
基于表型和SSR标记筛选海岛棉优异种质资源
马麒,宁新柱,李吉莲,陈红,余渝,林海
基于表型和SSR标记筛选海岛棉优异种质资源
Mining Elite Sea-Island Cotton Germplasm Based on Phenotyping and SSR Markers
【目的】筛选海岛棉某一性状特别突出的优异种质资源,加快其新品种的选育进程。【方法】本研究以178份海岛棉核心种质资源为试验材料,通过调查和测定铃重、单株铃数、衣分、纤维长度、纤维比强度和马克隆值6个性状的表型数据,开展变异度和遗传多样性分析。每个性状表型值按10%最优取样策略,初步筛选海岛棉优异种质资源;同时利用120对simple sequence repeat (SSR)引物对178份海岛棉核心种质进行多态性分析,并开展群体结构分析及基因型聚类分析,依据聚类结果对初选海岛棉优异种质进一步筛选,鉴定出最终的海岛棉优异种质资源。【结果】海岛棉核心种质资源中上述6个性状的变异度和遗传多样性较丰富。120对SSR 引物在178份海岛棉种质中共检测出262个等位变异位点,平均值为2.18;多态信息含量(Polymorphism information content, PIC)为0.067 8~0.630 0,平均为0.296 0,属于中度多态。聚类分析将178份海岛棉核心种质划分为2大类群。基于表型值和SSR标记的聚类分析结果,最终筛选出23份单一性状特别突出的海岛棉优异种质资源。【结论】基于表型和SSR标记能较好地分析与评价海岛棉种质资源、发掘海岛棉优异种质资源,为海岛棉遗传育种提供材料基础,同时也为作物优异种质资源的筛选与鉴定提供重要参考和依据。
[Objective] An elite germplasm resource of sea-island cotton with outstanding traits was mined in order to accelerate the breeding process of new varieties. [Method] The core collections of sea-island cotton germplasm consisted of 178 accessions were used as experimental materials in this study. Analyses of variability and diversity were performed through detecting phenotypic data of six main breeding-targeted traits, including boll weight, boll number per plant, lint percentage, fiber length, fiber strength, and micronaire. The elite germplasm of sea-island cotton was selected according to 10% optimal sampling strategy based on the phenotypic value of each trait. The 120 pairs of polymorphic simple sequence repeat (SSR) primers were used to analyze the polymorphism of 178 accessions of the core collections. Then, we conducted the population structure and clustering analysis based on the genotyping results. According to the results of cluster analysis, the primary elite germplasm was further selected, and the final elite germplasm of sea-island cotton was identified. [Result] The results showed that there was a high variability and abundant genetic diversity in the 6 studied traits. In 178 accessions of sea-island cotton, 262 alleles were detected by 120 pairs of SSR primers, with an average of 2.18 loci. The average polymorphism information content (PIC) was 0.067 8-0.630 0, with an average of 0.296 0, showing moderate polymorphism. The cluster analysis showed that the core collection of sea-island cotton was divided into six groups. twenty-three elite germplasm resources of sea-island cotton were identified based on phenotypic value and cluster analysis of SSR markers. [Conclusion] The germplasm of sea-island cotton can be analyzed and evaluated based on the phenotyping and SSR markers, and then the elite germplasm of sea-island cotton can be identified. These results provided the material basis for the genetic breeding of sea-island cotton, as well as the important reference and basis for the mining and identification of crop elite germplasm.
