GhMYB43负调控木质素的生物合成和茉莉酸信号

沈吉丽,肖胜华,惠慧,努日曼古丽·艾尼,胡琴,张晓君,杨兆光,聂新辉,朱龙付

PDF(10806 KB)
PDF(10806 KB)
棉花学报 ›› 2020, Vol. 32 ›› Issue (6) : 522-537. DOI: 10.11963/1002-7807.sjlzlf.20200907
研究与进展

GhMYB43负调控木质素的生物合成和茉莉酸信号

作者信息 +

GhMYB43 Negatively Regulates Lignin Biosynthesis and Jasmonic Acid Signaling

Author information +
History +

摘要

【目的】棉花黄萎病是由土壤传播的植物维管束真菌病害,导致每年棉花产量和品质的严重损失。本研究通过鉴定抗病基因,研究抗病机制,为棉花多抗种质资源创新提供理论基础。【方法】利用酵母单杂交(Yeast one hybrid)筛选到1个GhLac1上游的调节因子,并通过构建系统进化树、氨基酸序列多重比对、定量逆转录聚合酶链反应(Reverse transcription-quantitative polymerase chain reaction, RT-qPCR)、烟草瞬时转化、双荧光素酶检测系统、病毒诱导的基因沉默技术、棉花遗传转化技术等对该转录因子相关功能进行验证。【结果】Gh_D12G0544与拟南芥(Arabidopsis thaliana)中AtMYB43同源性最高,将其编码基因命名为GhMYB43。GhMYB43位于陆地棉Dt亚组第12号染色体上,编码1个含376个氨基酸的蛋白质,含有2个MYB结构域;RT-qPCR分析发现GhMYB43在茎中优势转录,受水杨酸和过氧化氢诱导上调表达,而受茉莉酸甲酯诱导下调表达,转录水平会受大丽轮枝菌(Verticilium dahliae)诱导;亚细胞定位结果显示,GhMYB43蛋白定位于细胞核中;双荧光素酶检测系统验证该基因具有转录激活活性;抗病性鉴定发现抑制GhMYB43转录会增强棉花植株对黄萎病菌的抗性;超表达GhMYB43增强了棉花对黄萎病菌的敏感性;木质素组织化学染色和含量测定结果表明,超表达GhMYB43转基因系的木质素含量明显低于对照材料。RT-qPCR分析表明,GhMYB43负调控木质素合成途径中关键酶基因的转录水平,并且负调控茉莉酸信号路径相关基因的转录。【结论】GhMYB43负调控木质素合成和茉莉酸信号。

Abstract

[Objective] Verticillium wilt is a vascular fungal disease spread by soil, which causes serious loss of cotton yield and reduction in quality every year. This study provides a theoretical basis for the innovation of cotton multi-resistant germplasms by identifying disease resistance genes and studying disease resistance mechanisms. [Method] Yeast one hybrid was performed to screen the upstream regulatory factors of GhLac1, and the construction of phylogenetic trees, multiple alignment of amino acid sequences, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), transient tobacco transformation, dual luciferase assay system, virus-induced gene silencing and cotton genetic transformation technology were performed to verify the function of this transcription factor. [Result] Gh_D12G0544 is the most homologous to AtMYB43 in Arabidopsis thaliana, so its encoding gene was named GhMYB43. GhMYB43 is located on chromosome 12 of the Dt subgroup of upland cotton and encodes a protein containing 376 amino acids that contains two MYB domains. RT-qPCR analysis showed that GhMYB43 was predominantly transcribed in the stem and was up-regulated by salicylic acid (SA) and H2O2, but down-regulated by methyl jasmonate (Me-JA); at the same time, the transcription level was induced by Verticillium dahliae. Subcellular localization results showed that GhMYB43 protein is localized in the nucleus. The dual luciferase assay system verified that the gene has transcriptional activation activity. Disease resistance identification found that the inhibition GhMYB43 transcription level enhanced the resistance of cotton to V. dahliae, and overexpression of GhMYB43 increased the susceptibility of plants to this pathogen. Histochemical staining and content determination of lignin showed that the lignin content of GhMYB43 overexpressing transgenic lines was significantly lower than that of control materials. RT-qPCR analysis showed that GhMYB43 negatively regulates the transcription level of enzyme genes involved in the lignin synthesis and JA signaling pathway. [Conclusion] GhMYB43 negatively regulates lignin synthesis and JA signal.

关键词

棉花黄萎病 / GhMYB43 / 抗病性 / 木质素 / 茉莉酸信号

Keywords

cotton Verticillium wilt / GhMYB43 / disease resistance / lignin / jasmonic acid signal

引用本文

导出引用
沈吉丽 , 肖胜华 , 惠慧 , 努日曼古丽·艾尼 , 胡琴 , 张晓君 , 杨兆光 , 聂新辉 , 朱龙付. GhMYB43负调控木质素的生物合成和茉莉酸信号[J]. 棉花学报, 2020, 32(6): 522-537. https://doi.org/10.11963/1002-7807.sjlzlf.20200907
Shen Jili , Xiao Shenghua , Xi Hui , Nurimanguli Aini , Hu Qin , Zhang Xiaojun , Yang Zhaoguang , Nie Xinhui , Zhu Longfu. GhMYB43 Negatively Regulates Lignin Biosynthesis and Jasmonic Acid Signaling[J]. Cotton Science, 2020, 32(6): 522-537. https://doi.org/10.11963/1002-7807.sjlzlf.20200907
棉花(Gossypium hirsutum)是重要的经济作物之一,已在世界范围内种植,而病害是其产量和品质的主要限制因素[1]。黄萎病在中国是棉花生产中危害最严重的病害之一[2]。木质素是维管束植物次级细胞壁(Secondary cell wall, SCW)的重要成分[3]。木质素的生物合成受发育信号和环境刺激的控制,例如紫外线照射、伤口和病原侵染[4-5]。在拟南芥中,SG2型R2R3-MYB转录因子(V-myb avian myeloblastosis viral oncogene homolog)MYB15是防御诱导的木质化和先天免疫的调节因子[6]GhLac15通过增强防御诱导的木质化来提高对黄萎病的抗性[7]。尽管已经报道了涉及木质素生物合成的许多基因,但是目前在棉花中报道的调控木质素生物合成的MYB转录因子还很少。
茉莉酸(Jasmonic acid, JA)是1种脂源性植物激素,可调节植物免疫和发育的各个方面[8-9]。曾报道GbWRKY1在JA介导的防卫基因诱导转录中具有明显的负调控作用,这表明GbWRKY1可能是通过负调控JA信号通路(转导途径)在植物抗病性反应中起作用。GhHB12参与对大丽轮枝菌(Verticlillium dahliae)和JA信号的响应,并且GhHB12仅抑制某些JA响应基因(GhJAZ2和GhPR3)表达,但不抑制棉花的整个JA信号通路[10-11]。如何激活棉花与大丽轮枝菌互作过程中JA的合成和信号通路尚待探索。
植物转录因子MYB是最大的转录因子家族之一,与植物生长发育、生理代谢、细胞的形态和模式建成等生理过程有关[12]。 已通过遗传分析和分子分析对MYB类转录因子在许多植物物种中的功能进行了研究,例如拟南芥(Arabidopsis thaliana)、玉米(Zea mays)、水稻(Oryza sativa)、矮牵牛(Petunia hybrida)、金鱼草(Antirrhinum majus)、葡萄(Vitis vinifera L.)、杨树(Populus tremuloides)和苹果(Malus domestica[13]AtMYB125是控制雄性生殖细胞分裂和分化的花粉特异性因子[14];AtMYB33和AtMYB65促进了花药和花粉的发育[15];MYB189在拟南芥和毛果杨(P.trichocarpa)中的过表达导致木质素、纤维素和半纤维素的含量显著降低,并且使茎中的维管发育受到明显抑制,导致木质部纤维的次生细胞壁厚度显著降低[16]。SlMYB21对JA生物合成具有正向调节作用,而对生长素和赤霉素则具有负向调节作用。结果表明,SlMYB21至少部分介导JA的作用,并可能控制花到果的过渡[17]。然而,关于MYB在棉花防御反应中调控JA信号通路的作用的报道很少。
近年来,棉花黄萎病的发生给棉花产业的可持续发展造成了严重的影响,并且陆地棉中缺乏有效的抗源。抗病基因鉴定及其抗病机制研究对于棉花多抗种质资源创新具有重要意义。因此,本研究筛选到1个GhLac1上游的R2R3-MYB类调节因子基因,通过超表达和病毒诱导的基因沉默(Virus-induced gene silencing, VIGS)技术,对其功能进行初步鉴定,进一步探讨棉花对黄萎病的反应机制,为棉花抗病育种提供理论依据和基因资源。

