晚播增密对棉花群体光合及干物质积累与分配的影响

李慧,万华龙,田立文,刘连涛,张永江,白志英,张科,王国平,孙红春,李存东

PDF(2455 KB)
PDF(2455 KB)
棉花学报 ›› 2020, Vol. 32 ›› Issue (4) : 339-347. DOI: 10.11963/1002-7807.lhlcd.20200622
研究与进展

晚播增密对棉花群体光合及干物质积累与分配的影响

作者信息 +

The Effects of Increased-Density on Canopy Apparent Photosynthesis, Dry Matter Accumulation and Distribution of Cotton under Late-Sown Condition

Author information +
History +

摘要

【目的】研究晚播条件下不同高密度棉花群体光合速率、叶面积指数和干物质积累与分配特点,旨在探索黄河流域冀中植棉区棉花晚播适宜的密度。【方法】于2017年和2018年进行大田试验,设置2个密度处理:9.0万株·hm-2(D1)和12.0万株·hm-2(D2)。2017年以农大601和国欣棉9号为材料,2018年供试品种为农大601。研究不同高密度对棉花群体光合特性及产量构成的影响。【结果】在棉花快速生长时期,D2密度的叶面积指数显著高于D1,可见较高密度在棉花旺盛生长阶段易创建较大的冠层结构,但过高的叶面积指数导致群体郁闭,不利于群体光合性能提高,尽管D2群体总干物质及营养器官干物质积累较多,但较强营养生长势制约了生殖生长,导致生殖器官养分分配比例降低;增加密度对铃重及衣分没有影响,可能因为年际间气候因素影响,其他产量构成因素2年结果不尽一致。【结论】在该地区适宜晚播条件下,D1更有利于构建合理的棉花群体结构,易达到稳产;而D2有获得高产的潜力,在提高群体干物质总量的基础上,进一步通过化控技术改善群体器官间养分分配,提高经济系数可获得更好产量。

Abstract

[Objective] The effects of high planting densities on canopy apparent photosynthesis, leaf area index, dry matter accumulation and distribution features of cotton were studied, with purpose to elucidate the suitable density for late cotton-sown system in the Yellow River cultivation region. [Method] Field experiments including two planting density treatments (D1 of 9.0×104 plant·hm-2 and D2 of 12.0×104 plant·hm-2) were conducted during the 2017 and 2018 growth seasons, using cultivars Nongda 601(ND-601) and Guoxin Cotton 9(GX-9) in 2017 and Nongda 601 in 2018 as the materials. The effects of densities on photosynthetic characteristics and yield components were investigated. [Result] At fast growth stage, the leaf area index under D2 was significantly higher than that of D1, which sustained longer peak duration under the former condition. These results suggested that higher density can promote the generation of enlarged canopy structure at vigorous growth stage. However, much intensified leaf area index resulted in population shading and reduced canopy apparent photosynthesis. Although D2 treatment was shown to benefit the biomass accumulation of the population plants and the vegetative organs. But the enhanced vegetative growth led to restriction on the reproductive tissue, which resulted in lowered nutrient distribution to reproductive organ; the increase of density was no significant difference on boll weight and lint percentage. Perhaps because of the interannual climate variation, the results of other yield components obtained across the two growth seasons were inconsistent with each other. [Conclusion] Under the suitable conditions, D1 treatment is beneficial to establish the reasonable population structure and to achieve stable yield. In contrast, the D2 treatment has the potential to achieve higher yield. Our results suggested that D2 together with adoption of chemical control technology can help high-yielding cultivation, through increasing population dry matter amount, improving nutrient distribution across organs, and elevating harvest index of the cotton plants.

关键词

棉花 / 密度 / 群体光合特性 / 干物质积累与分配

Keywords

cotton / density / canopy apparent photosynthesis / dry matter accumulation and distribution

