[1] 陈印军, 方琳娜, 杨俊彦. 我国农田土壤污染状况及防治对策[J]. 中国农业资源与区划,2014, 35(4): 1-5, 19.
Chen Yinjun, Fang Linna, Yang Junyan. The cropland pollution in china: Status and countermeasures[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(4): 1-5, 19.
[2] 白羽. 环保部: 重金属污染物排放量2014年明显下降环境风险犹存[N/OL]. [2015-11-19]. http://news.xinhuanet.com/politics/2015-11/19/c_1117200198.htm.
Bai Yu. Ministry of Environmental Protection: Emission of heavy metal polluted waste declined significant but risk in environment still exists in 2014 China[N/OL].[2015-11-19]. http://
news.xinhuanet.com/politics/2015-11/19/c_1117200198.htm.
[3] 刘英川. 镍/铅胁迫下三个棉花品种幼苗的生理生化响应及超微结构变化分析[D]. 开封: 河南大学, 2014.
Liu Yingchuan. Physiochemical response and ultrastructural alterations in seedlings of three cotton varieties under nickel/lead stress[D]. Kaifeng: Hennan University, 2014.
[4] 李玲. 镉胁迫对陆地棉生长发育、产量和品质的影响及其耐镉性的遗传研究[D]. 杭州: 浙江大学, 2012.
Li Ling. Effect of cadmium stress on growth, yield and quality in upland cotton and its genetic analysis for cadmium tolerance[D]. Hangzhou: Zhejiang University, 2012.
[5] 江行玉, 赵可夫. 植物重金属伤害及其抗性机理[J]. 应用与环境生物学报, 2001, 7(1): 92-99.
Jiang Xingyu, Zhao Kefu. Mechanism of heavy metal injury and resistance of plants[J]. Chinese Journal of Applied and Environmental Biology, 2001, 7(1): 92-99.
[6] Hossain M A, Piyatida P, Da Silva J A T, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation[J]. Journal of Botany, 2012(2012): 872875. http://dx.doi.org/10.1155/2012/872875.
[7] Wu H, Wu F, Zhang G, et al. Effect of cadmium on uptake and translocation of three microelements in cotton[J]. Journal of Plant Nutrition, 2005, 27(11): 2019-2032.
[8] Wu F, Wu H, Zhang G, et al. Differences in growth and yield in response to cadmium toxicity in cotton genotypes[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(1): 85-90.
[9] Dango M, Bachir L, Wu F, et al. Genotypic difference in effect of cadmium on development and mineral concentrations of cotton[J]. Communications in Soil Science and Plant Analysis, 2004, 35(1/2): 285-299.
[10] Muhammad D K. 陆地棉抗除草剂基因的遗传转化及其抗镉胁迫的遗传效应探讨[D]. 杭州: 浙江大学, 2008.
Muhammad D K. Research on transformation of herbicide-resistant gene and Cd stress on upland cotton[D]. Hangzhou: Zhejiang University, 2008.
[11] 郑世英, 张秀玲, 王丽燕, 等. 铅和镉胁迫对棉花种子萌发及有机渗透调节物质的影响[J]. 中国棉花, 2007, 34(5): 16-17.
Zheng Shiying, Zhang Xiuling, Wang Liyan, et al. Effects of Pb and Cd on germination and osmotic stress in cotton[J]. China Cotton, 2007, 34(5): 16-17.
[12] Khan M D, Mei L, Ali B, et al. Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings[J]. Biomed Research International, 2013: 374063. http://dx.doi.org/10.1155/2013/374063.
[13] 杨刚, 伍钧, 唐亚. 铅胁迫下植物抗性机制的研究进展[J]. 生态学杂志, 2005, 24(12): 1507-1512.
Yang Gang, Wu Jun, Tang Ya. Research advances in plant resistance mechanisms under lead stress[J]. Chinese Journal of Ecology, 2005, 24(12): 1507-1512.
[14] 秦普丰, 铁柏清, 周细红, 等. 铅与镉对棉花和水稻萌发及生长的影响[J]. 湖南农业大学学报(自然科学版), 2000, 26(3): 205-207.
Qin Pufeng, Tie Baiqing, Zhou Xihong, et al. Effects of cadmium and lead in soil on the germination and growth of rice and cotton[J]. Journal of Hunan Agricultural University (Natural Sciences Edition), 2000, 26(3): 205-207.