1 材料与方法

1.1 植物材料

供试植物材料:黄萎病感病品种陆地棉Jin668(G. hirsutum L. cv. Jin668),耐病品种海岛棉7124(G. barbadense L. cv. 7124,简称“海7124”)及陆地棉YZ1(Gossypium hirsutum cv. YZ1),均由华中农业大学棉花课题组保存。
烟草材料为本氏烟(Nicotiana benthamiana),种植于华中农业大学棉花楼附楼光照培养室。

1.2 酵母单杂交(Yeast one hybrid, Y1H)

将目的基因启动子(Bait)重组在载体质粒pHISi-1上,将重组好的质粒进行聚合酶链反应(Polymerase chain reaction, PCR)阳性检测,并测序比对,保证目的序列无突变。将重组质粒转化的Y1H菌株涂布于含有0、15、30 mmol·L-1 3-氨基-1,2,4-三唑(3-AT)的SD/-Trp/-His营养缺陷型培养基上,进行酵母互作分析,将培养基置于30 ℃恒温培养箱培养4~6 d,观察菌斑的生长情况[18]

1.3 GhMYB43基因的序列分析和植物转化

GhMYB43基因的全长序列可从网站 https://cottonfgd.org/获得。分别使用ClustalX( http://www.clustal.org/)和MEGA5( http://www.megasoftware.net/)比对氨基酸序列和构建系统发育树。
从 Jin668克隆全长GhMYB43,并通过attB与attP位点(BP)重组和attL与atRR位点重组(Invitrogen)插入Gateway载体pK2GW7.0(Ghent University)中,以生成过表达载体。根据先前的研究方法[19],通过根癌农杆菌(菌株GV3101)介导法用GhMYB43过表达载体转化Jin668。

1.4 供试菌株、载体

所用的菌株是大肠杆菌TOP10和根癌农杆菌GV3101菌株,它们均由本研究小组储存在20%(质量分数)的甘油中,并储存在-80 ℃的超低温冰箱中。
所用的载体:中间载体pDONER221、pDONERZ60、pGBKT7、pGADTT7等,亚细胞定位载体pMDC43,均保存在-80 ℃;VIGS中间载体pTRV1、pIRV2、pTRVCLA,由荷兰瓦赫宁根大学Bart P. H. J. Thomma教授提供,保存在本课题组;超表达载体pGWB409和干涉载体pHellsgate4保存于本课题组。

1.5 棉花DNA及RNA的提取

棉花DNA提取主要参照天根植物DNA提取试剂盒(Tiangen Biotech, DP305),具体操作步骤参见产品说明。采用天根生化科技有限公司RNAprep Pure多糖多酚植物总RNA提取试剂盒(DP441)提取棉花不同组织的RNA。

1.6 RNA逆转录(RT)及实时定量PCR分析

从-80 ℃冰箱中取出提取备用的RNA,通过0.1%(质量分数)琼脂糖凝胶电泳检测RNA的完整性,用NanoDrop 2000分光光度计(Thermo)测定核酸浓度。RNA逆转录具体操作步骤:①基因组DNA的除去反应。加入2.0 μL的5×gDNA Eraser Buffer,1.0 μL的gDNA Eraser,RNA总量≤1.0 μg,用RNA Free ddH2O补充体系到10.0 μL。于42 ℃温浴2 min或者室温放置30 min,放于4 ℃冰箱或置于冰上备用。②RNA逆转录反应。5×PrimeScript® Buffer 2(Real Time)4.0 μL,1.0 μL PrimeScript® RT Enzyme Mix Ⅰ,1.0 μL RT Primer Mix,10.0 μL的步骤①反应液,4.0 μL RNase Free ddH2O。逆转录反应在37 ℃的水浴中进行15 min(或用PCR仪完成此步),然后酶灭活反应在85 ℃的高温水浴中进行5 s,将合成的cDNA置于-20 ℃冰箱保存。
RT-qPCR具体操作步骤:将逆转录得到的cDNA取出,加水稀释100倍后作为反应模板。先加入SYBR Green mix(Bio-Rad),7.5 μL;再加入正反向引物各0.25 μL;最后,加入稀释好的cDNA模板。使用ABI Prism 7500 Sequence Detection System仪器和软件(Applied Biosystems, USA)检测,程序为95 ℃ 1 min,95 ℃ 15 s,60 ℃ 35 s,40个循环。每个反应3次生物学重复。本研究所用RT-qPCR引物序列见表1
表1 RT-qPCR引物序列