引用本文

导出引用
李慧 , 万华龙 , 田立文 , 刘连涛 , 张永江 , 白志英 , 张科 , 王国平 , 孙红春 , 李存东. 晚播增密对棉花群体光合及干物质积累与分配的影响[J]. 棉花学报, 2020, 32(4): 339-347. https://doi.org/10.11963/1002-7807.lhlcd.20200622
Li Hui , Wan Hualong , Tian Liwen , Liu Liantao , Zhang Yongjiang , Bai Zhiying , Zhang Ke , Wang Guoping , Sun Hongchun , Li Cundong. The Effects of Increased-Density on Canopy Apparent Photosynthesis, Dry Matter Accumulation and Distribution of Cotton under Late-Sown Condition[J]. Cotton Science, 2020, 32(4): 339-347. https://doi.org/10.11963/1002-7807.lhlcd.20200622
棉花轻简化栽培是立足中国国情,以轻简省工、节本增效、可持续发展为目标建立起来的新型栽培技术体系。针对这一发展趋势,调控优化棉花群体大小是改善棉田环境、实现集中收获或机械采收的重要途径[1,2]
密度改变对棉花个体和群体生长发育影响很大[3,4],种植密度通过影响棉株的株型、叶面积指数(Leaf area index, LAI),即个体与群体形态指标,进而对干物质积累与分配、棉铃空间分布产生影响,最终影响产量的变化[5,6,7,8]。叶面积指数是影响棉花冠层结构与群体光合的重要因素之一[9]。高密度棉花群体优势大,更易获得较高的群体叶面积指数,且持续时间较长,有利于积累更多的光合产物用于提高产量[10],有效结铃期缩短,可实现集中结铃[11]。我国植棉产量以新疆棉区最高,为探究超高产棉田的群体性状及产量形成,展开了大量研究,密度为24万株·hm-2时棉田叶面积指数达到峰值,冠层结构分布合理,有利于提高群体光合速率[12,13];杜明伟等[14]研究表明密度为16万~17万株·hm-2的超高产棉田叶面积指数先升后降,但群体光合速率一直保持较高值,群体干物质积累量较高。由于地域差异制约了黄河流域棉区棉花机械化栽培水平,相应配套栽培措施还应继续完善。
随着轻简化栽培技术的发展,董合忠等[15]提出在黄河流域棉区棉花应由“中密中株型”群体结构转向为“增密壮株型”。增加密度,单株有效结铃期缩短,棉花播种期由4月中下旬推迟到5月初,适当晚播会改善棉铃分布结构,减少烂铃,防止叶片早衰[4];随着密度的增加,棉株第一果枝节位出现时间推迟,抑制了叶枝的生长[16],晚播与高密结合处理下产量并未显著减少[3]。王士红等[17]研究从常规密度5.25万株·hm-2增加到6.75万株·hm-2,并调控施氮量达到棉株最适铃数和铃重实现高产;邢晋等[18]研究结果表明在7.5万~10.5万株·hm-2范围内配施适量缩节胺,棉花可获得较好经济效益;黎芳等[19]研究种植密度在6万~12万株·hm-2范围内,12万株·hm-2的产量及熟期在降雨较少年份与9万株·hm-2无显著性差异。可见,黄河流域棉区密植范围一直处于探索阶段,并且关于高密度下群体光合性能与产量关系的研究较少。因此,选取前人研究比较集中的2个高密度:9.0万株·hm-2和12.0万株·hm-2作为试验处理,研究冀中植棉区晚播下不同密度处理对棉花群体光合性能与干物积累分配比例的影响,探索不同密度棉花群体结构质量与产量的关系,以期为实现该地区的简化植棉提供指导。

1 材料与方法

1.1 试验地概况

试验于2017―2018年在河北农业大学清苑试验站进行(115°47′E,38°76′N),属暖温带季风气候。试验地土质为壤土,含有机质16.87 g·kg-1,全氮1.24 g·kg-1,碱解氮82.07 mg·kg-1,速效磷24.11 mg·kg-1,速效钾128.5 mg·kg-1

1.2 试验设计

2017年为品种和密度处理,采用裂区设计,主区为密度:9.0万株·hm-2(D1)和12.0万株·hm-2(D2);副区为品种:农大601(ND-601)和国欣棉9号(GX-9)。由于2017年国欣棉9号2个密度差异不显著,2018年仅设密度处理,供试品种为农大601(ND-601)。2年试验均在5月4日播种,种植行距为0.76 m。其他同常规管理措施,设置3次重复,每小区长20.5 m,宽12 m。