[15] 李晶晶, 彭恩泽. 综述铬在土壤和植物中的赋存形式及迁移规律[J]. 工业安全与环保, 2005, 31(3): 31-33.
Li Jingjing, Peng Enze. Summarization on the existing form and transferring rules of chromium in soil[J]. Industrial Safety and Environmental Protection, 2005, 31(3): 31-33.
[16] Daud M K, Mei L, Variath M T, et al. Chromium (VI) uptake and tolerance potential in cotton cultivars: Effect on their root physiology, ultra-morphology, and oxidative metabolism[J/OL]. Biomed Research International, 2014: 975946 [2017-07-01]. http://dx.doi.org/10.1155/2014/975946.
[17] 林志灵, 张杨珠, 曾希柏, 等. 土壤中砷的植物有效性研究进展[J]. 湖南农业科学, 2011(3): 52-56.
Lin Zhiling, Zhang Yangzhu, Zeng Xibai, et al. Study advances in phyto-availability of arsenic in soil[J]. Hunan Agricultural Sciences, 2011(3): 52-56.
[18] 杨晓娟, 李春俭. 植物砷的生理和分子生物学研究进展——从土壤、根际到植物吸收、运输及耐性[J]. 植物营养与肥料学报, 2010, 16(5): 1264-1275.
Yang Xiaojuan, Li Chunjian. Progress in studying physiology and molecular biology of arsenic in plants—Uptake, translocation and tolerance in the soil-rhizosphere-plant system[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1264-1275.
[19] Finnegan P M, Chen W. Arsenic toxicity: The effects on plant metabolism[J]. Frontiers in Physiology, 2012, 3(182): 1-18.
[20] 鲁洪娟, 倪吾钟, 叶正钱, 等. 土壤中汞的存在形态及过量汞对生物的不良影响[J]. 土壤通报, 2007, 38(3): 597-600.
Lu Hongjuan, Ni Wuzhong, Ye Zhengqian, et al. Mercury form in soil and the effect of excessive mercury on plants and human beings[J]. Chinese Journal of Soil Science, 2007, 38(3): 597-600.
[21] 刘平, 仇广乐, 商立海. 汞污染土壤植物修复技术研究进展[J]. 生态学杂志, 2007, 26(6): 933-937.
Liu Ping, Qiu Guangle, Shang Lihai. Phytoremediation of mercury contaminated soil: A review[J]. Chinese Journal of Ecology, 2007, 26(6): 933-937.
[22] 郁达, 沈宗根, 张恒泽, 等. 汞对萝卜种子发芽及幼苗某些生理特性的影响[J]. 西北植物学报, 2004, 2(24): 231-236.
Yu Da, Sheng Zhonggen, Zhang H. Effects on some physiological characters of seedling and germination of radish seeds after treated with Hg2+[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 2(24): 231-236.
[23] Stobart A K, Griffiths W T, Ameen Bukhari I, et al. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley[J]. Physiologia Plantarum, 1985, 63(3): 293-298.
[24] Krause G H. Chlorophyll fluorescence and photosynthesis: The basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42(42): 313-349.
[25] 毋波, 韩善华, 张英慧, 等. 汞对植物生理生化的影响[J]. 中国微生态学杂志, 2007, 19(6): 582-583.
Wu Bo, Han Shanghua, Zhang Yinghui, et al. Effects of mercury on plant physiologically and biochemically[J]. Chinese Journal of Microecology, 2007, 19(6): 582-583.
[26] Hazama A. Ion permeation of AQP6 water channel protein. Single-Channel recordings after Hg2+ action[J]. Journal of Biological Chemistry, 2002, 277(32): 29224-29230.
[27] 郑倩, 李俊华, 危常州, 等. 不同抗性棉花品种根系分泌物及酚酸类物质对黄萎病菌的影响[J]. 棉花学报, 2012, 24(4): 363-369.
Zheng Qian, Li Junhua, Wei Changzhou, et al. Effects of root exudates and phenolic acids from differently resistant cotton cultivars on Verticillium dahliae[J]. Cotton Science, 2012, 24(4): 363-369.
[28] 任志刚, 盖琼辉. 抗感棉花品种根系分泌物及其对枯萎菌的影响[J]. 西北农业学报, 2016, 25(5): 702-706.