Table 1 RT-qPCR primers used in this study

基因名称
Gene name
正向引物
Forward primer
反向引物
Reverse primer
GhUB7 GAAGGCATTCCACCTGACCAAC CTTGACCTTCTTCTTCTTGTGCTTG
GhHCT-1 CTGAAAGCACAGCAATCTCCAT CCAAAGTAACCAGGTGGGAGTG
GhCCoAOMT-1 TGGTGAAGGTTGGTGGTTTGAT CATGCAAATCTCAATCCTGGGG
GhCCoAOMT-3 GAGACCAGTGTGTATCCGAGGG CAAGGGCAGTGGCTAAGAGAGA
GhCOMT-2 TTGAAAGATGCTGTGCTGGATG CCTTGGAAACCATCATATGTATCG
GhLOX4-1 ATGGCTCCAAAGAGAAGCAAAG CGTAAAAGGGACGTTAAGAACC
GhLOX6-1 AATTCGGGGAAGAGCGTTGAGG ACCGAAGTCGGATGGGACAGTA
GhAOS1 CGGATTAGAGCCTCAGTGTCGG CGGATTAGAGCCTCAGTGTCGG
GhAOC3 AGGGGAGATTTGGAGAAACGG TCAAAAATGCCAGACCCACCAG

1.7 亚细胞定位分析

采用农杆菌转化法,用构建好的35S∷GhMYB43-GFP融合表达载体、空载体(35S-GFP)转化农杆菌菌株GV3101。按照烟草瞬时转化法,选取培养3周的烟草,将准备好的农杆菌菌液注射到完整且平展的烟草叶片中。注射后对侵染的烟草叶片避光处理,48 h后在荧光共聚焦显微镜下观察并拍照。

1.8 VIGS分析

使用BamHⅠ和KpnⅠ将GhMYB43的cDNA序列克隆到基于烟草脆裂病毒(Tobaceo rattle virus, TRV)的质粒中,以构建TRV∷GhMYB43 VIGS载体,然后如前所述通过电转化法转化到根癌农杆菌GV3101中[19]。如前所述[20],使用无针注射器将携带TRV∷00(对照)和TRV∷GhMYB43载体的农杆菌注射到已生长10 d的海7124幼苗的子叶中。侵染约10 d后,从棉花根中提取RNA以测定GhMYB43的表达水平。保持在25~28 ℃的恒定温度下,光周期(暗/光)为8 h/16 h,相对湿度为60%。

1.9 超表达载体的构建

根据获得的全长GhMYB43 cDNA设计引物。将SacⅠ和XbaⅠ的酶切位点和保护碱基分别添加到引物的两端。然后,以GhMYB43基因的cDNA为模板进行PCR扩增。PCR产物用SacⅠ和XbaⅠ酶切,并用DNA Recovery Kit(Qiagen DNA回收试剂盒)回收。pGEB409和pHellsgate4也用SacⅠ和XbaⅠ双酶切,大片段用DNA Recovery Kit回收。将回收的PCR片段与大载体片段在4 ℃下连接,并通过PCR验证连接产物。将构建的过表达和干涉载体转化到农杆菌中。

1.10 Southern杂交(地高辛标记法)

为确定转GhMYB43基因株系的DNA序列拷贝数,采用植物基因组DNA试剂盒DP305(天根生化科技有限公司)提取基因组DNA。用HindⅢ(新英格兰生物实验室)酶切20 mg基因组DNA 60 h,根据制造商的说明,使用DIG-High Prime DNA标记和检测起始试剂盒Ⅱ(Roche)进行Southern杂交。用nptⅡ基因片段作为探针检测拷贝数。

1.11 黄萎病菌接种和病情分析

用大丽轮枝菌菌株V991接种Jin668(野生型,WT)和转基因系的幼苗。保持培养在25~28 ℃的恒定温度下,光周期(暗/光)为8 h/16 h,相对湿度为60%。持续观察病情。每处理使用至少25株的病情指数和发病率进行统计,并重复至少3次。根据Xu等[21]公式计算病情指数和发病率。

1.12 组织化学染色和总木质素含量的测定

在接种后第13天,从接种的棉花和经水处理的棉株根部手工切出横截面。使用Wiesner试剂检查木质素的组织化学。将根部横截面在体积分数4%的间苯三酚溶液(其中乙醇体积分数95%)或95%(体积分数)乙醇(染色对照)中孵育10 min,然后用9%(质量分数)HCl处理5 min,然后直接用立体显微镜(MZFLIII,Leica,Wetzlar,德国)观察。
根据以前的研究[22],使用木质素-巯基乙酸反应确定无蛋白的细胞壁馏分中根和幼叶的木质素含量(质量分数,以干物质计),至少3个生物学重复。

2 结果与分析

2.1 GhMYB43基因的克隆及序列特征分析

在以前的研究中,证明超量表达棉花漆酶基因GhLac1能增强棉花对各种病虫害的广谱抗性[23]。通过Y1H技术从棉花转录因子酵母文库中筛选到与GhLac1启动子结合的转录因子Gh_D12G0544。生物信息学初步分析结果显示,其编码基因位于陆地棉Dt亚组第12号染色体上,开放阅读框为1 131 bp,包含2个内含子和3个外显子,编码1个含376个氨基酸残基的蛋白质(图1)。根据NCBI的Protein数据库和Nucleotide数据库中已提交的Gh_D12G0544在不同物种中的同源序列,并考虑物种间亲缘关系的远近,选取甜橙(Citrus sinensis)、榴莲(Durio zibethinus)、雷蒙德氏棉(Gossypium raimondii)、哥伦比亚锦葵(Herrania umbratica)、胡杨(Populus euphratica)、可可树(Theobroma cacao)、金丝小枣(Ziziphus jujuba)、拟南芥等物种的Gh_D12G0544同源蛋白序列构建系统进化树,发现该蛋白与拟南芥中AtMYB43和雷蒙德氏棉中GrODORANT1同源性最高,因此命名为GhMYB43。氨基酸序列比对分析发现,GhMYB43含有2个MYB结构域,属于典型的R2R3类MYB转录因子(图2)。
图1 GhMYB43的基因克隆和结构分析
a:使用棉花和拟南芥酵母转录因子文库筛选可与GhLac1启动子结合的转录因子;AD:激活域;BD:结合域;3-AT:3-氨基-1,2,4-三唑。b:GhMYB43基因结构示意图。

Fig. 1 Gene cloning and structure analysis of GhMYB43

a: using cotton and Arabidopsis yeast transcription factor libraries to screen the transcription factors that can be bound to the GhLac1 promoter; AD: activation domain; BD: binding domain; 3-AT: 3-amino-1,2,4-triazole. b: structure of GhMYB43.

Full size|PPT slide

图2 GhMYB43同源蛋白序列系统进化树和同源蛋白质多重序列比对
方框表示R2R3结构域。GhMYB43:陆地棉Gossypium hirsutum,AT5G16600;AtMYB43:拟南芥Arabidopsis thaliana,AT5G16600; AtMYB85:拟南芥Arabidopsis thaliana,AT4G22680;CsMYB20:甜橙Citrus sinensis,XP_006482113.1;DzODORANT1:榴莲Durio zibethinus,XP_022728015.1;GrODORANT1:雷蒙德氏棉Gossypium raimondii,XP_012436774.1;HuODORANT1:哥伦比亚锦葵Herrania umbratica,XP_021296684.1;PeODORANT1:胡杨Populus euphratica,XP_011007235.1;TcMYB20:可可树Theobroma cacao,EOY03898.1;ZjMYB20:金丝小枣Ziziphus jujuba,XP_015901922.1。

Fig. 2 Phylogenetic tree and multiple sequence alignment homologous proteins of GhMYB43

The box shows the R2R3 domain.