1.3 测定项目及方法

1.3.1 叶面积指数。使用SUNSCAN冠层分析仪测得叶面积指数。
1.3.2 群体光合速率。于晴朗天气9:00―11:00和13:00―15:00用LI-840A二氧化碳分析仪进行测定。同化箱以有机玻璃为材质,长0.6 m,宽0.6 m,高1.2 m。将同化箱罩住植株,底部紧挨地面以防空气在同化箱底部泄露。当同化箱内CO2含量在350~400 mg·kg-1之间变化、空气温度比外界环境温度低3 ℃、空气相对湿度保持与外界相近时,开始记录值。测定系统为闭路,内部由小型风扇搅拌气体,以使内部气体混合均匀。9.0万株·hm-2和12.0万株·hm-2密度处理,每个小区分别选取代表性的3株和5株进行测量,当CO2稳定下降后开始计时,测定时间为40 s。
CAP=ΔC×V×3600tA×(440022.4×273273+T)×P760.
式中,CAP:群体光合强度(g·m-2·h-1);△C=△C1+△C2,其中△C1为同化箱罩植株时内部CO2的下降数值(cm3·m-3),△C2为去除植株后CO2的上升数值(cm3·m-3);V:同化箱体积(m3);t:测定时间(s);A:土地面积(m2);T:测定时温度(℃);P:气压(mm汞柱)。
1.3.3 干物质积累。自盛蕾期开始,在棉花生长发育的各个时期取样,每个小区选取长势一致的棉株5株,从子叶节上1 cm处剪下,分解为主茎叶、果枝叶、叶枝叶、茎秆(包括主茎、去叶果枝与叶枝)、蕾铃五部分,分别装入牛皮纸袋中,105 ℃杀青半小时,80 ℃烘干至质量恒定,分别称量。
1.3.4 产量及产量构成因素。每个小区选代表性棉株50株,采收并记录单株成铃数,称量求得铃重。

1.4 数据处理

采用MS Excel 2010和SPSS 21.0进行数据分析,采用最小显著差数法(Least significant difference, LSD)进行差异显著性检验(α=0.05)。

2 结果与分析

2.1 密度对棉花叶面积指数的影响

种植密度对叶面积指数产生了影响。如图1所示,综合2年2个品种数据来看,在整个生育期间,2个密度下叶面积指数总体呈现“先升高后降低”的趋势。2017年,在出苗后69 d以后,农大601(ND-601)在D2处理叶面积指数始终保持较高趋势,且生长中期与D1差异显著,2个密度下均在出苗后111 d时达到峰值;国欣棉9号(GX-9),2个密度下叶面积指数均在出苗后97 d时达到峰值,但密度间无显著差异。国欣棉9号叶面积指数达到最大值的时间相比农大601提前。2018年,农大601在出苗后44 d开始,D2密度下叶面积指数迅速增加,于出苗后83 d时达到高峰,显著高于D1处理;而D1群体在出苗后103 d才达到高峰,此后2个密度处理下叶面积指数下降,下降过程中2个处理差异不显著。
图1 不同密度下棉花叶面积指数的变化(2017―2018年)
不同小写字母表示0.05水平下的差异显著(P<0.05)。误差线表示3个重复的标准差。

Fig. 1 Variation of different densities on leaf area index of cotton in 2017 and 2018

Different lowercase letters indicate significant difference at the 0.05 probability level (P<0.05). Error bars indicate standard deviation calculated for three replications.

Full size|PPT slide

2.2 密度对棉花群体光合速率的影响

图2可知,2017年,在出苗后81 d时,2个品种在D1密度下具有更好的群体结构,群体光合速率处于高峰期,且农大601在出苗后81 d和出苗后97 d时,D1密度群体光合速率显著高于D2处理;而2个品种的D2密度下群体光合速率高峰期推迟到出苗后111 d,农大601在出苗后129 d时D2密度的群体光合速率显著高于D1处理。
图2 不同密度下棉花群体光合速率的比较(2017―2018年)
不同小写字母表示0.05水平下的差异显著(P<0.05)。误差线表示3个重复的标准差。

Fig. 2 Comparison of canopy apparent photosynthesis of cotton under different densities in 2017 and 2018

Different lowercase letters indicate significant difference at the 0.05 probability level (P<0.05). Error bars indicate standard deviation calculated for three replications.

Full size|PPT slide

2018年,随生育期推进,2个密度下农大601的群体光合速率变化趋势一致,出苗后70 d达到峰值,随后开始下降,到出苗后118 d时趋于稳定。农大601在生长中期时D2群体光合速率高于D1,可能因为当年夏季雨水较多,高密度棉花群体营养生长旺盛,群体光合速率较强,但在出苗后81 d之后,群体过于荫蔽,D2密度群体光合速率下降快。

2.3 密度对棉花群体干物质积累与分配的影响

2.3.1 密度对棉花群体总干物质积累的影响。图3可知,高密度棉花群体有较高的总干物质积累量。2017年,农大601在出苗后119 d以后D2密度条件下总干物质积累量显著高于D1,而国欣棉9号密度间差异不显著。2018年农大601在生长高峰期(出苗后83 d)时,D2密度处理干物质积累总量显著高于D1。
图3 不同密度下棉花群体总干物质积累的比较(2017―2018年)
不同小写字母表示0.05水平下的差异显著(P<0.05)。误差线表示3个重复的标准差。

Fig. 3 Comparison of population total dry matter accumulation of cotton under different densities in 2017 and 2018

Different lowercase letters indicate significant difference at the 0.05 probability level (P<0.05). Error bars indicate standard deviation calculated for three replications.