海岛棉 / 表型 / SSR标记 / 优异种质 {{custom_keyword}} /
sea-island cotton / phenotype / SSR markers / elite germplasm {{custom_keyword}} /
图1 代表性多态性引物在12份海岛棉材料中的扩增情况a、b和c分别表示引物NAU5120、NAU2820和NAU3310在12份海岛棉材料中的扩增情况。M:分子量标记;1~12:随机抽取的12份海岛棉材料;红色箭头表示多态性条带。Fig. 1 Amplification of the representative polymorphic primers in 12 accessions of sea-island cotton a, b, and c indicated the amplification of NAU5120, NAU2820 and NAU3310, respectively, in 12 accessions of sea-island cotton. M: DNA marker; 1-12:Randomly selected 12 accessions of sea-island cotton. The amplified polymorphic bands are indicated by the red arrows. |
表1 海岛棉表型性状的变化及分布特征Table1 The variation and distribution of phenotypic traits of sea-island cotton germplasm |
表型性状 Phenotypic traits | 均值±标准差 Mean±SD | 变幅 Range | 变异系数 Coefficient of variation/ % | 多样性 指数H’ |
铃重 Boll weight /g | 3.04±0.23 | 2.29~3.58 | 7.57 | 0.934 0 |
衣分 Lint percentage /% | 31.42±2.25 | 22.17~36.82 | 7.16 | 0.701 2 |
单株铃数 Bolls per plant | 10.53±2.10 | 5.4~17.4 | 19.94 | 1.215 4 |
纤维上半部平均长度Upper half mean length /mm | 35.99±1.88 | 26.78~38.62 | 5.22 | 1.052 3 |
断裂比强度 Fiber strength /(cN·tex-1) | 42.14±4.18 | 31.95~53.50 | 9.92 | 1.412 0 |
马克隆值 Micronaire | 3.80±0.32 | 2.67~4.51 | 8.42 | 1.203 8 |
注:SD,标准差。 | |
Note:SD,standard deviation. |
图2 引物 NAU3310在海岛棉核心种质的扩增电泳图Fig. 2 The amplified electropherogram of primers NAU3310 in core collection of sea-island cotton |
表2 120对SSR 引物的多态性分析Table 2 The polymorphism analysis of 120 pairs of SSR primers |
编号Code | 标记名称Marker name | 染色体位置Map location | 等位变异数Allele number | 多态信息含量PIC | 编号Code | 标记名称Marker name | 染色体位置Map location | 等位变异数Allele number | 多态信息含量PIC |
1 | NAU3110 | chr.19 | 4 | 0.199 8 | 34 | NAU3481 | chr.21 | 1 | 0.261 3 |
2 | NAU2820 | chr.16 | 3 | 0.302 5 | 35 | JESPR232 | chr.08 | 2 | 0.235 6 |
3 | NAU3324 | chr.24 | 1 | 0.373 0 | 36 | NAU2503 | chr.06 | 2 | 0.067 8 |
4 | NAU5120 | chr.16 | 3 | 0.355 5 | 37 | NAU2200 | chr.23 | 2 | 0.340 8 |
5 | NAU3341 | chr.11 | 1 | 0.374 5 | 38 | BNL2449 | chr.13 | 6 | 0.372 0 |
6 | NAU797 | chr.19 | 2 | 0.209 0 | 39 | BNL3823 | chr.23 | 4 | 0.373 4 |
7 | NAU1028 | chr.17 | 1 | 0.338 3 | 40 | NAU1362 | chr.07 | 5 | 0.373 1 |
8 | NAU1093 | chr.06 | 2 | 0.356 1 | 41 | NAU2679 | chr.06 | 2 | 0.085 2 |
9 | NAU1102 | chr.19 | 3 | 0.238 1 | 42 | NAU905 | chr.15 | 2 | 0.082 2 |
10 | HAU2146 | chr.09 | 2 | 0.313 1 | 43 | NAU3384 | chr.01 | 1 | 0.177 3 |
11 | NAU2908 | chr.17 | 2 | 0.327 7 | 44 | NAU5107 | chr.15 | 1 | 0.280 5 |
12 | NAU5465 | chr.14 | 3 | 0.155 1 | 45 | BNL3580 | chr.01 | 3 | 0.351 0 |
13 | BNL226 | chr.03 | 2 | 0.165 3 | 46 | BNL3888 | chr.01 | 3 | 0.333 5 |
14 | BNL1495 | chr.13 | 1 | 0.373 9 | 47 | BNL3590 | chr.02 | 2 | 0.352 5 |
15 | CGR5202 | chr.24 | 1 | 0.371 8 | 48 | NAU5233 | chr.03 | 3 | 0.187 0 |
16 | NAU803 | chr.14 | 1 | 0.150 2 | 49 | NAU5444 | chr.03 | 1 | 0.316 3 |
17 | BNL1604 | chr.16 | 3 | 0.314 8 | 50 | BNL3259 | chr.03 | 2 | 0.334 1 |
18 | NAU2083 | chr.01 | 2 | 0.270 6 | 51 | NAU3405 | chr.19 | 3 | 0.216 1 |
19 | NAU3791 | chr.04 | 2 | 0.369 6 | 52 | NAU2562 | chr.05 | 4 | 0.291 1 |