Full size|PPT slide

2.2 GhMYB43基因的转录模式分析

GhMYB43的3'非编码区(3'-untranslated region,3'UTR)设计特异引物,通过组织转录模式分析发现,GhMYB43在茎中优势转录,在其他组织中略有转录(图3a)。诱导转录模式分析表明,GhMYB43受水杨酸(Salicylic acid, SA)和H2O2诱导转录水平上升(图3b、c),而受茉莉酸甲酯(Methyl jasmonate, Me-JA)诱导转录水平下降(图3d)。由此猜测GhMYB43可能参与了这些激素信号通路的调控。而在接菌诱导转录模式分析中,发现GhMYB43在接菌后6 h、12 h、24 h时受诱导显著上调转录,而在48 h后又受诱导下调转录(图3e),推测GhMYB43可能参与棉花抗黄萎病调控。
图3 GhMYB43组织诱导转录和诱导转录模式分析
a:GhMYB43的组织转录模式;b、c、d、e分别为GhMYB43在根中受水杨酸(SA)、H2O2、茉莉酸甲酯(Me-JA)和大丽轮枝菌V991诱导的转录模式。所提取组织材料均来源于陆地棉YZ1,内参基因为GhUB7。Mock为水处理。数据为平均值±标准差,基于3次生物学重复。组间数据采用t检验进行差异显著性分析,不同小写字母表示差异显著(P<0.05)。

Fig. 3 Tissue expression patterns and induced expression patterns of GhMYB43 analyzed by RT-qPCR

a: tissue expression pattern of GhMYB43. b, c, d, e: SA, H2O2, Me-JA, V991 induced expression patterns of GhMYB43 in roots. GhMYB43 was extracted from different tissues of the cotton line YZ1. GhUB7 is the internal reference gene. Mock is water treatment. The values are the means ± standard deviation (n=3). Statistical analyses were performed using Student's t test; different lowercases indicate significance at the 0.05 probability level (P<0.05).

Full size|PPT slide

2.3 GhMYB43亚细胞定位分析

通过激光共聚焦显微镜观察发现,在转化空载体(35S-GFP)的烟草幼嫩叶片细胞膜、细胞质以及细胞核中均能观察到绿色荧光,而35S∷GhMYB43-GFP与核标记基因AtHY5-RFP共定位于细胞核(图4)。因此,认为GhMYB43是1个核定位蛋白,符合一般转录因子特征。
图4 GhMYB43亚细胞定位
标尺为20 μm。

Fig. 4 Subcellular localization of GhMYB43

Scale length=20 μm.

Full size|PPT slide

2.4 GhMYB43自激活活性分析

在棉花原生质体中利用双荧光素酶检测系统对GhMYB43的转录活性进行验证,结果显示,在正常培养条件(25 ℃培养16 h)下,与空载体(Control)对比,融合GAL4DB的GhMYB43蛋白对荧光素酶有2.4倍的转录激活活性(图5)。初步证实,GhMYB43是1个具有转录激活活性的转录因子。
图5 GhMYB43 棉花原生质体中的转录激活活性的分析
a:棉花原生质体双荧光素酶检测系统示意图;GAL4为啤酒酵母的半乳糖苷酶基因激活因子,DB为DNA结合域。 b:GAL4DB-GhMYB43的转录激活活性。LUC为萤火虫荧光素酶,REN为海参荧光素酶。数据为平均值±标准差,基于3次生物学重复。组间数据采用t检验进行差异显著性分析,**表示差异极显著(P<0.01)。

Fig. 5 Transcriptional activity assay of GhMYB43 in cotton protoplasts

a: schematic diagram of double luciferase activity detection system of cotton protoplast. GAL4: an activator of galactosidase gene in Saccharomyces cerevisiae; DB: DNA binding domain. b: GAL4DB-GhMYB43 transcription activity using relative activity of luciferase. LUC: firefly luciferase; REN: Renilla luciferase. The values are the means ± standard deviation (n=3). Statistical analyses were performed using Student's t test; different lowercases indicate significance at the 0.01 probability level (P<0.01).

Full size|PPT slide

2.5 GhMYB43负调控棉花对黄萎病菌的抗性

通过对以棉花Jin668为受体材料遗传转化获得的转基因材料进行拷贝数分析(Southern blotting)以及转录水平测定,筛选了转录水平符合预期的、低拷贝的3个超表达株系OE-77、OE-81和OE-8进行后续研究(图6a、b)。对超表达GhMYB43转基因株系进行了黄萎病菌 V991接种鉴定,结果表明:与野生型(WT)相比,超表达GhMYB43转基因系对黄萎病菌V991抗性减弱,出现典型的黄萎病症状,如叶片黄化、萎蔫脱落等(图6c),相应的病情指数和发病率也支持该结果(图6d)。此外,剖秆鉴定和真菌恢复培养的结果与表型结果相符(图6e、f)。以上结果表明,超表达GhMYB43转基因株系对黄萎病菌的敏感性增强。
图6 超表达GhMYB43抑制了转基因材料对黄萎病菌的抗性
a:超表达GhMYB43株系拷贝数分析。b:转基因和野生型(WT)材料中GhMYB43的转录水平。GhUB7为内参基因。c:野生型(WT)植株和超表达材料OE-8、OE-77、OE-81接种黄萎病菌后15 d的表型。d:WT植株和超表达材料OE-8、OE-77、OE-81接种黄萎病菌后15 d病情指数和发病率统计。e:WT植株和超表达材料OE-8、OE-77、OE-81接种黄萎病菌后15 d剖秆鉴定结果。f:WT植株和超表达材料OE-8、OE-77、OE-81接种黄萎病菌后15 d病原菌恢复培养。分图b、d中数据为平均值±标准差(n=3)。组间数据采用t检验进行差异显著性分析,不同小写字母表示差异显著(P<0.05)。

Fig. 6 Overexpressing of GhMYB43 impair cotton resistance to Verticillium dahliae

a: southern blotting analysis of the selected transgenic lines of GhMYB43.b: analysis of GhMYB43 expression levels of GhMYB43 transgenic lines and wild type (WT). GhUB7 was used as control. c: disease symptoms in WT and over-expression lines plants after inoculation with V. dahliae strain V991 for 15 d. d: the disease rate and disease index of over-expression lines plants after inoculation with V. dahliae strain V991 for 15 d. e: the stem cutting phenotype of WT and over-expression lines plants after inoculation for 15 d. f: stem sections were cultured on the medium after inoculated with V. dahliae for 15 d, as a measure for fungal colonization. The values in figures b and d are the means±standard deviation(n=3). Statistical analyses were performed using Student's t test; different lowercases indicate significance at the 0.05 probability level (P<0.05).

Full size|PPT slide

为了进一步鉴定GhMYB43在棉花响应黄萎病菌侵染中的功能,构建了GhMYB43的VIGS载体,通过特异干涉棉花中GhMYB43基因的表达考察棉花植株对病原菌抗性的变化。棉花CLA基因参与叶绿素的形成,VIGS抑制CLA的表达后会造成棉花植株叶片白化(图7a),因此可作为阳性对照。通过RT-qPCR分析,与TRV∷00对照相比,TRV∷GhMYB43植株的GhMYB43转录水平明显降低(图7b),黄萎病症状较轻(图7c)。从发病率和病情指数可以看出,TRV∷GhMYB43 植株发病率明显低于 TRV∷00植株(图7d);剖秆鉴定和真菌恢复培养结果也与表型结果相符(图7e、f)。以上结果表明,抑制GhMYB43转录会增强棉花植株对黄萎病菌的抗性。
图7 VIGS抑制棉花GhMYB43的表达情况及其对黄萎病菌的抗性鉴定结果
a:CLA基因沉默后植株的白化表型。b:GhMYB43的干涉情况检测。c:VIGS抑制GhMYB43表达植株与对照的表型。d:VIGS抑制GhMYB43表达的植株接种V991后12~18 d的发病率和病情指数。e:剖秆鉴定结果。f:病原菌恢复培养17 d时的结果。分图b、d中的数据为平均值±标准差(n=3)。组间数据采用t检验进行差异显著性分析,不同小写字母表示差异显著(P<0.05)。

Fig. 7 VIGS inhibition of the expression of GhMYB43 in cotton and its resistance to Verticillium dahliae

a: the whitening phenotype appeared in the plants after CLA was silenced. b: analysis of the expression of GhMYB43 in TRV∷00 and TRV∷GhMYB43. c: phenotype of GhMYB43 silenced plants compared to control. d: the disease rate and disease index of GhMYB43 silenced plants at 12-18 d after inoculation with V.dahliae. e: the stem cutting phenotype of TRV∷00 and TRV∷GhMYB43. f: stem sections were cultured on the medium after inoculation with V. dahliae for 17 d, as a measure for fungal colonization. The values in figures b and d are the means ± standard deviation (n=3). Statistical analyses were performed using Student's t test; different lowercases indicate significance at 0.05 probability level (P<0.05).

Full size|PPT slide

2.6 GhMYB43是木质素合成中的负调节因子

在前期研究中,发现木质素代谢在棉花抵御黄萎病菌入侵的过程中发挥重要作用[21]。而多有文献报道,木质素代谢主要由NAC、MYB等其他转录因子调控。据此笔者猜测GhMYB43可能也参与调节木质素合成通路[24-26]。因此,首先对超表达GhMYB43转基因材料和对照材料(WT)中的木质素进行了组织化学染色和含量测定。从结果可以看出,无论水处理或V991接种处理,转GhMYB43基因材料的染色程度均低于野生型材料(图8a),表明转GhMYB43基因材料的木质素积累低于对照材料。且木质素含量测定结果与染色结果相符,超表达GhMYB43转基因材料的木质素含量明显低于对照材料(图8b)。
图8 超表达GhMYB43棉花的木质素含量情况
a:间苯三酚染色显示木质素棉花茎秆中的沉积情况。b:对照材料(WT)和转GhMYB43基因材料茎秆中木质素含量。Mock:水处理;WT:野生型。数据为平均值±标准差,基于3次生物学重复。组间数据采用t检验进行差异显著性分析,*、**分别表示差异显著(P<0.05)、极显著(P<0.01)。

Fig. 8 Lignin content of cotton overexpressing GhMYB43

a: pyrogallol staining shows deposition of lignin in cotton stems. b: lignin content in stems of control materials(WT) and GhMYB43 transgenic materials. Mock: water treatment; WT: wild type plants. The values are the means ± standard deviation (n=3). Statistical analyses were performed using Student's t test; *, ** indicate significance at the 0.05 (P<0.05), 0.01 (P<0.01) probability level, respectively.

Full size|PPT slide

为了探索GhMYB43在木质素代谢中的功能,分析了木质素合成相关基因的转录水平。在水处理条件下,与WT植株相比,超表达GhMYB43株系中的GhHCT-1、GhCCoAOMT-3 基因的转录水平降低(图9a)。同时,在V991处理下,超表达GhMYB43株系中的GhHCT-1、GhCCoAOMT-3基因的转录水平也比WT植株的低(图9b)。还检测了TRV∷GhMYB43和TRV∷00幼苗中这类基因的转录水平,发现无论是水处理还是接种V991处理,与TRV∷00幼苗相比,TRV∷GhMYB43幼苗中GhHCT-1、GhCCoAOMT-1和GhCOMT-2的转录水平均较高(图9c、d)。这些结果表明,GhMYB43在木质素合成中充当负调节因子。
图9 GhMYB43负调控木质素合成相关基因的表达
a:水处理下超表达GhMYB43株系和野生型(WT)中木质素合成相关基因的转录水平;b:V991处理后超表达GhMYB43株系中木质素合成相关基因的转录水平;c:水处理下VIGS抑制GhMYB43表达植株中木质素合成相关基因的转录水平;d:V991处理后VIGS抑制GhMYB43表达植株中木质素合成相关基因的转录水平。数据为平均值±标准差(n=3)。组间数据采用t检验进行差异显著性分析,不同小写字母表示差异显著(P<0.05)。

Fig. 9 GhMYB43 negatively regulates the expression level of genes involved in lignin synthesis

a: expression of lignin synthesis-related genes in wild type (WT) and GhMYB43-overexpressing lines inoculated with water. b: expression lignin synthesis-related genes in WT and GhMYB43-overexpressing lines inoculated with Verticillium dahliae. c: expression of lignin synthesis-related genes in TRV∷00, TRV∷GhMYB43 seedlings of cotton inoculated with water. d: expression of lignin synthesis-related genes in TRV∷00, TRV∷GhMYB43 seedlings of cotton inoculated with V. dahliae. The values are the means ± standard deviation (n=3). Statistical analyses were performed using Student's t test; different lowercases indicate significance at the 0.05 probability level (P<0.05).

