[1] Feschotte C, Jiang Ning, Wessler S R. Plant transposable element: where genetics meets genomic[J]. Nature Reviews Genetics, 2002, 3(5): 329-341.
[2] Casacuberta J M, Santiago N. Plant LTR retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes[J]. Gene, 2003, 311(5): 1-11.
[3] Bennetzen J L. Transposable element contributions to plant gene and genome evolution[J]. Plant Molecular Biology, 2000, 42(1): 251-269.
[4] Han Yujun, Qin Shanshan, Wessler S R. Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes[J]. BMC Genomics, 2013, 14: 71.
[5] Kapitonov V V, Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana[J]. Genetica, 1999, 107(1/2/3): 27-37.
[6] Zhang Xiaoyu, Feschotte C, Zhang Qiang, et al. P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases[J]. Proceeding of the National Academy of Science of the United States of America, 2001, 98(22): 12572-12577.
[7] Grzebelus D, Lasota S, Gambin T, et al. Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula[J]. BMC Genomics, 2007, 8: 409.
[8] Jiang Ning, Bao Zhirong, Zhang Xiaoyu, et al. An active DNA transposon family in rice[J]. Nature, 2003, 421(6919): 163-167.
[9] Zhang Xiaoyu, Jiang Ning, Feschotte C. PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted repeat transposable elements[J]. Genetics, 2004, 166(2): 971-986.
[10] Sambrook J, Russell D W. Molecular cloning: a laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 2001: 2100 .
[11] Bennetzen J L. Mechanisms and rates of genome expansion and contraction in flowering plants[J]. Genetica, 2002, 115(1): 29-36.
[12] Ma Bi, Li Tian, Xiang Zhonghuai, et al. MnTEdb, a collective resource for mulberry transposable elements[J/OL]. Database, 2015: bav004[2015-04-24]. http://database.oxfordjournals.org/ content/2015/bav004.long. dol:10.1093/database/bav004.
[13] Du Jianchang, Grant D, Tian Zhixi, et al. SoyTEdb: a comprehensive database of transposable elements in the soybean genome[J]. BMC Genomics, 2010, 11: 113.
[14] Tsugane K, Maekawa M, Takagi K, et al. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice[J]. Plant Journal, 2006, 45(1): 46-57.
[15] Sha Aihua, HuangJunbin, Zeng Duanpin. Relationship of activation of Tos17 and rice adult plant resistance to bacterial light[J]. Hereditas (Beijing), 2005, 27(2): 181-184.
[16] Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44(10): 1098-1103.
[17] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429): 423-427.
[18] Li Fuguang, Fan Guangyi, Wang Kunbo, et al. Genome sequence of the cultivated cotton Gossypium arboretum[J]. Nature Genetics, 2014, 46(6): 567-572.
[19] Li Fuguang, Fan Guangyi, Lu Cairui, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530.
[20] Zhang Tianzhen, Hu Yan, Jiang Wenkai, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537.
[21] 刘国元, 吴嫚, 于霁雯, 等. 雷蒙德氏棉Argonaute基因家族的生物信息学预测与分析[J]. 棉花学报, 2014, 26(5): 411-419.
Liu Guoyuan, Wu Man, Yu Jiwen, et al. Genome-wide identification of Argonaute gene family in Gossypium raimondii using bioinformatic analysis[J]. Cotton Science, 2014, 26(5): 411-419.
[22] 徐珍珍, 郭琪, 刘静, 等. 雷蒙德氏棉DnaJ 蛋白的生物信息学预测及盐胁迫下的表达分析[J]. 棉花学报, 2015, 27(5): 391- 400.
Xu Zhenzhen, Guo Qi, Liu Jing, et al. Genome-wide identification and expression pattern analysis of DnaJ protein family in Gossypium raimondii under salt stress using a bioinformatic method[J]. Cotton Science, 2015, 27(5): 391-400.
[23] Jennifer S H, HyeRan K, John D N, et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium[J]. Genome Research, 2006, 16(10): 1252-1261.
[24] Udall A, Swanson J M, Haller K, et al. A global assembly of cotton ESTs[J]. Genome Research, 2006, 16(3): 441-450.
[25] 孙海悦, 张志宏. 苹果微型反向重复转座元件(MITE)的分离与鉴定[J]. 西北农林科技大学学报(自然科学版), 2014, 42(8): 147-154.
Sun Haiyue, Zhang Zhihong. Isolation and characterization of miniature inverted-repeat transposable elements in apple[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(8):147-154.
[26] Zabala G, Vodkin L. A putative autonomous 20.5 kb CACTA transposon subfamily in an F3' H allele identifies a new CACTA transposon subfamily Glycine max[J/OL]. BMC Plant Biology, 2008, 8(2): 124[2015-04-25]. http://link.springer.com/article/10.1186/1471-2229-8-124. |