棉花学报 ›› 2019, Vol. 31 ›› Issue (2): 114-120.doi: 10.11963/1002-7807.lsmsgl.20190325
李思敏1,2(),左东云2,程海亮2,张友平2,王巧连2,刘珂2,冯晓旭2,耿洪伟1,宋国立2,*(
)
收稿日期:
2018-04-19
出版日期:
2019-03-15
发布日期:
2019-03-15
通讯作者:
宋国立
E-mail:lisimin1217@126.com;sglzms@163.com
作者简介:
李思敏(1990-),女,硕士研究生, 基金资助:
Li Simin1,2(),Zuo Dongyun2,Cheng Hailiang2,Zhang Youping2,Wang Qiaolian2,Liu Ke2,Feng Xiaoxu2,Geng Hongwei1,Song Guoli2,*(
)
Received:
2018-04-19
Online:
2019-03-15
Published:
2019-03-15
Contact:
Song Guoli
E-mail:lisimin1217@126.com;sglzms@163.com
摘要:
【目的】棉纤维是由胚珠外珠被表皮单细胞经突起并极性伸长而成的,棉花种子上的短绒是由胚珠外珠被表皮单细胞突起而产生的。因此,本研究对棉纤维光籽基因n2进行定位,旨在为其克隆和功能研究奠定基础。【方法】以海岛棉新海21和陆地棉光籽突变体n2为亲本构建F2群体,结合棉花基因组数据,开发简单序列重复标记,定位该基因,获得预测的基因序列,通过实时荧光定量聚合酶链式反应分析候选基因的表达量差异。【结果】光籽基因n2被定位在染色体A12上,位于标记P61与Z10之间的181 kbp内。该区间共有7个候选基因。实时荧光定量聚合酶链式反应分析显示,候选基因72098在2个亲本中的表达量有显著差异。【结论】本试验精细定位了光籽基因n2,初步分析了候选基因,为其图位克隆和功能验证奠定了基础。
李思敏,左东云,程海亮,张友平,王巧连,刘珂,冯晓旭,耿洪伟,宋国立. 棉花光籽基因n2的精细定位[J]. 棉花学报, 2019, 31(2): 114-120.
Li Simin,Zuo Dongyun,Cheng Hailiang,Zhang Youping,Wang Qiaolian,Liu Ke,Feng Xiaoxu,Geng Hongwei,Song Guoli. Fine Mapping of the Fuzzless Gene n2 in Cotton[J]. Cotton Science, 2019, 31(2): 114-120.
表1
qRT-PCR 所用基因及引物序列"
基因名称 Gene name | 正向引物 Forward primer | 反向引物 Reverse primer |
1414 | CTCCCGCACCTTAGCCGAGCGTATC | CTAACAAATTTTGTTCTTGTTAGTT |
1415 | ATGGGTTTTAGCTTGAAAGCTTACT | GCCTTTGCGTTCCCAGCAGCTCCTA |
72098 | ATGCATGTGGGAGGCATTGCAGCAG | AACCATGATGGATAGCTGAAAGAAG |
1417 | ATGGCAAAAGAAAAAGAAAGCCACC | CGGCAATGGTGGGGATAACCTAAAG |
1418 | ATGGAGAGGGGGTCTTTTTTGCGGA | TACGGGGATCTGATCGACCCATTTT |
1419 | CGCGATCATCATCATCAAGACCT | TCAGGCAAACAAGAGAAGCC |
1420 | CGATTCTCGTGCTCTCTCCG | AAAATTCAACACAGCTTCCACAA |
ACTIN | ATCCTCCGTCTTGACCTTG | TGTCCGTCAGGCAACTCAT |
表2
与n2基因连锁的标记"
编号 Number | 标记 Marker | 正向引物 Forward primer | 反向引物 Reverse primer |
1 | NAU3294 | ACGATGTCGAGCTACCTTTC | ATTTGTGATTTCTGCGGATT |
2 | NAU2176 | TGGCACTTGCTAAACCATAA | GGTTTGAGCAGAAGGGTATG |
3 | NAU1231 | TTGAGACCAAAAACATGTGG | GCTCATTTTGATCTGAACTCTG |
4 | NAU2096 | GAGAGATAAACGGAGGTGGA | TTAGTCAAACCGAGCAGCTT |
5 | NAU6112 | TCTGTGAACATCAAGTGCTA | TCATAAACTAATGCTAGACAGG |
6 | NAU3236 | AACATCCCCATCAAACACAT | CCCCATGCTGTCTTGTTACT |
7 | P80 | GCATCATACGAAGACGAACG | TGTCGACTAGTTGTTGATCATGC |
