学, 2014, 47(18):3523-3533. https://doi.org/10.3864/j.issn.0578-1752.2014.18.001 |
Liu Hui, Li Dejun, Deng Zhi. Advances in research of transcriptional regulatory network in response to cold stress in plants[J]. Scientia Agricultura Sinica, 2014, 47(18):3523-3533. | |
[16] |
Miller J, McLachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes[J]. The EMBO Journal, 1985, 4(6):1609-1614. https://doi.org/10.1093/bfgp/1.4.342
doi: 10.1002/embj.1985.4.issue-6 |
[17] |
Berg J M Shi Y. The galvanization of biology: A growing appreciation for the roles of zinc[J]. Science, 1996, 271(5252):1081-1085. https://doi.org/10.1126/science.271.5252.1081
pmid: 8599083 |
[18] |
Moore M, Ullman C. Recent developments in the engineering of zinc finger proteins[J]. Briefings in Functional Genomics, 2003, 1(4):342-355. https://doi.org/10.1093/bfgp/1.4.342
doi: 10.1093/bfgp/1.4.342 |
[19] |
Pabo C O, Peisach E, Grant R A. Design and selection of novel Cys2His2 zinc finger proteins[J]. Annual Review of Biochemistry, 2001, 70(70):313-340. https://doi.org/10.1146/annurev.biochem.70.1.313
doi: 10.1146/annurev.biochem.70.1.313 |
[20] |
Laity J H, Lee B M, Wright P E. Zinc finger proteins: new insights into structural and functional diversity[J]. Current Opinion in Structural Biology, 2001, 11(1):39-46. https://doi.org/10.1016/s0959-440x(00)00167-6
pmid: 11179890 |
[21] |
Klug A, Schwabe J W. Protein motifs 5. Zinc fingers[J]. FASEB Journal, 1995, 9(8):597-604. https://doi.org/10.4161/psb.3.10.5993
pmid: 7768350 |
[22] |
Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions[J]. Plant Physiology, 2004, 136(1):2734-2746. https://doi.org/10.1104/pp.104.046599
pmid: 15333755 |
[23] |
Park S, Lee C M, Doherty C J, et al. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network[J]. The Plant Journal, 2015, 82(2):193-207.
doi: 10.1111/tpj.2015.82.issue-2 |
[24] |
Lee H, Guo Y, Ohta M, et al. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase[J]. The EMBO Journal, 2002, 21(11):2692-2702. https://doi.org/10.1093/emboj/21.11.2692
doi: 10.1093/emboj/21.11.2692 |
[25] | 王海波, 龚明, 刘潮, 等. 小桐子转录因子JcZAT10基因的分离与低温表达分析[J]. 中国油料作物学报, 2017, 39(6):805-812. https://doi.org/10.7505/j.issn.1007-9084.2017.06.011 |
Wang Haibo, Gong Ming, Liu Chao, et al. Isolation and chilling expression of JcZAT10 gene from Jatropha curcas[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(6):805-812. | |
[26] | 王晋成. 五个棉花逆境相关锌指蛋白基因的克隆与功能研究[D]. 南京: 南京农业大学, 2010. |
Wang Jincheng. Cloning and characterization of five zinc-finger proteins (ZFPs) related with stresses in cotton (Gossypium hirsutum L.)[D]. Nanjing: Nanjing Agricultural University, 2010. | |
[27] |
Ashraf M. Salt tolerance of cotton: Some new advances[J]. Critical Reviews in Plant Sciences, 2002, 21(1):1-30. https://doi.org/10.1080/0735-260291044160
doi: 10.1080/0735-260291044160 |
[28] | 白阳阳. 甜菜幼苗耐寒性生理基础的研究[D]. 呼和浩特: 内蒙古农业大学, 2017. |
Bai Yangyang. Studies on physiological basis in cold-tolerance of sugar beet (Beta vulgaris.L) seedlings[D]. Huhhot: Inner Mongolia Agricultural University, 2017. | |
[29] |
Zhu T, Liang C Z, Meng Z G, et al. CottonFGD: An integrated functional genomics database for cotton[J]. BMC Plant Biology, 2017, 17(1):1-9. https://doi.org/10.1186/s12870-017-1039-x
doi: 10.1186/s12870-016-0951-9 |
[30] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408. https://doi.org/10.1006/meth.2001.1262
pmid: 11846609 |
[31] |
Agarwal P, Arora R, Ray S, et al. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis[J]. Plant Molecular Biology, 2007, 65(4):467-485. https://doi.org/10.1007/s11103-007-9199-y
pmid: 17610133 |
[32] |
Lippuner V, Cyert M S, Gasser C S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast[J]. The Journal of Biological Chemistry, 1996, 271(22):12859-12866. https://doi.org/10.1074/jbc.271.22.12859
doi: 10.1074/jbc.271.22.12859 |
[33] | 王东, 杨金水. 棉花类耐盐锌指蛋白基因的克隆与结构分析[J]. 复旦学报(自然科学版), 2002, 41(1):42-46. https://doi.org/10.15943/j.cnki.fdxb-jns.2002.01.012 |
Wang Dong, Yang Jinshui. Cloning and characterization of cDNA encoding cotton STZ-like protein[J]. Journal of Fudan University (Natural Science), 2002, 41(1):42-46. | |
[34] |
Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit[J]. Journal of Biological Chemistry, 2000, 275(8):5668-5674. https://doi.org/10.1074/jbc.275.8.5668
pmid: 10681550 |
[35] |
Mittler R, Kim Y S, Song L H, et al. Gain- and loss-of-function mutations in ZAT10 enhance the tolerance of plants to abiotic stress[J]. FEBS Letters, 2006, 580(28/29):6537-6542. https://doi.org/10.1016/j.febslet.2006.11.002 .
