[1] 杨伟华, 王延琴, 周大云, 等. 植棉修复重金属污染土壤研究进展[J]. 湖南农业科学, 2014(18): 41-44.
Yang Weihua, Wang Yanqin, Zhou Dayun, et al. Research progress in remediation of heavy-metal contaminated soils by planting cotton[J]. Hunan Agricultural Sciences, 2014(18): 41-44.
[2] Muhammad D K. 陆地棉抗除草剂基因的遗传转化及其抗镉胁迫的遗传效应探讨[D]. 杭州: 浙江大学, 2008.
Muhammad D K. Research on transformation of herbicide-resistant gene and Cd stress on upland cotton[D]. Hanzhou: Zhejiang University, 2008.
[3] 梅磊, 李玲, Daud M K, 等. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018, 30(1): 102-110.
Mei Lei, Li Ling, Daud M K, et al. Advances on response and resistance to heavy metal stress in cotton[J]. Cotton Science, 2018, 30(1): 102-110.
[4] 陈浩东, 贺云新, 郭利双, 等. 镉胁迫对3个棉花品种生理生化特征及农艺性状的影响[J]. 棉花学报, 2018, 30(1): 62-76.
Chen Haodong, He Yunxin, Guo Lishuang, et al. Effects of cadmium stress on physiological and biochemical characteristics and agronomic traits of three upland cotton cultivars[J]. Cotton Science, 2018, 30(1): 62-76.
[5] 陈悦, 李玲, 何秋伶, 等. 镉胁迫对三个棉花品种(系)产量、纤维品质和生理特性的影响[J]. 棉花学报, 2014, 26(6): 521-530.
Chen Yue, Li Ling, He Qiuling, et al. Effects of cadmium stress on yield, fiber quality, and physiological traits of three upland cotton cultivars (lines)[J]. Cotton Science, 2014, 26(6): 521-530.
[6] 刘连涛, 陈静, 孙红春, 等. 镉胁迫对棉花幼苗生长效应及不同器官镉积累的影响[J]. 棉花学报, 2014, 26(5): 466-470.
Liu Liantao, Chen Jing, Sun Hongchun, et al. Effects of cadmium stress on growth and cadmium accumulation in cotton (Gossypium hirsutum L.) seedlings[J]. Cotton Science, 2014, 26(5): 466-470.
[7] 李玉军, 张志刚, 匡政成, 等. 植棉修复镉污染土壤研究进展[J]. 中国棉花, 2017, 44(4): 8-10.
Li Yujun, Zhang Zhigang, Kuang Zhengcheng, et al. Research progress in remediation of cadmium contaiminated soils by planting cotton[J]. China Cotton, 2017, 44(4): 8-10.
[8] 李玲. 镉胁迫对陆地棉生长发育、产量和品质的影响及其耐镉性的遗传研究[D]. 杭州: 浙江大学, 2012.
Li Ling. Effect of cadmium stress on growth, yield and quality in upland cotton and its genetic analysis for cadmium tolerance[D]. Hanzhou: Zhejiang University, 2012.
[9] 冯保民, 麻密. 植物络合素及其合酶在重金属抗性中的功能研究进展[J]. 应用与环境生物学报, 2003, 9(6): 657-661.
Feng Bomin, Ma Mi. Research advance of phytochelatins and phytochelatin synthase on heavy metal tolerance[J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(6): 657-661.
[10] Grill E, Loffler S, Winnacker E L, et al. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 6838-6842.
[11] Cobbett C S. A family of phytochelatin synthase genes from plant, fungal and animal species[J]. Trends in Plant Science, 1999, 4(9): 335-337.
[12] Kuhlenz T, Schmidt H, Uraguchi S, et al. Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil[J]. Journal of Experimental Botany, 2014, 65(15): 4241-4253.
[13] Lee S, Kang B S. Expression of Arabidopsis phytochelatin synthase 2 is too low to complement an AtPCS1-defective cad1-3 mutant[J]. Molecules and Cells, 2005, 19(1): 81-87.
[14] Li F, Fan G Y, Lu C, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530.
[15] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429): 423-427.
[16] Li F G, Fan G, Wang K B, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6): 567-572.
[17] Finn R D, Coggill P, Eberhardt R Y, et al. The Pfam protein families database: Towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1): D279-D285.
[18] Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Research, 2017, 45(D1): D200-D203.
[19] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
[20] Hu B, Jin J, Guo A, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
[21] Vivares D, Arnoux P, Pignol D. A papain-like enzyme at work: Native and acyl-enzyme intermediate structures in phytochelatin synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(52): 18848-18853.
[22] 唐杰. 基于半胱氨酸与重金属离子相互作用的分析应用研究[D]. 重庆: 西南大学, 2011.
Tang Jie. The Research on the analysis and application of the interaction between cysteine and heavy metal ions[D]. Chongqing: Southwest University, 2011.
[23] Vatamaniuk O K, Mari S, Lu Y P, et al. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(12): 7110-
7115.
[24] Chen J J, Zhou J M, Goldsbrough P B. Characterization of phytochelatin synthase from tomato[J]. Physiologia Plantarum, 1997, 101(1): 165-172.
[25] Lee S, Korban S S. Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development[J]. Planta, 2002, 215(4): 689-693. |