Full size|PPT slide

2.3.2 密度对棉花群体生殖器官干物质积累的影响。图4综合2年结果看,2个品种的2个密度处理生殖器官群体干物质积累增长趋势基本相同,各测定时间差异不显著。只是2018年农大601在后期D1的显著大于D2,可能与当年雨水大,D2群体花铃脱落严重有关。
图4 不同密度下棉花生殖器官群体干物质积累量的比较(2017―2018年)
不同小写字母表示0.05水平下的差异显著(P<0.05)。误差线表示3个重复的标准差。

Fig. 4 Comparison of population dry matter accumulation of reproductive organs of cotton under different densities in 2017 and 2018

Different lowercase letters indicate significant difference at the 0.05 probability level (P<0.05). Error bars indicate standard deviation calculated for three replications.

Full size|PPT slide

2.3.3 密度对棉花群体营养器官干物质积累的影响。图5可得,2017年,2个密度下农大601的营养器官干物质积累量均在出苗后102 d和出苗后119 d之间增长最快,且在出苗119 d之后高密度D2棉花群体营养器官干物质积累量显著高于D1;国欣棉9号密度间差异不显著。而2018年,2个密度下农大601 的营养器官干物质积累量随着生育进程的推进,呈先升高后降低趋势,在棉花生长旺盛时期(出苗后83 d时),高密度D2棉花群体营养器官干物质积累量显著高于D1,其他时期均无显著性差异。
图5 不同密度下棉花群体营养器官干物质积累的比较(2017―2018年)
不同小写字母表示0.05水平下的差异显著(P<0.05)。误差线表示3个重复的标准差。

Fig. 5 Comparison of population dry matter accumulation of vegetative organs of cotton under different densities in 2017 and 2018

Different lowercase letters indicate significant difference at the 0.05 probability level (P<0.05). Error bars indicate standard deviation calculated for three replications.

Full size|PPT slide

2.3.4 密度对棉花群体生殖器官干物质分配比例的影响。2017年数据显示(图6),2个品种均在出苗后119 d以后,呈现D1密度处理的生殖器官群体干物质分配比例显著高于D2密度处理。而2018年农大601密度间处理差异不显著。
图6 不同密度下棉花群体生殖器官干物质分配比例的比较(2017―2018年)
不同小写字母表示0.05水平下的差异显著(P<0.05)。误差线表示3个重复的标准差。

Fig. 6 Comparison of the allocation ratio of reproductive organs dry matter of cotton under different densities in 2017 and 2018

Different lowercase letters indicate significant difference at the 0.05 probability level (P<0.05). Error bars indicate standard deviation calculated for three replications.

Full size|PPT slide

2.3.5 密度对棉花群体营养器官干物质分配比例的影响。2017年,农大601棉花群体营养器官干物质分配比例随生育期推进呈先降低后升高再降低的趋势(图7)。2017年出苗后119 d以后,2个品种D2群体营养器官干物质分配比例显著高于D1。2018年农大601密度间营养器官干物质分配比例差异不显著。
图7 不同密度下棉花群体营养器官干物质分配比例的比较(2017―2018年)
不同小写字母表示0.05水平下的差异显著(P<0.05)。误差线表示3个重复的标准差。

Fig. 7 Comparison of the allocation ratios of vegetative organs dry matter of cotton under different densities in 2017 and 2018==717 Different lowercase letters indicate significant difference at the 0.05 probability level (P<0.05). Error bars indicate standard deviation calculated for three replications.

Full size|PPT slide

2.4 密度对棉花产量及其构成因素的影响

表1所示,2017年,密度增加则单株成铃数减少,农大601和国欣棉9号的D2密度处理单株成铃数分别较D1低约24.35%、32.70%;2个品种2个密度间的群体成铃数、籽棉产量及衣分均未达到显著性差异水平。2018年,由于雨水较多,农大601 D1密度处理单株成铃数较2017年降低,D2密度处理群体成铃数显著高于D1,导致D2籽棉产量比D1增产26.9%。
表1 不同密度下不同品种棉田产量及产量构成因素的比较(2017―2018年)

Table 1 Comparison of yield and yield components of cotton under different densities and cultivars in 2017 and 2018

年份
Years
品种
Cultivars
处理
Treatments
单株成铃数
Boll number per plant
群体成铃数
Population boll number per hectare/(104)
铃重
Boll
weight/g
籽棉产量
Seed cotton yield/
(kg·hm-2)
衣分
Lint percentage/%
2017 ND-601 D1 8.09 a 72.91 a 6.09 a 4 440.13 a 41.42 a
D2 6.12 b 73.45 a 6.10 a 4 480.29 a 43.09 a
GX-9 D1 8.38 a 75.46 a 5.92 a 4 467.11 a 43.91 a
D2 5.64 b 67.79 a 6.08 a 4 121.44 a 42.19 a
2018 ND-601 D1 6.91 a 62.03 b 4.80 a 2 977.50 b 34.26 a
D2 6.50 a 78.42 a 4.82 a 3 780.00 a 34.02 a
注:同列数据后小写字母不同表示0.05水平差异显著(P<0.05)。
Note: Different lowercase letters within the same parameter labeled indicate significant difference at the 0.05 probability level (P<0.05).