8 | C28 | TTGGAGACCAAAACAGACGGT | CAGCTGAGTCGATGCTCTCT |
9 | NAU0943 | ATCTGTTCAATTTCTCGTCA | CAGTTGTTGGTTGATCTGGA |
10 | P6 | CGTAGAAACCCTTACGGGAA | TCTTTGGTGAAGGTATTGCAT |
11 | P11 | TGACTTAATTTGACTTACCAATTTGA | GAAGCCGTTTATCGTGAGGA |
12 | P16 | GGGAGATGTGGTGAAGTTGG | TTTCATGCTTTCTGACCAGG |
13 | P32 | TCGCTAACTCAAGCCCACTT | GGCTCGAACCAATCCAATTT |
14 | P61 | GGCCTTGGACTTCAATTTGT | CAACTAAACGCGCTTTCACA |
15 | P77 | AAATGCACTAATAATAGCACGGG | TTGATTTCAATTTGATCCTTGG |
16 | P81 | AATAGCATGGCCATAATCACA | TCATTCTAATTTCAATTTGATCCTTG |
17 | C2 | GGGCATTTCAGACCATCCCA | CGGGCTTAGAGAGCCGAAAT |
18 | Z10 | TTAGATCTCTGGTTCAACTGTT | TTGCCTTGCCTTGCCAATCTC |
表3
定位区间内7个候选基因的注释及基因全长"
基因名称 Gene name | 功能注释 Function annotation | 基因全长 Full length of gene/bp |
1414 | 谷氨酸脱羧酶4 Glutamate decarboxylase 4 | 1 500 |
1415 | 双功能抑制剂/脂质转运蛋白Bifunctional inhibitor/lipid-transfer protein | 357 |
72098 | 蛋白激酶Protein kinase | 381 |
1417 | C2H2锌指蛋白C2H2-like zinc finger protein | 1 074 |
1418 | 铝活化苹果酸转运蛋白Aluminum-activated malate transporter family protein | 1 980 |
1419 | ZIP金属离子转运蛋白ZIP metal ion transporter family | 1 410 |
1420 | 细胞周期蛋白Cyclin J18 | 711 |
[1] |
Arpat A, Waugh M, Sullivan J P, et al. Functional genomics of cell elongation in developing cotton fibers[J]. Plant Molecular Biology, 2004, 54(6): 911-929.
doi: 10.1007/s11103-004-0392-y |
[2] |
Lee J J, Woodward A W, Chen Z J. Gene expression changes and early events in cotton fibre development[J]. Annals of Botany, 2007, 100(7): 1391-1401.
doi: 10.1093/aob/mcm232 |
[3] |
Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429): 423-437.
doi: 10.1038/nature11798 |
[4] |
Yang Zuoren, Zhang Chaojun, Yang Xiaojie, et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation[J]. New Phytologist, 2014, 203(2): 437-448.
doi: 10.1111/nph.12824 pmid: 24786710 |
[5] | 左东云, 叶武威, 程海亮, 等. 棉花功能基因组研究进展[J]. 棉花学报, 2017, 29(Suppl): 20-27. |
Zuo Dongyun, Ye Wuwei, Cheng Hailiang, et al. The progress and perspective of cotton functional genomics research[J]. Cotton Science, 2017, 29(Suppl): 20-27. | |
[6] |
Hulskamp M, Misra S, Jurgens G. Genetic dissection of trichome cell development in Arabidopsis[J]. Cell, 1994, 76(3): 555-566.
