[1] |
Jamet E, Dunand C. Plant cell wall proteins and development[J]. International Journal of Molecular Sciences, 2020, 21(8): 2731. DOI: 10.3390/ijms21082731.
doi: 10.3390/ijms21082731
|
[2] |
Cosgrove D J. Loosening of plant cell walls by expansins[J]. Nature, 2000, 407(6802): 321-326. DOI: 10.1038/35030000.
doi: 10.1038/35030000
|
[3] |
Cosgrove D J. Plant expansins: diversity and interactions with plant cell walls[J]. Current opinion in plant biology, 2015, 25: 162-172. DOI: 10.1016/j.pbi.2015.05.014.
doi: 10.1016/j.pbi.2015.05.014
pmid: 26057089
|
[4] |
Choi D, Kim J H, Lee Y. Expansins in plant development[J]. Advances in Botanical Research, 2008, 47(8): 47-97. DOI: 10.1016/S0065-2296(08)00002-5.
doi: 10.1016/S0065-2296(08)00002-5
|
[5] |
Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis[J]. The Plant Cell, 2002, 14(12): 3237-3253. DOI: 10.1105/tpc.006437.
doi: 10.1105/tpc.006437
|
[6] |
Lin C, Choi H S, Cho H T. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis[J]. Molecular Cells, 2011, 31(4): 393-397. DOI: 10.1007/s10059-011-0046-2.
doi: 10.1007/s10059-011-0046-2
|
[7] |
McQueen-Mason S, Durachko D M, Cosgrove D J. Two endogenous proteins that induce cell wall extension in plants[J]. The Plant Cell, 1992, 4(11): 1425-1433. DOI: 10.1105/tpc.4.11.1425.
doi: 10.1105/tpc.4.11.1425
|
[8] |
Sampedro J, Cosgrove D J. The expansin superfamily[J]. Genome Biology, 2005, 6(12): 242. DOI: 10.1186/gb-2005-6-12-242.
doi: 10
pmid: 16356276
|
[9] |
Sampedro J, Lee Y, Carey R E, et al. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family[J]. The Plant Journal, 2005, 44(3): 409-419. DOI: 10.1111/j.1365-313X.2005.02540.x.
doi: 10.1111/j.1365-313X.2005.02540.x.
|
[10] |
Zhu Y, Wu N N, Song W L, et al. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies[J]. BMC Plant Biology, 2014, 14: 93. DOI: 10.1186/1471-2229-14-93.
doi: 10
|
[11] |
Krishnamurthy P, Hong J K, Kim J A, et al. Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication[J]. Molecular Genetics and Genomics, 2015, 290(2): 521-530. DOI: 10.1007/s00438-014-0935-0.
doi: 10.1007/s00438-014-0935-0
|
[12] |
Sampedro J, Carey R E, Cosgrove D J. Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs[J]. Journal of Plant Research, 2006, 119(1): 11-21. DOI: 10.1007/s10265-005-0253-z.
doi: 10.1007/s10265-005-0253-z
pmid: 16411016
|
[13] |
Ding A M, Marowa P, Kong Y Z. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum)[J]. Molecular Genetics and Genomics, 2016, 291(5): 1891-1907. DOI: 10.1007/s00438-016-1226-8.
doi: 10.1007/s00438-016-1226-8
|
[14] |
Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis[J]. Plant Physiology, 2001, 127(4): 1361-1366. DOI: 10.1104/pp.127.4.1361.
doi: 10.1104/pp.127.4.1361
pmid: 11743074
|
[15] |
Haigler C H, Betancur L, Stiff M R, et al. Cotton fiber: a powerful single-cell model for cell wall and cellulose research[J]. Frontiers in Plant Science, 2012, 3(104): 1-7. DOI: 10.3389/fpls.2012.00104.
doi: 10.3389/fpls.2012.00104
|
[16] |
Li Y, Tu L L, Pettolino F A, et al. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring[J]. Plant Biotechnology Journal, 2016, 14(3): 951-963. DOI: 10.1111/pbi.12450.
doi: 10.1111/pbi.12450
|
[17] |
Shan C M, Shangguan X X, Zhao B, et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3[J]. Nature Communications, 2014, 5: 5519. DOI: 10.1038/ncomms6519.
