哈克尼西棉细胞质雄性不育相关线粒体基因多态性分析

巩养仓, 张雪林, 吴建勇, 张兴平, 彭凡嘉, 张志刚, 贺云新, 梅正鼎, 周德桂, 邢朝柱

PDF(2528 KB)
PDF(2528 KB)
棉花学报 ›› 2017, Vol. 29 ›› Issue (4) : 327-335. DOI: 10.11963/1002-7807.gycxcz.20170630
研究与进展

哈克尼西棉细胞质雄性不育相关线粒体基因多态性分析

  • 巩养仓1,张雪林1,吴建勇2,张兴平1,彭凡嘉1,张志刚1,贺云新1,梅正鼎1,周德桂1,邢朝柱2*
作者信息 +

Polymorphism Analysis of Mitochondrial Genes Associated Cytoplasmic Male Sterility in Cotton (Gossypium harknessii Brandegee)

  • Gong Yangcang1, Zhang Xuelin1, Wu Jianyong2, Zhang Xingping1, Peng Fanjia1, Zhang Zhigang1, He Yunxin1, Mei Zhengding1, Zhou Degui1, Xing Chaozhu2*
Author information +
History +

摘要

【目的】研究棉花细胞质雄性不育的相关线粒体基因。【方法】利用线粒体基因atpAatp6atp9cobcoxⅠ、coxⅡ、coxⅢ、nad3nad6nad9探针,对哈克尼西棉细胞质雄性不育系S、保持系F、杂种一代H进行限制性片段长度多态性分析。【结果】atpAcoxⅢ、nad3nad6在3个材料间具有多态性。atpA、nad6基因探针与所有酶的杂交结果均显示出多态性,且在不育系与杂种一代中表现一致,而在保持系中差异明显。atpA/EcoRⅠ在3个材料中的杂交结果均显示2条带,其中1条2.2 kb的杂交带在3个材料中相同,另一条在不育系和杂种一代中大小为3.2 kb,而在保持系中为4.8 kb;atpA/PstⅠ杂交结果中,在不育系和杂种一代中的条带大小为17.0 kb,而在保持系中为10.2 kb。nad6探针与4个酶的杂交结果均为不育系和杂种一代比保持系多1~2条杂交带。coxⅢ/EcoRⅠ在3个材料中均有1条2.5 kb的杂交带,但在保持系与杂种一代中比不育系多1条1.7 kb的弱带。nad3/BamHⅠ的杂交结果在不育系与保持系中表现一致,而在杂种一代中缺少1条9.5 kb的杂交带。【结论】推测atpA、nad6基因参与调控不育系的形成,而coxⅢ、nad3可能受到恢复系核基因的调控,在不育系育性恢复过程中发挥较为重要的作用。

Abstract

[Objective] Cytoplasmic male sterility (CMS) is closely associated with the mitochondrial genome. The aim of this study was to identify CMS-related mitochondrial genes in cotton. [Method] Ten mitochondrial gene probes (i.e., atpA, atp6, atp9, cob, coxI, coxII, coxIII, nad3, nad6, and nad9) were used to analyze restriction fragment length polymorphisms in a Gossypium harknessii Brandegee cytoplasmic male sterile line (S), maintainer line (F), and hybrid (H). [Result] Ten probe/enzyme combinations for four probes (i.e., atpA, coxIII, nad3, and nad6) revealed polymorphisms among lines S, F, and H. All enzyme digestions for two probes (i.e., atpA and nad6) displayed the polymorphisms in three lines, with the same patterns for lines S and H. For atpA, the EcoR I digestion revealed two fragments in the three lines. The 2.2 kb fragment was common to all three lines, while the second fragment was 3.2 kb in lines S and H, but 4.8 kb in line F. The atpA/PstI combination produced a 17.0 kb fragment in lines S and H, but a 10.2 kb fragment in line F. For nad6, one or two additional fragments of the same length were detected in lines S and H, while line F had more than two additional fragments. With coxIII as a probe, the EcoR I digestion resulted in a 2.5 kb fragment in three lines, as well as a 1.7 kb fragment in lines F and H, but not in line S. With the nad3 probe, the same patterns were observed for lines S and F, while the pattern for line H differed because of a lack of a 9.5 kb fragment. [Conclusion] Both atpA and nad6 are involved in regulating the development of CMS, while coxIII and nad3 may be regulated by nuclear genes to help restore fertility in cytoplasmic male sterile lines.