doi: 10.1016/0092-8674(94)90118-X |
[7] |
Payne C T, Zhang F, Lloyd A M. GL 3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics, 2000, 156(3): 1349-1362.
pmid: 11063707 |
[8] |
Szymanski D B, Lloyd A M, Marks M D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends in Plant Science, 2000, 5(5): 214-219.
pmid: 10785667 |
[9] |
Guan Xueying, Yu Nannan, Shangguan Xiaoxia, et al. Arabidopsis trichome research sheds light on cotton fiber development mechanisms[J]. Chinese Science Bulletin, 2007, 52(13): 1734-1741.
doi: 10.1007/s11434-007-0273-2 |
[10] |
Lee J J, Woodward A W, Chen Z J. Gene expression changes and early events in cotton fibre development[J]. Annals of Botany, 2007, 100(7): 1391-1401.
doi: 10.1093/aob/mcm232 |
[11] |
Wu Huaitong, Tian Yue, Wan Qun, et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development[J]. New Phytologist, 2018, 217(2): 883-895.
doi: 10.1111/nph.14844 pmid: 29034968 |
[12] |
Wan Qun, Guan Xueying, Yang Nannan, et al. Small interfering RNAs from bidirectional transcripts of GhMML3-A12 regulate cotton fiber development[J]. New Phytologist, 2016, 210(4): 1298-1310.
doi: 10.1111/nph.13860 pmid: 26832840 |
[13] | Thyssen G N, Fang D D, Turley R B, et al. A Gly65Val substitution in an actin, GhACT-LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants[J]. Plant Journal for Cell & Molecular Biology, 2017, 90(1): 111-121. |
[14] |
Zhu Qianhao, Yuan Yuman, Stiller W, et al. Genetic dissection of the fuzzless seed trait in Gossypium barbadense[J]. Journal of Experimental Botany, 2018, 69(5): 997-1009.
doi: 10.1093/jxb/erx459 pmid: 29351643 |
[15] | Thadani K I. Inheritance of certain characters in Gossypium[J]. Indian Journal of Agricultural Sciences, 1925, 20(3): 37-42. |
[16] |
Turley R B, Kloth R H. Identification of a third fuzzless seed locus in upland cotton (Gossypium hirsutum L.)[J]. Journal of Heredity, 2002, 93(5): 359-364.
pmid: 12547925 |
[17] |
Kohel R J, Yu J, Park Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton[J]. Euphytica, 2001, 121(2): 163-172.
doi: 10.1023/A:1012263413418 |
[18] |
Endrizzi J E, Ramsay G. Identification of ten chromosome deficiencies of cotton: Cytological identification of eight chromosomes and genetic analysis of chromosome deficiencies and marker genes[J]. Journal of Heredity, 1980, 71(1): 45-48.
doi: 10.1093/oxfordjournals.jhered.a109309 |
[19] | Rong Junkang, Pierce G J, Waghmare V N, et al. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton[J]. Theoretical & Applied Genetics, 2005, 111(6): 1137-1146. |
[20] | 宋丽, 郭旺珍, 秦鸿德, 等. 棉花光子基因N1和n2的遗传分析及染色体定位的分子证据[J]. 南京农业大学学报, 2010, 33(1): 21-26. |
Song Li, Guo Wangzhen, Qin Hongde, et al. Genetic analysis and molecular validation of chromosome assignment for fuzzless genes N1 and n2 in cotton[J]. Journal of Nanjing Agricultural University, 2010, 33(1): 21-26. | |
[21] |
Du Xiongming, Pan Jiaju, Zhang Tianzhen, et al. Genetic analysis of presence and absence of lint and fuzz in cotton[J]. Plant Breeding, 2001, 120(6): 519-522.