doi: 10.1038/ncomms6519
|
[18] |
Xu B, Gou J Y, Li F G, et al. A cotton BURP domain protein interacts with alpha-expansin and their co-expression promotes plant growth and fruit production[J]. Molecular Plant, 2013, 6(3): 945-958. DOI: 10.1093/mp/sss112.
doi: 10.1093/mp/sss112
|
[19] |
An C, Saha S, Jenkins J N, et al. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton[J]. Molecular Genetics and Genomics, 2007, 278(5): 539-553. DOI: 10.1007/s00438-007-0270-9.
doi: 10.1007/s00438-007-0270-9
|
[20] |
Ji S J, Lu Y C, Feng J X, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array[J]. Nucleic Acids Research, 2003, 31(10): 2534-2543. DOI: 10.1093/nar/gkg358.
doi: 10.1093/nar/gkg358
|
[21] |
Harmer S E, Orford S J, Timmis J N. Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton)[J]. Molecular Genetics and Genomics, 2002, 268(1): 1-9. DOI: 10.1007/s00438-002-0721-2.
doi: 10.1007/s00438-002-0721-2
pmid: 12242493
|
[22] |
Lv L M, Zuo D Y, Wang X F, et al. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton[J]. BMC Plant Biology, 2020, 20: 223. DOI: 10.1186/s12870-020-02362-y.
doi: 10.1186/s12870-020-02362-y
|
[23] |
Bajwa K S, Shahid A A, Rao A Q, et al. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton[J]. Frontiers in Plant Science, 2015, 6: 838. DOI: 10.3389/fpls.2015.00838.
doi: 10.3389/fpls.2015.00838
|
[24] |
Cosgrove D J. Diffuse growth of plant cell walls[J]. Plant Physiolgy, 2018, 176(1): 16-27. DOI: 10.1104/pp.17.01541.
doi: 10.1104/pp.17.01541
|
[25] |
Kerff F, Amoroso A, Herman R, et al. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization[J]. Proceedings of the National Academy of Sciences, 2008, 105(44): 16876-16881. DOI: 10. 1073pnas.0809382105.
doi: 10. 1073pnas.0809382105
|
[26] |
Yennawar N H, Li L C, Dudzinski D M, et al. Crystal structure and activities of EXPB1 (Zea m1), a beta-expansin and group-1 pollen allergen from maize[J]. Proceedings of the National Academy of Sciences, 2006, 103(40): 14664-14671. DOI: 10.1073/pnas.0605979103.
doi: 10.1073/pnas.0605979103
|
[27] |
Zhu T, Liang C Z, Meng Z G, et al. CottonFGD: an integrated functional genomics database for cotton[J]. BMC Plant Biology, 2017, 17: 101. DOI: 10.1186/s12870-017-1039-x.
doi: 10.1186/s12870-017-1039-x
|
[28] |
Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. DOI: 10.1093/molbev/mst197.
doi: 10.1093/molbev/mst197
|
[29] |
Kelley L A, Mezulis S, Yates C M, et al. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nature Protocols, 2015, 10(6): 845-858. DOI: 10.1038/nprot.2015.053.
doi: 10.1038/nprot.2015.053
|
[30] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[31] |
Wang T, Chen Y, Tabuchi A, et al. The target of beta-expansin EXPB1 in maize cell walls from binding and solid-state NMR studies[J]. Plant Physiolgy, 2016, 172(4): 2107-2119. DOI: 10.1104/pp.16.01311.
doi: 10.1104/pp.16.01311
|
[32] |
Georgelis N, Tabuchi A, Nikolaidis N, et al. Structure-function analysis of the Bacterial expansin EXLX1[J]. Journal of Biological Chemistry, 2011, 286(19): 16814-16823. DOI: 10.1074/jbc.M111.225037.
doi: 10.1074/jbc.M111.225037
pmid: 21454649
|
[33] |
Cosgrove D J. Microbial expansins[J]. Annual Review of Microbiology, 2017, 71: 479-497. DOI: 10.1146/annurev-micro-
doi: 10.1146/annurev-micro-090816-093315
pmid: 28886679
|