[1] Hodgson A S, Chan K Y. The effect of short-term waterlogging during furrow irrigation of cotton in a cracking grey clay[J]. Australian Journal of Agricultural Research, 1982, 33(1): 109-116.
[2] Gillham F E M, Bell T M, Arin T, et al. Cotton production prospects for the next decade[R]//World Bank Technical Paper, 287. Washington, DC, USA: The World Bank, 1995: 277.
[3] Yang Wei, Zhu Jianqiang, Liu Wenhuai. Impact of waterlogging coupling with high temperature during cotton in flowering and boll-bearing on its photosynthetic physiology and yield[J]. Advance Journal of Food Science and Technology, 2012, 4(6): 344- 347.
[4] Kuai Jie, Zhou Zhiguo, Wang Youhua, et al. The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position[J]. European Journal of Agronomy, 2015, 67: 61-74.
[5] Kuai Jie, Liu Zhaowei, Wang Youhua, et al. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight[J]. Plant Science, 2014, 223:79-98.
[6] 刘凯文, 苏荣瑞, 朱建强, 等. 棉花苗期叶片关键生理指标对涝渍胁迫的响应[J]. 中国农业气象, 2012, 33(3): 442-447.
Liu Kaiwen, Su Rongrui, Zhu Jiangqiang, et al. Dynamic responses of main physiological indices on cotton leaf to waterlogging stress at seedling stage[J]. Chinese Journal of Agrometeorology, 2012, 33(3): 442-447.
[7] 郭文琦, 陈兵林, 刘瑞显, 等. 施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J]. 应用生态学报, 2010, 21(1): 53-60.
Guo Wenqi, Chen Binglin, Liu Ruixian, et al. Effects of nitrogen application rate on cotton leaf antioxidant enzyme activities and endogenous hormone contents under short-term waterlogging at flowering and bolling-forming stage[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 53-60.
[8] Milroy S P, Bange M P, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions[J]. Field Crops Research, 2009, 1139(3): 246-255.
[9] 朱建强, 欧光华, 张文英, 等. 涝渍相随对棉花产量与品质的影响[J]. 中国农业科学, 2003, 36(9): 1050-1056.
Zhu Jiangqiang, Ou Guanghua, Zhang Wenying, et al. Influence of subsurface waterlogging followed by surface waterlogging on yield and quality of cotton[J]. Scientia Agricultura Sinica, 2003, 36(9): 1050-1056.
[10] Bange M P, Milroy S P, Thongbai P. Growth and yield of cotton in response to waterlogging[J]. Field Crops Research, 2004, 88(2): 129-142.
[11] Milroya S P, Bangeb M P. Reduction in radiation use efficiency of cotton under repeated transient waterlogging in the field[J]. Field Crops Research, 2013, 140: 51-58.
[12] 谢晓金, 申双和, 李映雪, 等. 高温胁迫下水稻红边特征及SPAD和LAI的监测[J]. 农业工程学报, 2010, 26(3): 183-190.
Xie Xiaojin, Shen Shuanghe, Li Yingxue, et al. Red edge characteristics and monitoring SPAD and LAI for rice with high temperature stress[J]. Transactions of the CSAE, 2010, 26(3): 183-190.
[13] 贾方方, 马新明, 李春明, 等. 不同水分处理对烟草叶片高光谱及红边特征的影响[J]. 中国生态农业学报, 2011, 19(6): 1330-1335.
Jia Fangfang, Ma Xinming, Li Chunming, et al. Effect of water condition on hyperspectral and red-edge characteristics of tobacco leaf[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6):1330-1335.
[14] 冯先伟, 陈曦, 包安明, 等. 水分胁迫条件下棉花生理变化及其高光谱响应分析[J]. 干旱区地理, 2004, 27(2): 250-255.
Feng Xianwei, Chen Xi, Bao Anming, et al. Analysis on the cotton physiological change and its hyperspectral response under the water stress conditions[J]. Arid Land Geography, 2004, 27(2): 250-255.
[15] 谷艳芳, 丁圣彦, 陈海生, 等. 干旱胁迫下冬小麦高光谱特征和生理生态响应[J]. 生态学报, 2008, 28(6): 2690-2697.
Gu Yanfang, Ding Shengyan, Chen Haisheng, et al. Eco-physiological responses and hyperspectral characteristics of winter wheat under drought stress[J]. Acta Ecologica Sinca, 2008, 28(6): 2690-2697.
[16] 贺可勋, 赵书河, 来建斌, 等. 水分胁迫对小麦光谱红边参数和产量变化的影响[J]. 光谱学与光谱分析, 2013, 33(8): 2143- 2147.
He Kexun, Zhao Shuhe, Lai Jianbin, et al. Effects of water stress on red-edge parameters and yield in wheat cropping[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2143-2147.
[17] 丛建鸥, 李宁, 许映军, 等. 干旱胁迫下冬小麦产量结构与生长、生理、光谱指标的关系[J]. 中国生态农业学报, 2010, 18(1): 67-71.
Cong Jianou, Li Ning, Xu Yingjun, et al. Relationship between indices of growth, physiology and reflectivity and yield of winter wheat under water stress[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 67-71.
[18] 李章成, 周清波, 江道辉, 等. 棉花苗期冻害高光谱特征研究[J]. 棉花学报, 2008, 20(4): 306-311.
Li Zhangcheng, Zhou Qingbo, Jiang Daohui, et al. Study on hyperspectral features of the frostbite cotton at seedling stage[J]. Cotton Science, 2008, 20(4): 306-311.
[19] 武永峰, 胡新, 吕国华, 等. 晚霜冻影响下冬小麦冠层红边参数比较[J]. 光谱学与光谱分析, 2014, 34(8): 2190-2195.
Wu Yongfeng, Hu Xin, Lǚ Guohua, et al. Comparison of red edge parameters of winter wheat canopy under late frost stress [J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2190- 2195.
[20] 李军玲, 余卫东, 张弘, 等. 冬小麦越冬中期冻害高光谱敏感指数研究[J]. 中国农业气象, 2014, 35(6): 708-716.
Li Junling, Yu Weidong, Zhang Hong, et al. study on hyperspectral sensitivity index of winter wheat after freezing injury at mid-winter period[J]. Chinese Journal of Agrometeorology, 2014, 35(6): 708-716.
[21] Zhang Lei, Zhou Zhiguo, Zhang Guowei, et al. Monitoring the leaf water content and specific leaf weight of cotton in saline soil using leaf spectral reflectance[J]. European Journal of Agronomy, 2012, 41: 103-117.
[22] 姜志伟, 陈仲新, 任建强, 等. 粒子滤波同化方法在CERES-Wheat作物模型估产中的应用[J]. 农业工程学报, 2012, 28(14): 138-146.
Jiang Zhiwei, Chen Zhongxin, Ren Jianqiang, et al. Estimation of crop yield using CERES-Wheat model based on particle filter data assimilation method[J]. Transactions of the CSAE, 2012, 28(14): 138-146.
[23] 姚付启, 张振华, 杨润亚, 等. 基于红边参数的植被叶绿素含量高光谱估算模型[J]. 农业工程学报, 2009, 25(增2): 123-129.
Yao Fuqi, Zhang Zhenhua, Yang Runya, et al. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter[J]. Transactions of the CSAE, 2009, 25(Suppl. 2): 123-129.
[24] 李文敏. 枫杨和湿地松幼苗生理参数的高光谱反演模型研究[D]. 陕西杨凌: 西北农林科技大学, 2014.
Li Wenmin. Research on hyperspectral models about physiological parameters of Pterocarya stenoptera C. DC. and Pinus elliottii Engelm.[D]. Yangling, Shaanxi: Northwest A&F University, 2014. |