20 | NAU2991 | chr.20 | 1 | 0.224 2 | 53 | NAU5088 | chr.05 | 2 | 0.305 7 |
21 | NAU1322 | chr.24 | 2 | 0.439 9 | 54 | NAU5400 | chr.05 | 3 | 0.133 1 |
22 | NAU2687 | chr.25 | 2 | 0.231 4 | 55 | BNL3995 | chr.05 | 2 | 0.143 3 |
23 | NAU3424 | chr.24 | 2 | 0.333 5 | 56 | NAU3243 | chr.06 | 2 | 0.351 9 |
24 | NAU1605 | chr.05 | 1 | 1.333 5 | 57 | NAU2156 | chr.06 | 2 | 0.349 8 |
25 | HAU2768 | chr.06 | 1 | 2.333 5 | 58 | BNL1064 | chr.06 | 3 | 0.128 2 |
26 | NAU5163 | chr.01 | 1 | 0.375 0 | 59 | NAU1048 | chr.07 | 1 | 0.292 8 |
27 | BNL3034 | chr.14 | 2 | 0.373 9 | 60 | NAU3101 | chr.09 | 1 | 0.248 6 |
28 | NAU3189 | chr.26 | 1 | 0.288 6 | 61 | BNL3626 | chr.09 | 1 | 0.301 0 |
29 | BNL169 | chr.20 | 1 | 0.266 0 | 62 | NAU2166 | chr.10 | 1 | 0.310 1 |
30 | NAU3013 | chr.10 | 1 | 0.359 3 | 63 | NAU3284 | chr.21 | 1 | 0.102 0 |
31 | NAU3346 | chr.15 | 2 | 0.117 8 | 64 | NAU3117 | chr.11 | 2 | 0.429 5 |
32 | BNL252 | chr.24 | 2 | 0.349 0 | 65 | NAU3377 | chr.11 | 1 | 0.354 4 |
33 | NAU5465 | chr.14 | 2 | 0.256 4 | 66 | BNL3592 | chr.11 | 2 | 0.257 7 |
编号Code | 标记名称Marker name | 染色体位置Map location | 等位变异数Allele number | 多态信息含量PIC | 编号Code | 标记名称Marker name | 染色体位置Map location | 等位变异数Allele number | 多态信息含量PIC |
67 | NAU3519 | chr.12 | 4 | 0.502 7 | 94 | BNL3646 | chr.20 | 2 | 0.311 0 |
68 | NAU3398 | chr.18 | 2 | 0.607 0 | 95 | NAU4865 | chr.21 | 3 | 0.404 3 |
69 | NAU5345 | chr.13 | 2 | 0.374 0 | 96 | NAU3240 | chr.21 | 3 | 0.162 8 |
70 | NAU3540 | chr.13 | 2 | 0.165 3 | 97 | BNL3649 | chr.21 | 4 | 0.394 0 |
71 | NAU3989 | chr.13 | 1 | 0.268 5 | 98 | NAU3293 | chr.26 | 3 | 0.301 4 |
72 | NAU3576 | chr.15 | 3 | 0.339 0 | 99 | BNL1079 | chr.18 | 1 | 0.306 3 |
73 | BNL3145 | chr.14 | 3 | 0.321 5 | 100 | BNL1705 | chr.21 | 1 | 0.280 6 |
74 | NAU3449 | chr.17 | 4 | 0.340 5 | 101 | BNL193 | chr.18 | 4 | 0.112 8 |
75 | NAU2955 | chr.22 | 4 | 0.175 0 | 102 | BNL2646 | chr.15 | 3 | 0.385 8 |
76 | BNL1047 | chr.25 | 2 | 0.304 3 | 103 | NAU3995 | chr.03 | 1 | 0.417 0 |
77 | NAU2932 | chr.05 | 4 | 0.322 1 | 104 | NAU4042 | chr.19 | 2 | 0.418 4 |
78 | NAU3095 | chr.19 | 3 | 0.204 1 | 105 | NAU3588 | chr.25 | 2 | 0.418 1 |
79 | NAU2942 | chr.19 | 2 | 0.279 1 | 106 | NAU5433 | chr.06 | 2 | 0.130 2 |
80 | NAU2801 | chr.19 | 2 | 0.293 7 | 107 | HAU0878 | chr.05 | 1 | 0.127 2 |
81 | NAU5121 | chr.19 | 2 | 0.121 1 | 108 | HAU0883 | chr.14 | 2 | 0.324 0 |
82 | NAU5255 | chr.05 | 1 | 0.131 3 | 109 | HAU0975 | chr.06 | 1 | 0.333 1 |
83 | NAU4884 | chr.19 | 1 | 0.339 9 | 110 | HAU1058 | chr.15 | 2 | 0.125 0 |
84 | NAU5447 | chr.19 | 1 | 0.337 8 | 111 | HAU1185 | chr.19 | 2 | 0.452 5 |
85 | NAU3306 | chr.25 | 1 | 0.116 2 | 112 | HAU1195 | chr.16 | 3 | 0.377 4 |
86 | JESPR224 | chr.25 | 2 | 0.280 8 | 113 | HAU2873 | chr.10 | 3 | 0.280 7 |
87 | NAU2974 | chr.16 | 2 | 0.236 6 | 114 | NAU3665 | chr.10 | 2 | 0.525 7 |
88 | NAU2626 | chr.16 | 3 | 0.335 6 | 115 | HAU1809 | chr.11 | 4 | 0.630 0 |
89 | NAU2627 | chr.16 | 3 | 0.190 2 | 116 | HAU1951 | chr.14 | 2 | 0.397 0 |
90 | BNL1395 | chr.07 | 4 | 2.378 5 | 117 | HAU2119 | chr.06 | 2 | 0.188 3 |
91 | BNL3084 | chr.24 | 2 | 0.420 0 | 118 | HAU2367 | chr.25 | 2 | 0.291 5 |