关键词

棉花 / 细胞质雄性不育 / 线粒体基因 / 限制性片段长度多态性

Keywords

cotton / cytoplasmic male sterility / mitochondrial genes / restriction fragment length polymorphism

引用本文

导出引用
巩养仓, 张雪林, 吴建勇, 张兴平, 彭凡嘉, 张志刚, 贺云新, 梅正鼎, 周德桂, 邢朝柱. 哈克尼西棉细胞质雄性不育相关线粒体基因多态性分析[J]. 棉花学报, 2017, 29(4): 327-335. https://doi.org/10.11963/1002-7807.gycxcz.20170630
Gong Yangcang, Zhang Xuelin, Wu Jianyong, Zhang Xingping, Peng Fanjia, Zhang Zhigang, He Yunxin, Mei Zhengding, Zhou Degui, Xing Chaozhu. Polymorphism Analysis of Mitochondrial Genes Associated Cytoplasmic Male Sterility in Cotton (Gossypium harknessii Brandegee)[J]. Cotton Science, 2017, 29(4): 327-335. https://doi.org/10.11963/1002-7807.gycxcz.20170630

参考文献

[1] 中国农业科学院棉花研究所. 中国棉花遗传育种学[M]. 济南: 山东科学技术出版社, 2003: 302-305.
Institute of Cotton Research of Chinese Academy of Agricultural Science. Genetics and breeding of cotton in China[M]. Jinan: Shandong Science and Technology Press, 2003: 302-305.
[2] Handa H, Ohkawa Y, Nakajima K. Mitochondrial genome of rapeseed (Brassica napus L.). 1. Intraspecific variation of mitochondrial DNA[J]. Japanese Journal of Genetics, 1990, 65: 17-24.
[3] Huang Wei, Wang Li, Yi Ping, et al. RFLP analysis for mitochondrial genome of CMS-rice[J]. Acta Genetica Sinica, 2006, 33(4): 330-338.
[4] Hanson M R. Plant mitochondrial mutations and male sterility[J]. Annual Review of Genetics, 1991, 25: 461-486.
[5] Ivanov M K, Dymshits G M. Cytoplasmic male sterility and restoration of pollen fertility in higher plants[J]. Genetika, 2007, 43(4): 451-468.
[6] Sloan D B, Alverson A J, Chuchalovcak J P, et al. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates[J]. PLoS Biology, 2012, 10(1): e1001241 (2012-01-17) [2016-06-20].  http://dx.plos.org/10.1371/journal.pbio.1001241.
[7] 肖莉莉, 黄原. 线粒体DNA复制及其调控[J]. 中国生物化学与分子生物学报, 2006, 22(6): 435-441.
Xiao Lili, Huang Yuan. Mitochondrial DNA replication and its regulation[J]. Chinese Journal of Biochemistry and Molecular Biology, 2006, 22(6): 435-441.
[8] Levings C S. The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility[J]. Science, 1990, 250(4983): 942-947.
[9] Mower J P, Palmer J D. Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris[J]. Molecular Genetics and Genomics, 2006, 276: 285-293.
[10] Dewey R E, Timothy D H, Levings C S. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize[J]. Proceedings of the National Academy of Sciences of USA, 1987, 84: 5374-5378.
[11] Hack E, Lin C, Yang H, et al. T-URF 13 protein from mitochondria of Texas male-sterile maize (Zea mays L.): Its purification and submitochondrial localization, and immunogold labeling in anther tapetum during microsporogenesis[J]. Plant Physiology, 1991, 95(3): 861-870.
[12] Iwabuchi M, Koizuka N, Fujimoto H, et al. Identification and of the kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138[J]. Plant Molecular Biology, 1999, 39: 183-188.
[13] Moneger F, Smart C J, Leaver C J. Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene[J]. EMBO Journal, 1994, 13(1): 8-17.
[14] Akagi H, Sakamoto M, Shinjyo C, et al. A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility[J]. Current Genetics, 1994, 25: 52-58.
[15] Handa H, Gualberto J M, Grienenberger J M. Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the "Polima" male-sterile cytoplasm in rapeseed (Brassica napus L.)[J]. Current Genetics, 1995, 28(6): 546-552.