Full size|PPT slide

2.7 GhMYB43负调控JA信号通路

JA在棉花对大丽轮枝菌的抗性中起重要作用。 基于病原从根部侵染棉花的考虑,分析了接种后根部JA信号通路基因的转录水平,结果表明,在水处理(Mock)和V991处理下,超表达GhMYB43显著降低了JA代谢和信号通路基因的转录水平,例如GhLOX4-1、GhLOX6-1、GhAOS1和GhAOC3(图10a)。相反,VIGS抑制GhMYB43的表达后,JA代谢和信号转导途径基因的表达水平在接种V991和Mock处理中都上调,并且在接菌后,GhLOX4-1、GhAOS1、GhAOC3的表达显著上调(图10b)。这些结果表明,GhMYB43是JA信号通路中重要的负调节因子。
图10 GhMYB43负调控JA激素合成相关基因的表达
a:水处理(Mock)和V991处理后,GhMYB43过表达株系和野生型(WT)植株中茉莉酸(JA)合成相关基因的表达。b:Mock处理和V991处理后,TRV∷00和TRV∷GhMYB43中JA合成相关基因的表达。内参基因为GhUB7。数据为平均值±标准差(n=3)。组间数据采用t检验进行差异显著性分析,不同小写字母表示差异显著(P<0.05)。

Fig. 10 GhMYB43 negatively regulates the expression level of genes involved in JA synthesis

a: expression of jasmonate (JA) pathway genes in roots of GhMYB43-overexpressing lines and wild type (WT) plants infected with water (Mock) and V991. b: expression of JA pathway genes in roots of TRV∷GhMYB43 and TRV∷00 seedlings of cotton infected with Mock and V991. The values in figures b and d are the means ± standard deviation (n=3). Statistical analyses were performed using Student's t test; different lowercases indicate significance at the 0.05 probability level (P<0.05).

Full size|PPT slide

3 讨论

植物细胞壁由纤维素、半纤维素、木质素和果胶多糖以及少量结构蛋白组成,是1种动态结构,通常决定植物与病原体之间相互作用的结果[27-28]。木质素代谢在植物病害和棉花对大丽轮枝菌抗性中发挥积极作用。细胞壁中木质素含量越高,植物抗病性越强[22,28]GhLAC15的过表达显著提高了拟南芥的木质素含量,从而提高了拟南芥对黄萎病的抗性[7]GhLac1的过度表达导致木质化程度增加,与增强对真菌V. dahliae的耐受性相关[23]。本研究发现,棉花接种V. dahliae后木质素合成相关基因和木质素含量显著增加。研究还发现,在抑制木质素代谢之后,棉花黄萎病发生加重。然而,最近的研究表明,降低次生细胞壁的木质素含量会产生损伤相关分子模式(Damage-associated molecular pattern, DAMP),并可能诱导免疫激活[29]。因此,木质素代谢与免疫激活的关系还比较复杂。以往的研究发现,调节木质素合成的转录因子有多种,如AtMYB15、PtoMYB156、OsSND2、GhUMC1、MYB20、MYB42、MYB43、MYB85、LTF1、GhFSN5、CmMYB8、GbERF1-like[6,9,24-26,30-32]。本研究发现GhMYB43也是1种木质素代谢调节因子。对木质素含量及相关基因表达的分析表明,GhMYB43是木质素代谢的负调节因子,但GhMYB43与其他调节因子的相互作用及具体作用方式尚不清楚。
JA合成及其信号转导途径在植物抗黄萎病中起着重要作用[33]。已经鉴定了调节JA合成或信号转导途径的几个关键基因。CPK33通过促进茉莉酸合成酶基因OPR3的降解来减少JA的积累,从而削弱抗病性[34]GbWRKY1通过激活JAZ1表达来减弱JA信号,因此起负调节因子的作用[10]。本研究发现GhMYB43可以调节JA合成相关基因的转录水平。参与JA合成调控的基因在超表达GhMYB43株系中下调表达。同时,当GhMYB43转录被抑制时,棉花中JA合成或信号转导途径相关基因的转录上调,表明GhMYB43对JA合成有负调控作用。但其具体机制仍需进一步研究。此外,JA的合成和代谢可能与木质素合成代谢有关。JA合成和信号转导途径基因表达的变化可以引起木质素代谢的变化,同时木质素代谢的变化也可以引起JA合成或代谢的变化[35-36]。这表明JA合成与木质素合成之间的相互作用有多种调控途径。本研究发现,GhMYB43可以同时调节JA的合成和木质素的合成,但GhMYB43是否能调节JA引起的木质素合成尚需进一步研究。

4 结论

在本实验室已有的研究基础上,从陆地棉Jin668中克隆了1个R2R3类MYB转录因子基因。氨基酸序列分析显示,该基因编码的蛋白含有2个MYB结构域,且与拟南芥的AtMYB43具有较高的相似性;因此,将其命名为GhMYB43。GhMYB43位于陆地棉Dt亚组第12号染色体上,编码1个含376个氨基酸的蛋白质,具有2个外显子和3个内含子。RT-qPCR分析发现GhMYB43在茎中优势转录,受SA和H2O2诱导上调表达,而受Me-JA诱导下调表达,且转录水平会受V. dahliae诱导。亚细胞定位结果显示,GhMYB43蛋白定位于细胞核且具有转录激活活性。抗病性鉴定发现,抑制GhMYB43转录会增强棉花植株对黄萎病菌的抗性,超表达GhMYB43增强了棉花对黄萎病菌的敏感性。RT-qPCR结果、木质素组织化学染色和含量测定结果表明,GhMYB43负调控木质素合成和JA信号通路相关基因的转录。