92 | BNL3860 | chr.24 | 3 | 0.418 9 | 119 | HAU2414 | chr.13 | 3 | 0.362 0 |
93 | NAU3137 | chr.20 | 2 | 0.333 6 | 120 | NAU3096 | chr.19 | 2 | 0.344 5 |
注: PIC: 多态信息含量, 用来度量某个标记在群体中多态性可提供的信息量。 | |
Note: PIC: Polymorphism information content, was used to measure the amount of information provided by a marker's polymorphism in the population. |
表3 海岛棉优异种质的表型筛选结果Table 3 The elite Sea-island cotton germplasm identified via phenotyping |
![]() |
表4 海岛棉优异种质资源的筛选结果Table 4 Screening results of elite sea-island germplasm |
名称 Name | 大铃种质 Big boll germpl | 高衣分种质 High lint percentage germplasm | 强结铃种质 Strong boll-bearing germplasm | 长纤维种质 Long fiber germplasm | 高纤维强度种质 High fiber strength germplasm | 低马克隆值种质 Low micronaire germplasm |
167 | √ | |||||
G-92 | √ | √ | ||||
新海 28号Xinhai 28 | √ | √ | √ | |||
新海 21号 Xinhai 21 | √ | √ | ||||
03H-1 | √ | |||||
洛西雅 1号Luoxiya 1 | √ | |||||
TH-314 | √ | |||||
新海 3号Xinhai 3 | √ | |||||
新海 7号Xinhai 7 | √ | |||||
垦绿04-20-2 Kenlv 04-20-2 | √ | √ | ||||
Pima 3-79 | √ | √ | ||||
元谋 1号Yuanmou 1 | √ | |||||
新海 47号Xinhai 47 | √ | √ | ||||
长丰1号Changfeng 1 | √ | |||||
跃进2号Yuejin 2 | √ | |||||
HS12-5 | √ | |||||
新海 45号Xinhai 45 | √ | |||||
Pima 90 | √ | |||||
新海 46号Xinhai 46 | √ | |||||
Pima 5 | √ | |||||
金垦07-68-1 Jinken 07-68-1 | √ | |||||
金垦05-7 Jinken 05-7 | √ | |||||
垦棕05-13 Kenzong 05-13 | √ |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
李武, 倪薇, 林忠旭, 等. 海岛棉遗传多样性的SRAP 标记分析[J]. 作物学报, 2008, 34(5): 893-898.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
杜雄明, 刘方, 王坤波, 等. 棉花种质资源收集鉴定与创新利用[J]. 棉花学报, 2017, 29(S1): 51-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
杜丽丽, 吴鹏昊, 曲延英, 等. 海岛棉不同群体枯萎病抗性分析及评价[J]. 分子植物育种, 2015, 13(7): 1517-1525.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
马麒, 宿俊吉, 宁新柱, 等. 新疆海岛棉育种目标性状多元分析与种质资源评价[J]. 西南农业学报, 2016, 29(7): 1530-1539.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
练文明, 邰红忠, 卢金宝, 等. 海岛棉品种新海54号的选育与栽培技术[J]. 中国棉花, 2017, 44(6): 35-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
张天真. 作物育种学总论[M]. 北京: 中国农业出版社, 2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
林红, 姚振纯, 齐宁, 等. 大豆优异种质资源的利用与创新[J]. 植物遗传资源学报, 2001, 2(3): 32-35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
蒋华仁, 戴大庆, 孙发东. 小麦优异种质资源的创新研究[J]. 四川农业大学学报, 1992, 10(2): 255-259.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
彭忠华. 喀斯特高海拔山区玉米优异性种质的形态、生理及多样性形成研究[J]. 玉米科学, 2010, 18(2): 45-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
武路云, 刘方, 靳明凯, 等. 海岛棉部分引进和自选品种遗传多样性的SRAP分析[J]. 南方农业学报, 2012, 43(7): 901-906.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
陈光, 杜雄明, 卢东柏, 等. 利用SSR分子标记进行海岛棉遗传多样性研究[J]. 植物遗传资源学报, 2005, 6(2): 135-139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
潘兆娥, 何守朴, 贾银华, 等. 引进海岛棉种质的SSR遗传多样性分析[J]. 植物遗传资源学报, 2014, 15(2): 399-404.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
吴大鹏, 房嫌嫌, 马梦楠, 等. 四个国家海岛棉品种资源的亲缘关系和遗传多态性研究[J]. 棉花学报, 2010, 22(2): 104-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
董思言, 孙备, 李建东, 等. 微卫星分子标记在野生大豆遗传多样性研究中的应用[J]. 大豆科学, 2008, 27(1): 145-149.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
潘存祥, 许勇, 纪海波, 等. 西瓜种质资源表型多样性及聚类分析[J]. 植物遗传资源学报, 2015, 16(1): 59-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