3 讨论

3.1 增密对棉花群体光合性能的影响

合理调整种植密度,有利于优化群体冠层结构,进而提高作物群体光合利用效率[20]。不同棉花种植密度范围内叶面积指数呈动态变化。李鹏程等[21]研究表明在3.0万~7.5万株·hm-2植棉密度范围内,随着密度的增加,叶面积指数呈升高趋势;韩焕勇等[22]研究表明31.5万株·hm-2密度过大,在盛铃期时棉花叶面积指数低于27.0万株·hm-2密度。本研究结果表明,在棉花快速生长时期,高密度D2群体叶面积指数升高较快,营养生长旺盛,总干物质积累量较高;但由于生长高峰期群体过于郁闭,影响了群体光合性能,使群体光合速率低于D1处理。随着生育进程,在后期群体衰老过程密度间叶面积指数变化无明显差异,高密度D2保持较高的群体光合速率。可见,前期较强的营养生长势有利于减缓群体衰老。张旺锋等[23]研究表明高密度群体光合速率较早增强,在盛铃期时叶面积指数与群体光合速率达到峰值。本研究结果表明,由于2018年7-8月雨水充足,高密度D2在花铃期时生长旺盛,有较高的群体光合速率,但在生长中后期群体光合速率迅速下降,并在吐絮期低于D1处理,影响生殖器官干物质积累分配比例降低。
近年来,随棉花生产形势转变,黄河流域棉区提倡适当晚播增密技术来实现棉花轻简化栽培[24],在探索更高密度时发现干物质积累与密度的关系发生了改变[25],棉花种植密度过高或过低均不利于群体干物质积累及其在营养器官和生殖器官间的分配比例[26]。在较低密度范围内,最大密度为8.7万株·hm-2时,随着密度增加,营养器官占单株总干物质的比例增加,而生殖器官所占比例下降[27]。可见,棉花群体营养生长势与密度呈正相关[25]。7.5万~12.0万株·hm-2种植密度范围内,中密度棉花群体干物质快速积累早于高密度和低密度,使其生长中心更早地转入生殖生长,从而提高产量[28]。本研究表明,在棉花整个生长发育期间,D2高密度一直保持较高光合物质积累量,在生长前期,密度处理间养分转运比例无明显差异;当棉花逐渐转入生殖生长占优势阶段,D1分配到生殖器官的比例明显高于D2处理,且随生育进程差异逐渐增强。总干物质积累量与分配比例的互作效应最终使处理间产量没有明显差异。
此外,不同密度对铃重和单株有效结铃数影响不一致。棉花高密度种植提高单位面积成铃数,但显著降低了铃重[29];牛玉萍[30]研究表明在12万~36万株·hm-2密度范围内单位面积成铃数呈现先增大后减小趋势。邢晋等[18]研究表明,在7.5万~10.5万株·hm-2密度范围内,随密度增加,单位面积的总铃数增加,铃重降低,籽棉产量提高;而10.5万~13.5万株·hm-2范围内,单位面积的总铃数显著下降,籽棉产量亦显著降低。本研究中2017年试验结果显示,在9万~12万株·hm-2范围内,高密度D2单株有效成铃数有降低趋势,铃重、衣分及籽棉产量与D1处理无差异;而2018年,随密度提高,铃重不变,群体成铃数增加,籽棉产量提高。可见,年际间密度处理产量效应不稳定,有待于进一步研究。

4 结论

适期晚播后,9.0万株·hm-2密度下棉花具有更好的群体结构,群体光合性能好,源库关系协调,光合产物向生殖器官分配比例大,有利于稳产;高密度(12.0万株·hm-2)棉花群体在生长发育前期有较高的叶面积指数,但群体过于荫蔽,导致群体光合速率降低,生殖器官分配比例较低,但群体营养生长势较强可以获得更高的总干物质积累量,可进一步通过水、肥及化控等栽培技术来协调库源关系,可获得更好产量,且高密度条件下单株有效结铃数低,利于集中采收,减少收获次数。从2年产量水平来看,高密度处理年际间更稳定。