doi: 10.1046/j.1439-0523.2001.00643.x |
[22] | 丁业掌, 郭旺珍, 张天真. 陆地棉两个纤维突变体的遗传分析[J]. 棉花学报, 2007, 19(3): 179-182. |
Ding Yezhang, Guo Wangzhen, Zhang Tianzhen. Genetic analysis of two mutants of fiber in Gossypium hirsutum L.[J]. Cotton Science, 2007, 19(3): 179-182. | |
[23] | 宋国立, 崔荣霞, 王坤波, 等. 改良CTAB法快速提取棉花DNA[J]. 棉花学报, 1998(5): 273-275. |
Song Guoli, Cui Rongxia, Wang Kunbo, et al. A rapid improved CTAB method for extraction of cotton genomic DNA[J]. Cotton Science, 1998(5): 273-275. | |
[24] | 张兴华, 李捷. 棉黄萎病发生和研究进展[J]. 江西农业学报, 2006, 18(1): 99-104. |
Zhang Xinghua, Li Jie. Advance in occurrence and researches on cotton Verticillium wilt[J]. Acta Agriculturae Jiangxi, 2006, 18(1): 99-104. | |
[25] |
Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44(10): 1098-1103.
doi: 10.1038/ng.2371 pmid: 22922876 |
[26] |
Li Fuguang, Fan Guangyi, Wang Kunbo, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6): 567-572.
doi: 10.1038/ng.2987 pmid: 24836287 |
[27] |
Li Fuguang, Fan Guangyi, Lu Cairui, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530.
doi: 10.1038/nbt.3208 pmid: 25893780 |
[28] |
Ivashuta S, Liu Jinyuan, Liu Junqi, et al. RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development[J]. The Plant Cell, 2005, 17(11): 2911-2921.
doi: 10.1105/tpc.105.035394 |
[29] |
Yoon G M, Dowd P E, Gilroy S, et al. Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity[J]. The Plant Cell, 2006, 18(4): 867-878.
doi: 10.1105/tpc.105.037135 |
[1] | 赵曾强,张析,李潇玲,张薇. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J]. 棉花学报, 2022, 34(3): 173-186. |
[2] | 吴健锋,樊志浩,武连杰,胡晓旺,韩知里,高巍,龙璐. 陆地棉衰老相关基因GhSAG101的克隆及抗病功能分析[J]. 棉花学报, 2022, 34(3): 187-197. |
[3] | 田一波,潘奥,陈劲,周仲华,袁小玲,刘志. 陆地棉ACX基因家族的鉴定与功能分析[J]. 棉花学报, 2022, 34(3): 215-226. |
[4] | 张素君,李兴河,王海涛,唐丽媛,蔡肖,刘存敬,张香云,张建宏. 陆地棉主要育种性状SSR关联位点的验证及优异材料鉴定[J]. 棉花学报, 2022, 34(2): 120-136. |
[5] | 徐婷婷,张弛,冯震,刘其宝,李黎贝,俞啸天,张雅楠,喻树迅. 陆地棉基因GhMIPS1A的克隆及功能分析[J]. 棉花学报, 2022, 34(2): 93-106. |
[6] | 陈琴,李多露,赵杰银,高文举,陈全家,曲延英. 陆地棉UDPGP基因家族的鉴定及抗旱性分析[J]. 棉花学报, 2022, 34(1): 12-22. |
[7] | 上官小霞,曹俊峰,杨琴莉,吴霞. 棉花纤维发育的分子机理研究进展[J]. 棉花学报, 2022, 34(1): 33-47. |
[8] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[9] | 李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458. |
[10] | 王雪慧,陈丽锦,赵若林,程海亮,张友平,王巧连,吕丽敏,宋国立,左东云. 陆地棉纤维起始期优势表达基因GhCRPK1的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 459-468. |
[11] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[12] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[13] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[14] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[15] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
|