张军, 武耀廷, 郭旺珍, 等. 棉花微卫星标记的PAGE/银染快速检测[J]. 棉花学报, 2000, 12(5): 267-269.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
In the present study, a haploid population from the cross of the two cultivated allotetraploid cottons, Gossypium hirsutum L. and Gossypium barbadense L., was developed by means of Vsg, a virescently marked semigamous line of Sea island cotton, and some target haploids were successfully doubled with colchicine. A molecular linkage map was constructed with 58 doubled and haploid plants. Among the total of 624 marker loci (510 SSRs and 114 RAPDs), 489 loci were assembled into 43 linkage groups and covered 3,314.5 centi-Morgans (cM). Using the monosomic and telodisomic genetic stocks, the linkage groups of the present map were associated with chromosomes of the allotetraploid genome, and some of the unassociated groups were connected to corresponding A or D subgenomes. Through the analysis of the assignment of the duplicated SSR loci in the chromosomes or the linkage groups, ten pairs of possible homoeologous chromosome (or linkage group) regions were identified. Among them, the pairs of Chrs. 1 and 15, Chrs. 4 and 22, and Chrs. 10 and 20 had already been determined as homoeologous by classical genetic and cytogenetic research, and the pair of Chrs. 9 and 23 had also been identified by the ISH method of molecular cytogenetics. But, from present research, it was assumed that Chrs. 5 and 18 might be a new pair of homoeologous chromosomes of the allotetraploid cotton genome detected by molecular mapping of the cotton genome.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
We describe a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations. We assume a model in which there are K populations (where K may be unknown), each of which is characterized by a set of allele frequencies at each locus. Individuals in the sample are assigned (probabilistically) to populations, or jointly to two or more populations if their genotypes indicate that they are admixed. Our model does not assume a particular mutation process, and it can be applied to most of the commonly used genetic markers, provided that they are not closely linked. Applications of our method include demonstrating the presence of population structure, assigning individuals to populations, studying hybrid zones, and identifying migrants and admixed individuals. We show that the method can produce highly accurate assignments using modest numbers of loci-e.g., seven microsatellite loci in an example using genotype data from an endangered bird species. The software used for this article is available from http://www.stats.ox.ac.uk/ approximately pritch/home. html.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王莉萍. 海岛棉表型性状遗传多样性分析及核心种质构建方法的研究[D]. 乌鲁木齐: 新疆农业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
谢元元. 127份海岛棉遗传多样性分析[D]. 乌鲁木齐: 新疆农业大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
米日古丽·马木提, 阿里甫·艾尔西, 宁新民, 等. 利用SRAP和RGA标记对新疆海岛棉品种的聚类分析[J]. 新疆农业科学, 2011, 48(11): 2017-2024.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |