棉花学报 ›› 2021, Vol. 33 ›› Issue (4): 337-346.doi: 10.11963/cs20200065
收稿日期:
2020-08-04
出版日期:
2021-07-15
发布日期:
2021-09-14
通讯作者:
潘玉欣
E-mail:zhanglan1374@sohu.com;askjiaqi98@163;panyu-xin@163.com
作者简介:
张岚(1983―),女,研究生,讲师, 基金资助:
Zhang Lan(),Cheng Qi(
),Liang Shichen,Deng Yuxiao,Pan Yuxin(
)
Received:
2020-08-04
Online:
2021-07-15
Published:
2021-09-14
Contact:
Pan Yuxin
E-mail:zhanglan1374@sohu.com;askjiaqi98@163;panyu-xin@163.com
摘要:
【目的】 尿苷二磷酸葡萄糖焦磷酸化酶(Uridine diphosphate glucose pyrophosphorylase,UGPase)是糖合成代谢途径中的一种重要限速酶,在植物纤维细胞发育中起重要作用,但是关于棉花中UGPase基因的生物信息学研究却很少。本研究采用生物信息学手段鉴定和分析棉花UGPase基因家族特性,为其相关研究提供重要线索。【方法】 以陆地棉、海岛棉、亚洲棉和雷蒙德氏棉4种棉花为主要研究对象,结合藻类、水稻、葡萄、可可、榴莲等19种植物的UGPase基因进行系统进化分析和陆地棉UGPase基因的表达特性分析。【结果】 系统发育分析显示UGPase基因被分为UGPase-A和UGPase-B两大类。保守基序及适应性进化分析显示,UGPase-B类基因在进化中十分保守,UGPase-A类基因在进化中与UGPase-B类基因存在较大差异。棉花、葡萄、可可、榴莲UGPase基因同源性分析显示,棉花中大多数UGPase基因来源于异源四倍体棉花形成之前的基因组加倍事件。UGPase-A类在棉纤维发育起始和伸长期表达量较高,UGPase-B类在营养器官中表达量较高。【结论】 本研究明确了UGPase两类基因的结构、功能与进化,为后续研究奠定基础。
张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346.
Zhang Lan,Cheng Qi,Liang Shichen,Deng Yuxiao,Pan Yuxin. Identification and bioinformatic analysis of UGPase gene family in cotton[J]. Cotton Science, 2021, 33(4): 337-346.
[1] |
Kleczkowski L A, Geisler M, Ciereszko I, et al. UDP-glucose pyrophosphorylase. An old protein with new tricks[J]. Plant Physiology, 2004, 134(3):912-918.
pmid: 15020755 |
[2] |
Abe T, Niiyama H, Sasahara T. Cloning of cDNA for UDP-glucose pyrophosphorylase and the expression of mRNA in rice endosperm[J]. Theoretical and Applied Genetics, 2002, 105(2):216-221.
doi: 10.1007/s00122-002-0927-z |
[3] | Wu Xiaojun, Du Min, Weng Yingqi, et al. UGPase of Astragalus membranaceus: cDNA cloning, analyzing and expressing in Escherichia coli[J]. Acta Botanica Sinica, 2002, 44(6):689-693. |
[4] |
Eimert K, Villand P, Kilian A, et al. Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues[J]. Gene, 1996, 170(2):227-232.
pmid: 8666250 |
[5] |
Katsube T, Kazuta Y, Tanizawa K, et al. Expression in Escherichia coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site[J]. Biochemistry, 1991, 30(35):8546-8551.
pmid: 1909568 |
[6] |
Pua E C, Lim S S W, Liu P, et al. Expression of a UDP glucose pyrophosphorylase cDNA during fruit ripening of banana[J]. Functional Plant Biology, 2000, 27(12):1151-1159.
doi: 10.1071/PP00016 |
[7] |
Wang Qinghua, Zhang Xue, Li Fuguang, et al. Identification of a UDP-glucose pyrophosphorylase from cotton (Gossypium hirsutum L.) involved in cellulose biosynjournal in Arabidopsis thaliana[J]. Plant Cell Reports, 2011, 30(7):1303-1312.