doi: 10.1016/j.febslet.2006.11.002 |
[36] | 傅玮东. 终霜和春季低温冷害对新疆棉花播种期的影响[J]. 干旱区资源与环境, 2001, 15(2):38-43. https://doi.org/10.13448/j.cnki.jalre.2001.02.008 |
Fu Weidong. The influence of latest frost and microthermal damage in spring on the cotton's seeding time[J]. Journal of Arid Land Resources and Environment, 2001, 15(2):38-43. | |
[37] | 郭新正. 新疆北疆棉花苗期冻伤对产量的影响[J]. 干旱地区农业研究, 2005, 23(3):105-107. |
Guo Xinzheng. Effects of different frostbites occurring at seedling stage on cotton yields in North Xinjiang Uygur Autonomous Region[J]. Agricultural Research in the Arid Areas, 2005, 23(3):105-107. | |
[38] | 王俊娟, 王德龙, 阴祖军, 等. 陆地棉萌发至幼苗期抗冷性的鉴定[J]. 中国农业科学, 2016, 49(17):3332-3346. https://doi.org/10.3864/j.issn.0578-1752.2016.17.008 |
Wang Junjuan, Wang Delong, Yin Zujun, et al. Identification of the chilling resistance from germination stage to seedling stage in upland cotton[J]. Scientia Agricultura Sinica, 2016, 49(17):3332-3346. | |
[39] | 徐建伟, 张晨, 曾晓燕, 等. 近十年新疆北疆主栽棉花种子低温萌发能力差异评价[J]. 新疆农业科学, 2017, 54(9):1569-1578. https://doi.org/10.6048/j.issn.1001-4330.2017.09.001 |
Xu Jianwei, Zhang Chen, Zeng Xiaoyan, et al. Evaluation of seed germination of main-cultivated cotton under low temperature in northern Xinjiang in recent ten years[J]. Xinjiang Agricultural Sciences, 2017, 54(9):1569-1578. | |
[40] | 高利英, 邓永胜, 韩宗福, 等. 耐低温萌发棉花品种种子萌发期生理特性分析[J]. 华北农学报, 2018, 33(S1):146-153. https://doi.org/10.7668/hbnxb.2018.S1.025 . |
Gao Liying, Deng Yongsheng, Han Zongfu, et al. Analysis of physiological characteristics in seed germination of cotton varieties to low temperature stress[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(S1):146-153. | |
[41] | 韩松, 吉庆勋, 杨曼利, 等. 添加抗寒剂对包衣棉花种子萌芽及其耐冷性的影响[J]. 江苏农业科学, 2019, 47(4):78-81. https://doi.org/10.15889/j.issn.1002-1302.2019.04.017 |
Han Song, Ji Qingxun, Yang Manli, et al. Effect of adding anti-cold agent on seed germination and cold resistance of coated cotton[J]. Jiangsu Agricultural Sciences, 2019, 47(4):78-81. |
[1] | 赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186. |
[2] | 吴健锋,樊志浩,武连杰,胡晓旺,韩知里,高巍,龙璐. 陆地棉衰老相关基因GhSAG101的克隆及抗病功能分析[J]. 棉花学报, 2022, 34(3): 187-197. |
[3] | 田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226. |
[4] | 张素君,李兴河,王海涛,唐丽媛,蔡肖,刘存敬,张香云,张建宏. 陆地棉主要育种性状SSR关联位点的验证及优异材料鉴定[J]. 棉花学报, 2022, 34(2): 120-136. |
[5] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[6] | 陈琴,李多露,赵杰银,高文举,陈全家,曲延英. 陆地棉UDPGP基因家族的鉴定及抗旱性分析[J]. 棉花学报, 2022, 34(1): 12-22. |
[7] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[8] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[9] | 李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. |
[10] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[11] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[12] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[13] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[14] | 薛羽君,魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[15] | 吕丽敏,左东云,王省芬,张友平,程海亮,王巧连,宋国立,马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
|