参考文献

[1]
喻树迅, 张雷, 冯文娟. 棉花生产规模化、机械化、信息化、智能化和社会服务化发展战略研究[J]. 中国工程科学, 2016, 18(1):137-148. https://doi.org/10.15302/J-CESS-2016016
Yu Shuxun, Zhang Lei, Feng Wenjuan. Study on strategy of large scale, mechanization, informationization, intelligence and social services for cotton production[J]. Engineering Sciences, 2016, 18(1):137-148.
[2]
董合忠, 杨国正, 李亚兵, 等. 棉花轻简化栽培关键技术及其生理生态学机制[J]. 作物学报, 2017, 43(5):631-639. https://doi.org/10.3724/SP.J.1006.2017.00631
Dong Hezhong, Yang Guozheng, Li Yabing, et al. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms[J]. Acta Agronomica Sinica, 2017, 43(5):631-639.
[3]
Dong H Z, Li W J, Tang W, et al. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 2006, 98: 106-115. https://doi.org/10.1016/j.fcr.2005.12.008
[4]
Wang X R, Hou Y R, Du M W, et al. Effect of planting date and plant density on cotton traits as relating to mechanical harvesting in the Yellow River Valley Region of China[J]. Field Crops Research, 2016, 198:112-121. https://doi.org/10.1016/j.fcr.2016.09.010
[5]
吕新, 张伟, 曹连莆. 不同密度对新疆高产棉花冠层结构光和特性和产量形成的影响[J]. 西北农业学报, 2005, 14(1):142-148. https://doi.org/10.7606/j.issn.1004-1389.2005.1.032
Xin, Zhang Wei, Cao Lianpu. Effect of different density on cotton canopy structure, photosynjournal and yield formation in high-yield cotton of Xinjiang[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2005, 14(1):142-148.
[6]
周永萍, 田海燕, 杜海英, 等. 种植密度对棉花生长结铃及产量品质的影响[J]. 作物杂志, 20174:84-88. https://doi.org/10.16035/j.issn.1001-7283.2017.04.015
Zhou Yongping, Tian Haiyan, Du Haiying, et al. Influence of different planting densities on growth boll setting, yield and quality of cotton[J]. Crops, 2017(4):84-88.
[7]
王志才. 冀中南棉区种植密度和整枝方式对棉花群体质量的影响[D]. 保定: 河北农业大学, 2011.
Wang Zhicai. Effect of planting densities and pruned methods on population quality of cotton in the central-south region of Hebei[D]. Baoding: Hebei Agricultural University, 2011.
[8]
牛玉萍, 陈宗奎, 杨林川, 等. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响[J]. 作物学报, 2016, 42(10):1506-1515. https://doi.org/10.3724/SP.J.1006.2016.01506
Niu Yuping, Chen Zongkui, Yang Linchuan, et al. Effect of drip irrigation pattern and planting density on growth and yield performance of cotton in arid area[J]. Acta Agronomica Sinica, 2016, 42(10):1506-1515.
[9]
冯国艺, 罗宏海, 姚炎帝, 等. 新疆超高产棉花叶、铃空间分布及与群体光合生产的关系[J]. 中国农业科学, 2012, 45(13):2607-2617. https://doi.org/10.3864/j.issn.0578-1752.2012.13.005
Feng Guoyi, Luo Honghai, Yao Yandi, et al. Spatial distribution of leaf and boll in relation to canopy photosynjournal of super high-yielding cotton in Xinjiang[J]. Scientia Agricultura Sinica, 2012, 45(13):2607-2617.
[10]
罗宏海, 张旺锋, 赵瑞海, 等. 种植密度对新疆膜下滴灌棉花群体光合速率、冠层结构及产量的影响[J]. 中国生态农业学报, 2006, 14(4):112-114.
Luo Honghai, Zhang Wangfeng, Zhao Ruihai, et al. Effects of planting densities on canopy apparent photosynjournal, canopy structure and yield of cotton drip-irrigated under the mulch in Xinjiang[J]. Chinese Journal of Eco-Agriculture, 2006, 14(4):112-114.
[11]
王香茹. 黄河流域棉区适于机械采收的棉花播期和密度研究[D]. 北京: 中国农业大学, 2016.
Wang Xiangru. The managing of planting date and plant density for mechanical harvesting of cotton in the Yellow River valley of China[D]. Beijing: China Agricultural University, 2016.
[12]
冯国艺, 姚炎帝, 罗宏海, 等. 新疆超高产棉花冠层光分布特征及其与群体光合生产的关系[J]. 应用生态学报, 2012, 23(5):1286-1294.
Feng Guoyi, Yao Yandi, Luo Honghai, et al. Canopy light distribution and its correlation with photosynthetic production in super-high yielding cotton fields of Xinjiang, Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(5):1286-1294.