doi: 10.1007/s00299-011-1042-x pmid: 21373794 |
[8] |
Kleczkowski L A, Kunz S, Wilczynska M. Mechanisms of UDP-glucose synjournal in plants[J]. Critical Reviews in Plant Sciences, 2010, 29(4):191-203.
doi: 10.1080/07352689.2010.483578 |
[9] |
Sowokinos J R, Thomas C, Burrell M M. Pyrophosphorylases in potato. V. Allelic polymorphism of UDP-glucose pyrophosphorylase in potato cultivars and its association with tuber resistance to sweetening in the cold[J]. Plant Physiology, 1997, 113(2):511-517.
pmid: 9046597 |
[10] |
Kiyozumi D, Ishimizu T, Nakanishi T, et al. Pollen UDP-glucose pyrophosphorylase showing polymorphism well-correlated to the S genotype of Pyrus pyrifolia[J]. Sexual Plant Reproduction, 2002, 14(6):315-323.
doi: 10.1007/s00497-001-0125-1 |
[11] |
Chang C W, Moseley J L, Wykoff D, et al. The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation[J]. Plant Physiology, 2005, 138(1):319-329.
doi: 10.1104/pp.105.059550 |
[12] |
Okazaki Y, Shimojima M, Sawada Y, et al. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynjournal[J]. Plant Cell, 2009, 21(3):892-909.
doi: 10.1105/tpc.108.063925 pmid: 19286968 |
[13] |
Zhang Gaoyang, Qi Jianmin, Xu Jiantang, et al. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in jute (Corchorus capsularis L.)[J]. Biochemical and Biophysical Research Communications, 2013, 442(3/4):153-158.
doi: 10.1016/j.bbrc.2013.11.053 |
[14] |
Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429):423-427.
doi: 10.1038/nature11798 |
[15] |
Wang Xiyin, Guo Hui, Wang Jinpeng, et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation[J]. New Phytologist, 2016, 209(3):1252-1563.
doi: 10.1111/nph.13689 pmid: 26756535 |
[16] |
Zhu Tao, Liang Chengzhen, Meng Zhigang, et al. CottonFGD: an integrated functional genomics database for cotton[J]. BMC Plant Biology, 2017, 17(1):101.
doi: 10.1186/s12870-017-1039-x pmid: 28595571 |
[17] |
Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10(1):421.
doi: 10.1186/1471-2105-10-421 |
[18] |
Bateman A, Birney E, Cerruti L, et al. The Pfam protein families aatabase[J]. Nucleic Acids Research, 2002, 30(1):276-280.
pmid: 11752314 |
[19] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549.
doi: 10.1093/molbev/msy096 |
[20] |
Chen Chengjie, Chen Hao, Zhang Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[21] |
Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(web server issue):W202-W208.
doi: 10.1093/nar/gkp335 |
[22] |
Li L, Stoeckert C J, Roos D S. OrthoMCL: identification of ortholog groups for eukaryotic genomes[J]. Genome Research, 2003, 13(9):2178-2189.
pmid: 12952885 |
[23] |
Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics[J]. Genome Research, 2009, 19(9):1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[24] |
Gao Fangluan, Chen Chengjie, Arab D A, et al. EasyCodeML: a visual tool for analysis of selection using CodeML[J]. Ecology and Evolution, 2019, 9(7):3891-3898.
doi: 10.1002/ece3.5015 |
[25] |
Huang Gai, Wu Zhiguo, Percy R G, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution[J]. Nature Genetics, 2020, 52(5):516-524.