[16] Kim D H, Kang J G, Kim B D. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.)[J]. Plant Molecular Biology, 2007, 63: 519-532.
[17] Song J, Hedgcoth C. A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat[J]. Plant Molecular Biology, 1994, 26(1): 535-539.
[18] 王学德. 细胞质雄性不育棉花线粒体蛋白质和DNA的分析[J]. 作物学报, 2000, 26(1): 35-39.
Wang Xuede. Analyses of mitochondrial protein and DNA from cytoplasmic male sterile cotton[J]. Acta Agronomica Sinica, 2000, 26(1): 35-39.
[19] 李双双, 刘国政, 陈志文, 等. 哈克尼西棉细胞质陆地棉雄性不育系orf160的克隆及遗传转化[J]. 作物学报, 2013, 39(9): 1538-1547.
Li Shuangshuang, Liu Guozheng, Chen Zhiwen, et al. A unique orf160 cloning and genetic transformation of Gossypium harknessii cytoplasmic male sterile line in upland cotton[J]. Acta Agronomica Sinica, 2013, 39(9): 1538-1547.
[20] 黄晋玲. 棉花晋A细胞质雄性不育系的遗传研究[D]. 太谷: 山西农业大学, 2003.
Huang Jinling. Genetic study on Jin A cytoplasmic male sterile line in cotton (Gossypium)[D]. Taigu: Shanxi Agricultural University, 2003.
[21] 张晓, 张锐, 史计, 等. 陆地棉胞质雄性不育系与保持系线粒体基因组RFLP分析[J]. 中国农业科学, 2012, 45(2): 208-217.
Zhang Xiao, Zhang Rui, Shi Ji, et al. RFLP analysis of mitochondrial genomes between cytoplasmic male sterile line and maintainer line in upland cotton[J]. Scientia Agricultura Sinica, 2012, 45(2): 208-217.
[22] 巩养仓. 棉花细胞质雄性不育相关线粒体基因筛选[D]. 北京: 中国农业科学院, 2008.
Gong Yangcang. Screening of mitochondrial genes associated with cytoplasmic male sterility in cotton[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.
[23] Carlsson J, Leino M, Sohlberg J, et al. Mitochondrial regulation of flower development[J]. Mitochondrion, 2008, 8(1): 74-86.
[24] Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development[J]. Plant Cell, 2004, 16 (Suppl): 154-169.
[25] Fujii S, Toriyama K. Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility[J]. Plant and Cell Physiology, 2008, 49(10): 1484-1494.
[26] 宋国立, 崔荣霞, 王坤波, 等. 改良CTAB法快速提取棉花DNA[J]. 棉花学报, 1998, 10(5): 273-275.
Song Guoli, Cui Rongxia, Wang Kunbo, et al. A rapid improved CTAB method for extraction of cotton genomic[J]. Cotton Science, 1998, 10(5): 273-275.
[27] 萨姆布鲁克J, 拉塞尔D W. 分子克隆实验指南[M]. 3版. 黄培堂, 译. 北京: 科学出版社, 1993: 492-498.
Sambrook J, Rusell D W. Molecular cloning: A laboratory manual[M]. 3rd ed. Translated by Huang Peitang. Beijing: Science Press, 1993: 492-498.
[28] 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2004: 108-110.
Pan Ruichi. Plant physiology[M]. Beijing: Higher Education Press, 2004: 108-110.
[29] 李传友, 王斌. 小麦K型及V型细胞质雄性不育系线粒体DNA的比较分析[J]. 植物生理学报, 1998, 24(2): 153-158.
Li Chuanyou, Wang Bin. Mitochondrial DNAs of cytoplasmic male sterile lines of K- and V-type in wheat[J]. Acta Phytophysiologica Sinica, 1998, 24(2): 153-158.
[30] Ashutosh, Kumar P, Kumar V D, et al. A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm[J]. Plant and Cell Physiology, 2008, 49(2): 284-289.
[31] 段继强, 李建永, 杜光辉, 等. 苎麻线粒体基因coxⅡ和atpA与细胞质雄性不育相关性分析[J]. 中国农业科学, 2009, 42(2): 434-445.
Duan Jiqiang, Li Jianyong, Du Guanghui, et al. Relationship of mitochondrial genes coxⅡand atpA with cytoplasmic male sterility in Ramie[J]. Scientia Agricultura Sinica, 2009, 42(2): 434-445.
[32] Osada N, Akashi H. Mitochondrial-nuclear interactions and accelerated compensatory evolution: Evidence from the primate cytochrome C oxidase complex[J]. Molecular Biology and Evolution, 2012, 29(1): 337-346.

基金

国家科技重大专项——转基因生物新品种培育(2014ZX08005001-007);国家科技支撑计划——棉花种质资源发掘与创新利用(2013BAD01B03-05)
PDF(2528 KB)

262

Accesses

0

Citation

Detail

段落导航
相关文章

/