Taking the super-high yielding cotton fields (lint yield > or = 4000 kg x hm(-2)) in Xinjiang as the objects, this paper studied the canopy light distribution, photosynthetic rate, and dry matter accumulation at different growth stages, as well as the relationships between the characteristics of canopy light environment and the photosynthetic production. From full flowering stage to late full bolling stage, the light absorption proportion in the upper, middle and lower canopy layers in the super-high yielding cotton fields was 2:2:1, and the canopy transmission coefficients for radiation penetration and diffuse penetration were 0.20-0.55 and 0.22-0.56, respectively, being at reasonable level. The leaves in the middle and lower canopy layers could well accept light, and the leaf photosynthetic rate had little difference among different canopy layers. Compared with high yielding (3500 kg x hm(-2)) and generally high yielding (3000 kg x hm(-2)) cotton fields, super-high yielding cotton field had higher leaf area index and the highest canopy photosynthesis rate at early full boiling stage, and slowly decreased leaf area index, higher canopy photosynthesis rate, increased contribution of non-foliar organs to photosynthetic production, and larger dry matter accumulation from early boll-opening stage to full boll-opening stage. In cotton cultivation, to adjust the canopy structure for the equidistribution of light and canopy photosynthesis capacity in vertical direction could be the important strategy for the efficient utilization of absorbed light energy and the realization of super-high yielding.
[13]
姚贺盛, 张亚黎, 易小平, 等. 海岛棉和陆地棉叶片光合特性、冠层结构及物质生产的差异[J]. 中国农业科学, 2015, 48(2):251-261. https://doi.org/10.3864/j.issn.0578-1752.2015.02.05
Yao Hesheng, Zhang Yali, Yi Xiaoping, et al. Study on differences in comparative canopy structure characteristics and photosynthetic carbon assimilation of field-grown pima cotton(Gossypium barbadense) and upland cotton (G. hirsutum)[J]. Scientia Agricultura Sinica, 2015, 48(2):251-261.
[14]
杜明伟, 冯国艺, 姚炎帝, 等. 杂交棉标杂A1和石杂2号超高产冠层特性及其与群体光合生产的关系[J]. 作物学报, 2009, 35(6):1068-1077. https://doi.org/10.3724/SP.J.1006.2009.01068
Du Mingwei, Feng Guoyi, Yao Yandi, et al. Canopy characteristics and its correlation with photosynjournal of super high-yielding hybrid cotton Biaoza A1 and Shiza 2[J]. Acta Agronomica Sinica, 2009, 35(6):1068-1077.
[15]
董合忠, 张艳军, 张冬梅, 等. 基于集中收获的棉花新型群体结构[J]. 中国农业科学, 2018, 51(24):4615-4624. https://doi.org/10.3864/j.issn.0578-1752.2018.24.003
Dong Hezhong, Zhang Yanjun, Zhang Dongmei, et al. New grouped harvesting based population structures of cotton[J]. Scientia Agricultura Sinica, 2018, 51(24):4615-4624.
[16]
Li T, Zhang Y, Dai J, et al. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production[J]. Field Crops Research, 2019, 230:121-131. https://doi.org/10.1016/j.fcr.2018.10.016
[17]
王士红, 杨中旭, 史加亮, 等. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3):395-407. https://doi.org/10.3724/SP.J.1006.2020.94074 94074
Wang Shihong, Yang Zhongxu, Shi Jialiang, et al. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton[J]. Acta Agronomica Sinica, 2020, 46(3):395-407.
[18]
邢晋, 张思平, 赵新华, 等. 种植密度和缩节胺互作对棉花株型及产量的调控效应[J]. 棉花学报, 2018, 30(1):53-61. https://doi.org/10.11963/1002-7807.xjzlz.20171201
Xing Jin, Zhang Siping, Zhao Xinhua, et al. Interaction of plant density with mepiquat chloride affects plant architecture and yield in cotton[J]. Cotton Science, 2018, 30(1):53-61.
[19]
黎芳, 杜明伟, 徐东永, 等. 黄河流域不同密度及施氮量下增效缩节胺化学封顶对棉花生长、产量和熟期的影响[J]. 中国农业大学学报, 2018, 23(3):10-22. https://doi.org/10.11841/j.issn.1007-4333.2018.03.02
Li Fang, Du Mingwei, Xu Dongyong, et al. Effects of chemical topping with fortified mepiquat chloride on cotton growth, yield and maturity under different plant densities and nitrogen rates in the Yellow River Valley Region of China[J]. Journal of China Agricultural University, 2018, 23(3):10-22.
[20]
Yao H, Zhang Y, Yi X, et al. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen[J]. Field Crops Research, 2016, 188:10-16. https://doi.org/10.1016/j.fcr.2016.01.012
[21]
李鹏程, 董合林, 刘爱忠, 等. 种植密度氮肥互作对棉花产量及氮素利用效率的影响[J]. 农业工程学报, 2015, 31(23):122-130. https://doi.org/10.11975/j.issn.1002-6819.2015.23.016
Li Pengcheng, Dong Helin, Liu Aizhong, et al. Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23):122-130.
[22]
韩焕勇, 邓福军, 李保成, 等. 种植密度对新疆高产棉花产量和品质的影响[J]. 江苏农业科学, 20094:98-100. https://doi.org/10.15889/j.issn.1002-1302.2009.04.045 2009. 04.045
Han Huanyong, Deng Fujun, Li Baocheng, et al. Effects of planting density on cotton yield and quality in Xinjiang high yield cotton field[J]. Jiangsu Agricultural Sciences, 2009(4):98-100.
[23]
张旺锋, 王振林, 余松烈, 等. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响[J]. 植物生态学报, 20042:164-171. https://doi.org/10.17521/cjpe.2004.0024
Zhang Wangfeng, Wang Zhenlin, Yu Songlie, et al. Effects of planting density on canopy photosynjournal, canopy structure and yield formation of high-yield cotton in Xinjiang, China[J]. Acta PhytoecologicaSinica, 2004(2):164-171.
[24]
张冬梅, 张艳军, 李存东, 等. 论棉花轻简化栽培[J]. 棉花学报, 2019, 31(2):163-168. https://doi.org/0.11963/1002-7807.zdmdhz.20190313
Zhang Dongmei, Zhang Yanjun, Li Chundong, et al. On light and simplified cotton cultivation[J]. Cotton Science, 2019, 31(2):163-168.
[25]
王志才, 李存东, 张永江, 等. 种植密度对棉花主要群体质量指标的影响[J]. 棉花学报, 2011, 23(3):284-288. https://doi.org/10.3969/j.issn.1002-7807.2011.03.016
Wang Zhicai, Li Cundong, Zhang Yongjiang, et al. Effects of different densities on main population quality of cotton[J]. Cotton Science, 2011, 23(3):284-288.
[26]
刘瑞显, 史伟, 徐立华, 等. 种植密度对棉花干物质、氮素累积与分配的影响[J]. 江苏农业学报, 2011, 27(2):250-257. https://doi.org/10.3969/j.issn.1000-4440.2011.02.004
Liu Ruixian, Shi Wei, Xu Lihua, et al. Effects of planting density on dry matter and nitrogen accumulation and distribution of cotton[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(2):250-257.
[27]
支晓宇, 韩迎春, 王国平, 等. 不同密度下棉花群体光辐射空间分布及生物量和纤维品质的变化[J]. 棉花学报, 2017, 29(4):365-373. https://doi.org/10.11963/l002-7807.zxylyb.20170407
Zhi Xiaoyu, Han Yingchun, Wang Guoping, et al. Changes to the PAR spatial distribution, biomass, and fiber quality in response to plant densities[J]. Cotton Science, 2017, 29(4):365-373.
[28]
王子胜, 吴晓东, 郭文琦, 等. 种植密度对东北特早熟棉区棉花生物量和氮素累积的影响[J]. 棉花学报, 2012, 24(1):35-43. https://doi.org/10.3969/j.issn.1002-7807.2012.01.005
Wang Zisheng, Wu Xiaodong, Guo Wenqi, et al. Effects of planting density on biomass and nitrogen accumulation in cotton, Northeast China[J]. Cotton Science, 2012, 24(1):35-43.
[29]
Zhang D, Luo Z, Liu S, et al. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton[J]. Field Crops Research, 2016, 197:1-9. https://doi.org/10.1016/j.fcr.2016.06.003
[30]
牛玉萍. 有限滴灌下种植密度对棉花产量形成及水分利用效率的影响[D]. 石河子: 石河子大学, 2016.
Niu Yuping. Effect of planting densities on cotton yield formation and water use efficiency under limited drip irrigation[D]. Shihezi: Shihezi University, 2016.

基金

国家重点研发计划(2018YFD0100306)
国家重点研发计划(2017YFD0201900)
国家自然科学基金(31871569)
国家自然科学基金(31171495)
河北省农业技术现代体系(HBCT2018040201)
河北省农业科技成果转化资金项目(20826415D)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2455 KB)

626

Accesses

0

Citation

Detail

段落导航
相关文章

/