doi: 10.1038/s41588-020-0607-4 pmid: 32284579 |
[26] | 肖桂青, 卢向阳, 张海文. 植物尿苷二磷酸糖焦磷酸化酶研究进展[J]. 分子植物育种, 2017, 15(3):375-381. |
Xiao Guiqing, Lu Xiangyang, Zhang Haiwen. Progress of UDP-sugar-producing pyrophosphorylase in plants[J]. Molecular Plant Breeding, 2017, 15(3):375-381. | |
[27] | 张杨, 隋正红, 丁弘叶, 等. 龙须菜UDP-葡萄糖焦磷酸化酶基因的克隆及其表达与琼胶产量的关系[J]. 中国海洋大学学报, 2011, 41(Z1):80-86. |
Zhang Yang, Sui Zhenghong, Ding Hongye, et al. Cloning and functional study of a uridine diphosphate glucose pyrophosphorylase gene[J]. Periodical of Ocean University of China, 2011, 41(Z1):80-86. | |
[28] | 贺望兴, 杨普香, 李延升, 等. 灵芝尿苷二磷酸葡萄糖焦磷酸化酶基因的电子克隆与生物信息学分析[J]. 江西农业学报, 2019, 31(9):90-98. |
He Wangxing, Yang Puxiang, Li Yansheng, et al. Electronic cloning and bioinformatics analysis of uridine diphosphate glucose pyrophosphorylase gene from Ganoderma lucidum[J]. Acta Agriculturae Jiangxi, 2019, 31(9):90-98. | |
[29] | 连玲, 叶冰莹, 陈如凯, 等. 甘蔗尿苷二磷酸葡萄糖焦磷酸化酶基因(UGPase)转化拟南芥及转基因植株的生理特性分析[J]. 农业生物技术学报, 2012, 20(5):481-488. |
Lian Ling, Ye Bingying, Chen Rukai, et al. Transformation of sugarcane uridine diphosphate glucose pyrophosphorylase gene (UGPase) into Arabidopsis thaliana and analysis of physiological characteristics of transgenic plants[J]. Journal of Agricultural Biotechnology, 2012, 20(5):481-488. | |
[30] | Park J I, Ishimizu T, Suwabe K, et al. UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana[J]. Plant & Cell Physiology, 2010, 51(6):981-996. |
[31] |
Chen Rongzhi, Zhao Xiao, Shao Zhe, et al. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility[J]. The Plant Cell, 2007, 19(3):847-861.
doi: 10.1105/tpc.106.044123 |
[32] | Meng Meng, Geisler M, Johansson H, et al. UDP-glucose pyrophosphorylase is not rate limiting, but is essential in Arabidopsis[J]. Plant & Cell Physiology, 2009, 50(5):998-1101. |
[33] |
Coleman D H, Canam T, Kang K Y, et al. Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation[J]. Journal of Experimental Botany, 2007, 58(15/16):4257-4268.
doi: 10.1093/jxb/erm287 |
[34] |
Coleman H D, Ellis D D, Gilbert M, et al. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism[J]. Plant Biotechnology Journal, 2006, 4(1):87-101.
doi: 10.1111/pbi.2006.4.issue-1 |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[4] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[5] | 王林, 张强, 马江锋, 朱玉永, 田英, 李红, 毕显杰, 宋敏, 王海标, 雷天翔, 李召虎, 田晓莉, 杜明伟, 张立祯, 赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[6] | 王金刚, 姜艳, 田甜, 朱永琪, 杨振康, 周天航, 张文旭, 佟炫梦, 孙嘉祺, 王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[7] | 易翔, 张立福, 吕新, 张泽, 田敏, 印彩霞, 马怡茹, 范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[8] | 孙璘, 海艳, 唐晓雪, 祖丽皮亚·艾买, 焦瑞莲, 任毓忠, 李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[9] | 党文芳, 刘萍, 管力慧, 杨红梅, 牛新湘, 李萍, 楚敏, 娄恺, 史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[10] | 杨可心, 陈秀叶, 刘畅, 鹿秀云, 郭庆港, 马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[11] | 吕丽敏, 左东云, 王省芬, 张友平, 程海亮, 王巧连, 宋国立, 马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[12] | 窦玲玲,孙亚如,赵琴,田瑞洁,康洋洋,朱怡然,杨蕾蕾,王彩虹,冯宇,王文博,肖光辉. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
[13] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[14] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[15] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
|