Ren Zhigang, Gai Qionghui. Root Exudates of resistant and susceptible cotton cultivars sand its effects on Fusarium oxysporum f. sp.vasinfectum[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(5): 702-706.
[29] Jutsz A M, Gnida A. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals[J]. Archives of Environmental Protection, 2015, 41(4):104-114.
[30] Mei L, Daud M K, Ullah N, et al. Pre-treatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes[J]. Environmental Science and Pollution Research, 2015, 22(13): 9922-9931.
[31] Wasim I. 棉花耐盐和镉复合胁迫基因型差异及外源GSH缓解盐胁迫的生理机理[D]. 杭州: 浙江大学, 2013.
Wasim I. Physiological mechanism of genotypic differences in the tolerance to combined stress of salinity and cadmium and the role of GSH alleviating salinity stress in cotton[D]. Hangzhou: Zhejiang University, 2013.
[32] Khan M, Daud M K, Basharat A, et al. Alleviation of lead-induced physiological, metabolic, and ultra-morphological changes in leaves of upland cotton through glutathione[J]. Environmental Science and Pollution Research, 2016, 23(9): 8431-8440.
[33] Daud M K, Mei L, Azizullah A, et al. Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione[J]. Environmental Science and Pollution Research, 2016, 23 (15):15551-15564.
[34] Anwaar S A, Ali S, Ali S, et al. Silicon(Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage[J]. Environmental Science and Pollution Research, 2015, 22(5): 3441-3450.
[35] 刘连涛, 陈静, 孙红春, 等. 镉胁迫对棉花幼苗生长效应及不同器官镉积累的影响[J]. 棉花学报, 2014, 26(5): 466-470.
Liu Liantao, Chen Jing, Sun Hongchun, et al. Effects of cadmium stress on growth and cadmium accumulation in cotton (Gossypium hirsutum L.) seedlings[J]. Cotton Science, 2014, 26(5): 466-470.
[36] Krzes?覥owska M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy[J]. Acta Physiologiae Plantarum, 2011, 33(1): 35-51.
[37] Grill E, Winnacker E L, Zenk M H. Phytochelatins: The principal heavy-metal complexing peptides of higher plants[J]. Science, 1985, 230(4726): 674-676.
[38] Kneer R, Zenk M H. Phytochelatins protect plant enzymes from heavy metal poisoning[J]. Phytochemistry, 1992, 31(8): 2663-2667.
[39] Casterlin I B N. Isolation and characterization of cadmium-binding components in soybean plant[J]. Plant Physiology, 1977, 59(2): 124.
[40] Foley R C. Analysis of Type I metallothionein cDNA in Vicia faba[J]. Plant Molecular Biology,1997(33): 583-591.
[41] Hudspeth R L, Hobbs S L, Anderson D M, et al. Characterization and of metallothionein-like genes in cotton[J]. Plant Molecular Biology, 1996, 31(3): 701-705.
[42] Xue Tongtong, Li Xinzheng, Zhu Wei, et al. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast[J]. Journal of Experimental Botany,2008, 60(1): 339-349.
[43] 林宇丰, 李魏, 戴良英. 抗氧化酶在植物抗旱过程中的功能研究进展[J]. 作物研究, 2015, 29(3): 326-330.
Lin Yufeng, Li Wei, Dai Liangying. Research progress of antioxidant enzymes functioning in plant drought resistant process[J]. Crop Research, 2015, 29(3): 326-330.
[44] 杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版), 2016, 45(5): 481-489.
Yang Shuyi, Chen Xiaoyang, Hui Wenkai, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5): 481-489.
[45] Liu L T, Sun H C, Chen J, et al. Cotton seedling plants adapted to cadmium stress by enhanced activities of protective enzymes[J]. Plant, Soil and Environment, 2016, 62(2): 80-85.
[46] Daud M K, He Quiling, Mei Lei, et al. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress[J]. Chemosphere, 2015, 120: 309-320.
[47] 王霞, 吴霞, 马亮, 等. 棉花幼苗受铅、镉胁迫的抗氧化酶反应[J]. 江苏农业科学, 2012(12): 105-107.
Wang Xia, Wu Xia, Ma Liang, et al. Antioxygen enzyme system responding to stress under lead and cadmium in cotton seedlings[J]. Jiangsu Agricultural Sciences, 2012(12): 105-107. |