新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究
王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅
新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究
Study on the effect of spraying cotton defoliant by plant protection UAVs in Xinjiang cotton area
【目的】明确植保无人机喷施棉花脱叶催熟剂田间作业现状、作业效果,为构建新疆生产建设兵团棉花脱叶催熟剂喷施作业技术体系以及无人机在棉花脱叶催熟作业中的推广应用提供依据。【方法】以市场主流无人机对比喷杆喷雾机进行田间试验,评价和分析不同作业区棉花脱叶和吐絮效果。【结果】药后22 d,无人机两次施药的棉花脱叶率在82.2%~92.1%,吐絮率在85.8%~100%,脱叶效果显著好于地面喷杆喷雾机一次顶喷施药,催熟效果差异不大;不同无人机以及同一无人机不同作业区,对棉花的脱叶催熟效果不同,无人机喷雾施药的8个作业区中,仅有1个能同时满足兵团棉花机械采收对脱叶率和吐絮率的要求。无人机部分施药作业中存在作业参数选择不当、作业不规范以及因无人机自身设备性能未达最优而导致的药液喷施不均匀、漏喷等现象。【结论】采用无人机喷施棉花脱叶催熟剂施药技术有待进一步优化完善。
[Objective] The aim of the present study is to investigate the harvest aids efficiency applied by plant protection unmanned aerial vehicles (UAVs), and to provide a basis for the construction of harvest aids application technology system by UAVs in Xinjiang area. [Method] Field experiments were carried out to evaluate the harvest-aid performance applied by different UAVs and ground-based machine. [Result] The defoliation rate and boll opening rate were 82.2%-92.1% and 85.8%-100% at 22 days after spraying twice by UAVs, respectively. The defoliation rate is significantly higher than that of spraying once with a ground-based machine. But the difference of boll opening rate is not obvious. In addition, the defoliation rate differs in UAVs types and spraying areas. Among the eight working areas of UAVs, only one can achieve the defoliation and boll opening rate required for mechanical harvesting of cotton. Using UVAs to spray harvest aids, improper selection of working parameters, irregular operations and poor performance of UAVs will cause uneven or missed spraying. [Conclusion] The technology of applying cotton harvest aids with UAVs needs to be further optimized.
棉花 / 植保无人机 / 脱叶催熟剂 / 作业效果 {{custom_keyword}} /
cotton / plant protection UAVs / defoliation and ripening / spraying efficiency {{custom_keyword}} /
表1 参试药械及作业区基础信息Table 1 Sprayer type and basic information of cotton plants in each working area |
棉花品种 Cotton cultivars | 施药器械 Sprayer type | 作业区编号 Working area No. | 单株叶片数 Number of leaves per plant | 单株铃数 Number of bolls per plant | 吐絮率 Boll opening rate /% | 株高 Plant height / cm |
天佐42 | 约翰迪尔 R4023 John Deere R4023 | 1 | 50.6 | 11.4 | 12.0 | 83.5 |
蜂巢 3WW-10B Beehive 3WW-10B | 2 | 27.9 | 9.9 | 32.8 | 61.1 | |
大疆T16 Dji T16 | 3 | 25.6 | 6.7 | 49.7 | 53.9 | |
4 | 38.7 | 8.9 | 6.7 | 77.3 | ||
极飞P30 XAG P30 | 5 | 32.6 | 8.2 | 28.9 | 68.3 | |
中棉109 | 极飞P30 XAG P30 | 6 | 43.0 | 9.2 | 6.5 | 83.9 |
约翰迪尔 P4023 John Deere R4023 | 7 | 27.4 | 6.4 | 8.5 | 88.5 | |
极飞P30 XAG P30 | 8 | 33.0 | 8.6 | 4.8 | 92.4 | |
蜂巢 3WW-10B Beehive 3WW-10B | 9 | 38.6 | 7.7 | 11.1 | 75.6 | |
大疆T16 Dji T16 | 10 | 46.5 | 11.1 | 11.8 | 90.9 |
注:表中数据均为各作业区平均值。 | |
Note: The data in the table are the average value of each working area. |
表2 施药方案Table 2 Harvest aids sparaying scheme |
施药器械 Sprayer type | 有效剂量 Effective dosage /(g·hm-2) | |||||||
第一次施药(9月7日) The first spraying (Sept.7) | 第二次施药(9月15日) The second spraying (Sept.15) | |||||||
540 g·L-1噻苯·敌草隆 SC Thidiazuron dimethipin 540 g·L-1 SC | 280 g·L-1烷基乙基磺酸盐SL An-idnic surfactant 280 g·L-1 SL | 40%乙烯利AS 40% ethephon AS | 飞防助剂 Adjuvant for aviation plant protection | 540 g·L-1噻苯·敌草隆SC Thidiazuron dimethipin 540 g·L-1 SC | 280 g·L-1烷基乙基磺酸盐SL An-idnic surfactant 280 g·L-1 SL | 40%乙烯利AS 40% ethephon AS | ||
约翰迪尔 R4023 John Deere R4023 | 270 | 1 080 | 1 200 | / | / | / | / | |
蜂巢 3WW-10B Beehive 3WW-10B | 225 | 900 | 600 | / | 195 | 780 | 600 | |
大疆 T16 Dji T16 | 225 | 900 | 600 | 150 | 195 | 780 | 600 | |
极飞 P30 XAG P30 | 225 | 900 | 600 | 150 | 195 | 780 | 600 |
注:SC:悬浮剂;SL:可溶性液剂;AS:水剂。 | |
Note: SC: Suspension concentrate; SL: soluble concentrate; AS: aqueous solution. |
表3 喷施作业参数Table 3 The working parameters of each sprayer |
施药器械 Sprayer type | 工作压力 Working pressure / Pa | 作业高度 Working height /m | 作业速度 Working speed /(km·h-1) | 喷幅 Single spraying swath /m | 施药液量 Spraying volume /(L·hm-2) |
约翰迪尔 R4023 John Deere R4023 | 800 | 0.3 | 7.0 | 25.0 | 450.0 |
蜂巢 3WW-10B Beehive 3WW-10B | / | 1.8 | 4.5 | 3.5 | 30.0 |
大疆T16 Dji T16 | / | 2.0 | 5.0 | 5.0 | 18.0~19.5 |
极飞P30 XAG P30 | / | 2.1 | 5.0 | 3.5 | 15.0±1.5 |
表4 收获辅助剂施药器械对棉花脱叶效果的影响Table 4 Effect of harvest aids sprayer type on cotton defoliation |
施药器械 Sprayer type | 作业区 编号Working area No. | 棉花品种 Cotton cultivars | 药前吐絮率 Boll opening rate before spraying /% | 脱叶率 Defoliation rate /% | ||
施药后7 d 7 d after spraying | 施药后15 d 15 d after spraying | 施药后22 d 22 d after spraying | ||||
约翰迪尔R4023 John Deere R4023 | 1 | 天佐42 | (12.0±6.3) c | (41.3±6.3) a | (68.5±3.1) bc | (73.4±6.3) b |
7 | 中棉109 | (8.5±3.3) c | (36.2±7.4) a | (65.7±2.9) c | (73.9±2.4) b | |
蜂巢3WW-10B Beehive 3WW-10B | 2 | 天佐42 | (32.8±7.1) b | (25.8±4.6) a | (74.1±5.1) abc | (82.2±3.0) ab |
9 | 中棉109 | (11.1±8.9) c | (24.8±6.1) a | (80.0±4.1) abc | (88.8±2.9) a | |
大疆T16 Dji T16 | 3 | 天佐42 | (49.7±5.5) a | (38.4±4.1) a | (80.3±2.5) ab | (88.4±2.3) a |
4 | (6.7±1.7) c | (45.0±11.4) a | (75.6±2.7) abc | (85.3±1.6) a | ||
10 | 中棉109 | (11.8±1.3) c | (27.8±5.5) a | (80.0±3.4) abc | (88.5±3.3) a | |
极飞 P30 XAG P30 | 5 | 天佐42 | (28.9±5.4) b | (46.0±3.0) a | (85.3±6.2) a | (92.1±3.6) a |
6 | 中棉109 | (6.5±3.8) c | (30.5±7.6) a | (87.6±3.7) a | (91.7±1.8) a | |
8 | (4.8±4.8) c | (20.8±10.5) a | (81.2±3.3) ab | (85.6±3.6) a |
注:同列数据(平均值±标准误)后不同的字母表示差异显著(P≤0.05)。 | |
Note: The data (mean±S.E.) within a column followed by a different letter were significantly different (P≤0.05). |
表6 收获辅助剂施药器械对棉花吐絮动态的影响Table 6 Effect of harvest-aids sprayer type on boll opening dynamics of cotton |
施药器械 sprayer type | 作业区编号Working area No. | 棉花品种 Cotton cultivars | 吐絮率 Boll opening rate /% | |||
施药前 Before spraying | 施药后7 d 7 d after spraying | 施药后15 d 15 d after spraying | 施药后22 d 22 d after spraying | |||
约翰迪尔R4023 John Deere R4023 | 1 | 天佐42 | (12.0±6.3) c | (15.6±1.2) d | (70.6±4.7) cd | (93.5±3.6) ab |
7 | 中棉109 | (8.5±3.3) c | (30.2±6.5) cd | (85.4±4.7) abc | (100.0±0.0) a | |
蜂巢3WW-10B Beehive 3WW-10B | 2 | 天佐42 | (32.8±7.1) b | (51.3±7.2) b | (86.5±3.2) abc | (98.3±0.6) a |
9 | 中棉109 | (11.1±8.9) c | (22.9±7.2) d | (62.6±6.3) d | (95.0±2.5) ab | |
大疆T16 Dji T16 | 3 | 天佐42 | (49.7±5.5) a | (71.5±6.4) a | (96.0±2.2) a | (100±0.0) a |
4 | (6.7±1.7) c | (16.4±4.6) d | (59.1±9.8) d | (85.8±6.2) b | ||
10 | 中棉109 | (11.8±1.3) c | (26.1±2.8) cd | (69.5±8.9) cd | (93.5±4.4) ab | |
极飞 P30 XAG P30 | 5 | 天佐42 | (28.9±5.4) b | (44.5±6.7) bc | (91.6±2.2) ab | (96.3±0.5) ab |
6 | 中棉109 | (6.5±3.8) c | (21.3±3.4) d | (72.2±5.4) bcd | (92.0±3.5) ab | |
8 | (4.8±4.8) c | (15.0±12.3) d | (59.8±9.4) d | (93.0±5.0) ab |
注:同列数据(平均值±标准误)后不同的字母表示差异显著(P≤0.05)。 | |
Note: The data (mean±S.E.) within a column followed by a different letter were significantly different (P≤0.05). |
表7 收获辅助剂施药器械雾滴沉积分布均匀性Table 7 Droplet deposit and distribution uniformity of different harvest-aids sprayers |
作业区 编号 Working area No. | 施药器械 Sprayer type | 第一次施药The first spraying | 第二次施药The second spraying | |||||
平均雾滴密度 Average droplet density /cm-2 | 标准差 Standard deviation /cm-2 | 变异系数Coefficient of variation /% | 平均雾滴密度 Average droplet density /cm-2 | 标准差 Standard deviation /cm-2 | 变异系数Coefficient of variation /% | |||
7 | 约翰迪尔R4023* John Deere R4023 | - | - | - | - | - | - | |
8 | 极飞 P30 XAG P30 | 16.4 | 7.4 | 45.1 | 4.9 | 1.9 | 39.1 | |
9 | 蜂巢3WW-10B Beehive 3WW-10B | 23.6 | 7.3 | 59.2 | 12.9 | 1.6 | 13.2 | |
10 | 大疆T16 Dji T16 | 20.4 | 8.4 | 41.2 | 4.7 | 1.0 | 21.2 |
注:表中数据是各作业区采样点水敏纸单位面积平均雾滴数。*:因布设在约翰迪尔地面机作业区棉株上部叶片的多张水敏纸上雾滴密度过大,融合成一片,导致无法计数。 | |
Note: The data in the table are average droplet density per unit area of water-sensitive paper sampled in each working area.*: Because the high density of droplets merged into one sheet on multiple water-sensitive papers at upper part of cotton plant in John Deere ground machinery operation area, the droplets could not be counted. |
[1] |
The effect of the defoliant thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
周婷婷, 肖庆刚, 杜睿, 等. 我国棉花脱叶催熟技术研究进展[J]. 棉花学报, 2020, 32(2): 170-184. DOI: 10.11963/1002-7807.ztthxq.20200303.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
兰玉彬, 陈盛德, 邓继忠, 等. 中国植保无人机发展形势及问题分析[J]. 华南农业大学学报, 2019, 40(5): 217-225. DOI: 10.7671/j.issn.1001-411X.201905082.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
马艳, 任相亮, 蒙艳华, 等. 无人植保机在新疆棉田喷施脱叶剂测试结果评述[J]. 中国棉花, 2016, 43(12): 16-20. DOI: 10.11963/issn.1000-632X.201612004.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
王喆, 冯宏祖, 王兰, 等. MG-1S 型无人机喷施不同棉花脱叶剂的田间效果对比[J]. 中国棉花, 2018, 45(1): 27-28, 46. DOI: 10.11963/1000-632X.wzwl.2018011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
胡红岩, 任相亮, 马小艳, 等. 无人机喷施噻苯隆·敌草隆对棉花的脱叶催熟效果[J]. 中国棉花, 2018, 45(6): 21-23, 39. DOI: 10.11963/1000-632X.hhymy.20180612.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
张坤朋, 邓喜军, 王朝阳. 无人机喷洒不同棉花催熟、脱叶复合药剂效果研究[J]. 农药, 2017, 56(8): 619-623.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
胡红岩, 任相亮, 马小艳, 等. 无人机喷施与人工喷施棉花脱叶剂效果对比[J]. 中国棉花, 2018, 45(7): 13-15, 19. DOI: 10.11963/1000-632X.hhymy.2018071.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
文纯杰, 杨炬仁, 韩军, 等. 植保无人机与机动车喷施棉花脱叶剂效果对比[J]. 农村科技, 2018(3): 26-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
胡红岩, 任相亮, 马小艳, 等. 棉花脱叶剂的植保无人机喷施技术[J]. 中国棉花, 2018, 45(11): 43-44. DOI: 10.11963/1000-632X.hhymy.20181115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
蒙艳华, 兰玉彬, 梁自静, 等. 无人机施药液量对棉花脱叶效果的影响[J]. 中国棉花, 2019, 46(6): 10-15. DOI: 10.11963/1000-632X.myhlyb.20190611.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张煜, 杜睿, 肖庆刚, 等. d-柠檬烯助剂对棉花脱叶催熟剂的增效作用[J]. 石河子大学学报(自然科学版), 2020, 38(3): 1-7. DOI: 10.13880/j.cnki.65-1174/n.2020.23.018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
赵冰梅, 张强, 朱玉永, 等. 多旋翼植保无人机在棉蚜防治中的应用效果[J]. 中国植保导刊, 2017, 37(2): 61-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
宋兴虎, 徐东永, 孙璐, 等. 在不同棉区噻苯隆和乙烯利用量及配比对脱叶催熟效果影响[J]. 棉花学报, 2020, 32(2): 247-257. DOI: 10.11963/1002-7807.ztthxq.20200303.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015, 41(6): 9-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
袁会珠, 薛新宇, 闫晓静, 植保无人飞机低空低容量喷雾技术应用与展望[J]. 植物保护, 2018, 44(5): 152-158.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
陈盛德, 兰玉彬, 李继宇, 等. 植保无人机航空喷施作业有效喷幅的评定与试验[J]. 农业工程学报, 2017(7): 82-90. DOI: 10.11975/j.issn.1002-6819.2017.07.011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
林正平, 洪峰, 刘鹤, 等. 浅析影响植保无人机作业效果的主要因素[J]. 中国植保导刊, 2019, 39(4): 70-72, 85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
田志伟, 薛新宇, 李林, 等. 植保无人机施药技术研究现状与展望[J]. 中国农机化学报, 2019, 40(1): 37-45. DOI: 10.13733/j.jcam.issn.2095-5553.2019.01.08.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
韦全生, 张益忠. 机采棉发展概况及存在的问题[J]. 中国棉花加工, 2003(5): 33-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 | 〉 |