参考文献

[1]
Song R, Li J, Xie C, et al. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae[J/OL]. International Journal of Molecular Sciences, 2020, 21(3): 1120 [2020-04-20]. https://doi.org/10.3390/ijms21031120.
[2]
Wei C, Qin T, Li Y, et al. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.)[J]. Biochemical and Biophysical Research Communications, 2020, 524(2): 392-397.
[3]
Whetten R, Sederoff R. Lignin biosynthesis[J]. The Plant Cell, 1995, 7(7): 1001-1013.
[4]
Vanholme R, Demedts B, Morreel K, et al. Lignin biosynthesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905.
[5]
Xie M, Zhang J, Tschaplinski T J, et al. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs[J/OL]. Frontiers in Plant Science, 2018, 9: 1427 [2020-04-20]. https://doi.org/10.3389/fpls.2018.01427.
[6]
Chezem W R, Memon A, Li F, et al. SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis[J]. The Plant Cell, 2017, 29(8): 1907-1926.
[7]
Zhang Y, Wu L, Wang X, et al. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants[J]. Molecular Plant Pathology, 2019, 20(3): 309-322.
Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The lignification of cell wall appositions is a conserved basal defence mechanism in the plant innate immune response. However, the function of laccase in defence-induced lignification has not been described. Screening of an SSH library of a resistant cotton cultivar, Jimian20, inoculated with V. dahliae revealed a laccase gene that was strongly induced by the pathogen. This gene was phylogenetically related to AtLAC15 and contained domains conserved by laccases; therefore, we named it GhLAC15. Quantitative reverse transcription-polymerase chain reaction indicated that GhLAC15 maintained higher expression levels in tolerant than in susceptible cultivars. Overexpression of GhLAC15 enhanced cell wall lignification, resulting in increased total lignin, G monolignol and G/S ratio, which significantly improved the Verticillium wilt resistance of transgenic Arabidopsis. In addition, the levels of arabinose and xylose were higher in transgenic plants than in wild-type plants, which resulted in transgenic Arabidopsis plants being less easily hydrolysed. Furthermore, suppression of the transcriptional level of GhLAC15 resulted in an increase in susceptibility in cotton. The content of monolignol and the G/S ratio were lower in silenced cotton plants, which led to resistant cotton cv. Jimian20 becoming susceptible. These results demonstrate that GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and arabinose and xylose accumulation in the cell wall of Gossypium hirsutum. This study broadens our knowledge of defence-induced lignification and cell wall modifications as defence mechanisms against V. dahliae.© 2018 The Authors. Molecular Plant Pathology published by BSPP and John Wiley & Sons Ltd.
[8]
Sheard L B, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405.
[9]
Zhu W, Gao E, Shaban M, et al. GhUMC1, a blue copper-binding protein, regulates lignin synthesis and cotton immune response[J]. Biochemical and Biophysical Research Communications, 2018, 504(1): 75-81.
[10]
Li C, He X, Luo X, et al. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression[J]. Plant Physiology, 2014, 166(4): 2179-2194.
[11]
He X, Wang T, Zhu W, et al. GhHB12, a HD-ZIP I transcription factor, negatively regulates the cotton resistance to Verticillium dahliae[J/OL]. International Journal of Molecular Sciences, 2018, 19(12): 3997 [2020-04-20]. https://doi.org/10.3390/ijms19123997.
[12]
Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Molecular Plant, 2015, 8(5): 689-708.
[13]
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 15(10): 573-581.
[14]
Brownfield L, Hafidh S, Borg M A, et al. A plant germline-specific integrator of sperm specification and cell cycle progression[J/OL]. PLoS Genetics, 2009, 5(3): e1000430 [2020-04-20]. https://doi.org/10.1371/journal.pgen.1000430.
[15]
Millar A, Gubler F. The Arabidopsis GAMYB-Like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development[J]. The Plant Cell, 2005, 17(3): 705-721.
[16]
Jiao B, Zhao X, Lu W, et al. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus[J]. Tree Physiology, 2019, 39(7): 1187-1200.
Secondary cell wall (SCW) biosynthesis during wood formation in trees is controlled by a multilevel regulatory network that coordinates the expression of substantial genes. However, few transcription factors involved in the negative regulation of secondary wall biosynthesis have been characterized in tree species. In this study, we isolated an R2R3 MYB transcription factor MYB189 from Populus trichocarpa, which is expressed predominantly in secondary vascular tissues, especially in the xylem. A novel repression motif was identified in the C-terminal region of MYB189, which indicates this factor was a transcriptional repressor. Overexpression (OE) of MYB189 in Arabidopsis and poplar resulted in a significant reduction in the contents of lignin, cellulose and hemicelluloses. Vascular development in stems of MYB189 OE lines was markedly inhibited, leading to a dramatic decrease in SCW thickness of xylem fibers. Gene expression analyses showed that most of the structural genes involved in the biosynthesis of lignin, cellulose and xylans were significantly downregulated in MYB189-overexpressing poplars compared with the wild-type control. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction and transient expression assays revealed that MYB189 could directly bind to the promoters of secondary wall biosynthetic genes to repress their expression. Together, these data suggest that MYB189 acts as a repressor to regulate SCW biosynthesis in poplar.© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[17]
Schubert R, Dobritzsch S, Gruber C, et al. Tomato MYB21 acts in ovules to mediate jasmonate-regulated fertility[J]. The Plant Cell, 2019, 31(5): 1043-1062.
The function of the plant hormone jasmonic acid (JA) in the development of tomato () flowers was analyzed with a mutant defective in JA perception (, ). In contrast with Arabidopsis () JA-insensitive plants, which are male sterile, the tomato mutant is female sterile, with major defects in female development. To identify putative JA-dependent regulatory components, we performed transcriptomics on ovules from flowers at three developmental stages from wild type and mutants. One of the strongly downregulated genes in encodes the MYB transcription factor SlMYB21. Its Arabidopsis ortholog plays a crucial role in JA-regulated stamen development. SlMYB21 was shown here to exhibit transcription factor activity in yeast, to interact with SlJAZ9 in yeast and in planta, and to complement Arabidopsis To analyze SlMYB21 function, we generated clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR associated protein 9 (Cas9) mutants and identified a mutant by Targeting Induced Local Lesions in Genomes (TILLING). These mutants showed female sterility, corroborating a function of MYB21 in tomato ovule development. Transcriptomics analysis of wild type,, and carpels revealed processes that might be controlled by SlMYB21. The data suggest positive regulation of JA biosynthesis by SlMYB21, but negative regulation of auxin and gibberellins. The results demonstrate that SlMYB21 mediates at least partially the action of JA and might control the flower-to-fruit transition.© 2019 American Society of Plant Biologists. All rights reserved.
[18]
郇蕾, 王旭旭, 陈修淼, 等. 桃ABA信号关键基因PpABI5酵母单杂交文库构建及其上游转录因子的筛选[J]. 植物生理学报, 2017, 53(7): 1259-1266.
Huan Lei, Wang Xuxu, Chen Xiumiao, et al. Constructing yeast one-hybrid library and screening the potential regulator of PpABI5 in peach (Prunus persica)[J]. Plant Physiology Journal, 2017, 53(7): 1259-1266.
[19]
Jin S, Zhang X, Nie Y, et al. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton[J]. Biologia Plantarum, 2006, 50(4): 519-524.
[20]
Gao W, Long L, Zhu L F, et al. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae[J]. Molecular & Cellular Proteomics, 2013, 12(12): 3690-3703.
[21]
Xu L, Zhu L, Tu L, et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry[J]. Journal of Experimental Botany, 2011, 62(15): 5607-5621.
The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of 32,774 genes detected by mapping the tags to assembly cotton contigs, 3442 defence-responsive genes were identified. Gene cluster analyses and functional assignments of differentially expressed genes indicated a significant transcriptional complexity. Quantitative real-time PCR (qPCR) was performed on selected genes with different expression levels and functional assignments to demonstrate the utility of RNA-Seq for gene expression profiles during the cotton defence response. Detailed elucidation of responses of leucine-rich repeat receptor-like kinases (LRR-RLKs), phytohormone signalling-related genes, and transcription factors described the interplay of signals that allowed the plant to fine-tune defence responses. On the basis of global gene regulation of phenylpropanoid metabolism-related genes, phenylpropanoid metabolism was deduced to be involved in the cotton defence response. A closer look at the expression of these genes, enzyme activity, and lignin levels revealed differences between resistant and susceptible cotton plants. Both types of plants showed an increased level of expression of lignin synthesis-related genes and increased phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity after inoculation with V. dahliae, but the increase was greater and faster in the resistant line. Histochemical analysis of lignin revealed that the resistant cotton not only retains its vascular structure, but also accumulates high levels of lignin. Furthermore, quantitative analysis demonstrated increased lignification and cross-linking of lignin in resistant cotton stems. Overall, a critical role for lignin was believed to contribute to the resistance of cotton to disease.
[22]
Bubna G A, Lima R B, Zanardo D Y, et al. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max)[J]. Journal of Plant Physiology, 2011, 168(14): 1627-1633.
[23]
Hu Q, Min L, Yang X, et al. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis[J]. Plant Physiology, 2017, 176(2): 1808-1823.
[24]
Geng P, Zhang S, Liu J, et al. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation[J]. Plant Physiology, 2020, 182(3): 1272-1283.
Lignin is a phenylpropanoid-derived polymer that functions as a major component of cell walls in plant vascular tissues. Biosynthesis of the aromatic amino acid Phe provides precursors for many secondary metabolites, including lignins and flavonoids. Here, we discovered that MYB transcription factors MYB20, MYB42, MYB43, and MYB85 are transcriptional regulators that directly activate lignin biosynthesis genes and Phe biosynthesis genes during secondary wall formation in Arabidopsis (). Disruption of,,, and resulted in growth development defects and substantial reductions in lignin biosynthesis. In addition, our data showed that these MYB proteins directly activated transcriptional repressors that specifically inhibit flavonoid biosynthesis, which competes with lignin biosynthesis for Phe precursors. Together, our results provide important insights into the molecular framework for the lignin biosynthesis pathway.© 2020 American Society of Plant Biologists. All Rights Reserved.
[25]
Gui J, Luo L, Zhong Y, et al. Phosphorylation of LTF1, an MYB transcription factor in Populus, acts as a sensory switch regulating lignin biosynthesis in wood cells[J]. Molecular Plant, 2019, 12(10): 1325-1337.
[26]
Sun Q W, Huang J F, Guo Y F, et al. A cotton NAC domain transcription factor, GhFSN5, negatively regulates secondary cell wall biosynthesis and anther development in transgenic Arabidopsis[J/OL]. Plant Physiology and Biochemistry, 2020: 303-314 [2020-04-20]. https://doi.org/10.1016/j.plaphy.2019.11.030.
[27]
Bellincampi D, Cervone F, Lionetti V, et al. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions[J/OL]. Frontiers in Plant Science, 2014, 5: 228 [2020-04-20]. https://doi.org/10.3389/fpls.2014.00228.
[28]
Zhang Y, Wang X, Rong W, et al. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2017, 30(12): 984-996.
Verticillium wilt, caused by Verticillium dahliae Kleb., is a serious threat to cotton (Gossypium spp.) crop production. To enhance our understanding of the plant's complex defensive mechanism, we examined colonization patterns and interactions between V. dahliae and two cotton species, the resistant G. barbadense and the susceptible G. hirsutum. Microscopic examinations and grafting experiments showed that the progression of infection was restricted within G. barbadense. At all pre- and postinoculation sampling times, levels of salicylic acid (SA) were also higher in that species than in G. hirsutum. Comparative RNA-Seq analyses indicated that infection induced dramatic changes in the expression of thousands of genes in G. hirsutum, whereas those changes were fewer and weaker in G. barbadense. Investigations of the morphological and biochemical nature of cell-wall barriers demonstrated that depositions of lignin, phenolic compounds, and callose were significantly higher in G. barbadense. To determine the contribution of a known resistance gene to these processes, we silenced GbEDS1 and found that the transformed plants had decreased SA production, which led to the upregulation of PLASMODESMATA-LOCATED PROTEIN (PDLP) 1 and PDLP6. This was followed by a decline in callose deposition in the plasmodesmata, which then led to increased pathogen susceptibility. This comparison between resistant and susceptible species indicated that both physical and chemical mechanisms play important roles in the defenses of cotton against V. dahliae.
[29]
Fradin E F, Abd-El-Haliem A, Masini L, et al. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis[J]. Plant Physiology, 2011, 156(4): 2255-2265.
[30]
Yang L, Zhao X, Ran L, et al. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar[J/OL]. Scientific Reports, 2017, 7(1): 41209 [2020-04-20]. https://doi.org/10.1038/srep41209.
[31]
Ye Y, Wu K, Chen J, et al. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice[J/OL]. Rice, 2018, 11(1): 36 [2020-04-20]. https://doi.org/10.1186/s12284-018-0228-z.
[32]
Zhu L, Guan Y X, Zhang Z H, et al. CmMYB 8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum[J]. Plant Physiology and Biochemistry, 2020, 149: 217-224.
R2R3-MYB transcription factors are important regulators of the growth and development of plants. Here, CmMYB8 a chrysanthemum gene encoding an R2R3-MYB transcription factor, was isolated and functionally characterized. The gene was transcribed throughout the plant, but most strongly in the stem. When CmMYB8 was over-expressed, a number of genes encoding components of lignin synthesis were down-regulated, and the plants' lignin content was reduced. The composition of the lignin in the transgenic plants was also altered, and its S/G ratio was reduced. A further consequence of the over-expression of CmMYB8 was to lessen the transcript abundance of key genes involved in flavonoid synthesis, resulting in a reduced accumulation of flavonoids. The indication is that the CmMYB8 protein participates in the negative regulation of both lignin and flavonoid synthesis.Copyright © 2020 Elsevier Masson SAS. All rights reserved.
[33]
Zhang W, Corwin J A, Copeland D, et al. Plastic transcriptomes stabilize immunity to pathogen diversity: The jasmonic acid and salicylic acid networks within the Arabidopsis/Botrytis pathosystem[J]. The Plant Cell, 2017, 29(11): 2727-2752.
To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the - pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, and, individually challenged with 96 diverse isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen.© 2017 American Society of Plant Biologists. All rights reserved.
[34]
Hu Q, Zhu L, Zhang X, et al. GhCPK33 negatively regulates defense against Verticillium dahliae by phosphorylating GhOPR3[J]. Plant Physiology, 2018, 178(2): 876-889.
[35]
Denness L, Mckenna J F, Segonzac C, et al. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species and jasmonic acid dependent process in Arabidopsis[J]. Plant Physiology, 2011, 156(3): 1364-1374.
[36]
Mielke S, Gasperini D. Interplay between plant cell walls and jasmonate production[J]. Plant and Cell Physiology, 2019, 60(12): 2629-2637.

基金

国家自然科学基金(31760402)
石河子大学新品种培育专项(YZZX201701)
PDF(10806 KB)

1457

Accesses

0

Citation

Detail

段落导航
相关文章

/