棉花学报 ›› 2021, Vol. 33 ›› Issue (1): 33-42.doi: 10.11963/1002-7807.gxhysx.20201229
郭晓豪1,2(),王寒涛2,魏鑫2,张晶晶2,付小康2,马亮2,魏恒玲2,喻树迅1,2,*
收稿日期:
2019-12-06
出版日期:
2021-01-15
发布日期:
2021-02-25
通讯作者:
喻树迅
E-mail:864214693@qq.com
作者简介:
郭晓豪(1992―),男,硕士, 基金资助:
Guo Xiaohao1,2(),Wang Hantao2,Wei Xin2,Zhang Jingjing2,Fu Xiaokang2,Ma Liang2,Wei Hengling2,Yu Shuxun1,2,*
Received:
2019-12-06
Online:
2021-01-15
Published:
2021-02-25
Contact:
Yu Shuxun
E-mail:864214693@qq.com
摘要:
【目的】 定位棉花纤维品质性状相关的数量性状位点(Quantitative trait locus,QTL)。【方法】 以陆地棉高强纤维品系中棉所679和纤维品质一般的农垦5号为亲本构建包含200个单株的F2群体及对应的F2:3家系群体,对2个群体的纤维长度、断裂比强度等5个纤维品质性状进行检测。用6 688对简单重复序列(Simple sequence repeat, SSR)引物在双亲间筛选,得到149对多态性引物,以F2为作图群体,使用QTL IciMapping软件进行连锁图谱构建,并对F2及F2:3群体进行QTL定位。【结果】 根据F2群体基因型信息构建了1张包含119个标记、28个连锁群、总长为1 173.5 cM(centiMorgan)的遗传连锁图谱。分别在F2、F2:3群体中检测到9个和11个与纤维品质性状相关的QTLs,这些QTLs分布在11个连锁群上。其中F2群体的qFL-D11-1、qBT-D11-1与F2:3群体的qFL-D11-1、qMIC-D11-1均定位在标记DPL0062与HAU0423之间,推测这些位点可能是控制纤维品质性状的重要QTL。【结论】 利用多个群体进行QTL定位有益于发现稳定的QTL位点,控制纤维品质性状的基因可能成簇存在,为挖掘纤维品质性状相关基因及分子标记辅助育种奠定基础。
郭晓豪,王寒涛,魏鑫,张晶晶,付小康,马亮,魏恒玲,喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL[J]. 棉花学报, 2021, 33(1): 33-42.
Guo Xiaohao,Wang Hantao,Wei Xin,Zhang Jingjing,Fu Xiaokang,Ma Liang,Wei Hengling,Yu Shuxun. QTL mapping of fiber quality traits in two lower generation populations of upland cotton[J]. Cotton Science, 2021, 33(1): 33-42.
表1
F2及F2:3群体纤维品质性状的描述性统计"
性状 Trait | 亲本 Parents | 群体 Population | 均值 Mean | 极大值 Maximum | 极小值 Minimum | 极差 Range | 方差 Variance | 偏度 Skewness | 峰度 Kurtosis | |
CCRI679 | NK-5 | |||||||||
纤维长度 FL /mm | 33.2 | 23.2 | F2 | 28.34 | 33.40 | 23.60 | 9.80 | 3.28 | 0.17 | -0.11 |
F2:3 | 29.48 | 33.80 | 24.55 | 9.25 | 3.23 | 0.08 | -0.49 | |||
长度整齐度指数 UI /% | 85.3 | 81.0 | F2 | 84.78 | 88.00 | 81.20 | 6.80 | 1.64 | -0.25 | -0.31 |
F2:3 | 85.07 | 87.60 | 81.20 | 6.40 | 1.23 | -0.33 | 0.40 | |||
断裂比强度 BT /(cN·tex-1) | 35.7 | 23.7 | F2 | 30.57 | 38.80 | 22.10 | 16.70 | 7.73 | -0.15 | 0.29 |
F2:3 | 32.73 | 39.30 | 27.25 | 12.05 | 3.92 | 0.04 | 0.23 | |||
马克隆值 MIC | 5.4 | 5.0 | F2 | 4.96 | 6.30 | 3.00 | 3.30 | 0.34 | -0.98 | 1.27 |
F2:3 | 4.97 | 5.95 | 4.10 | 1.85 | 0.13 | -0.09 | -0.28 | |||
断裂伸长率 BE /% | 7.0 | 6.2 | F2 | 6.71 | 7.00 | 6.20 | 0.80 | 0.02 | -0.46 | 0.97 |
F2:3 | 5.72 | 7.30 | 4.90 | 2.40 | 0.18 | 0.69 | 0.76 |
表2
F2及F2:3群体纤维品质相关QTL的定位"
性状 Trait | QTL | 群体 Population | LOD | 标记区间 Flanking marker | 标记间距 Maker space /cM | 加性效应 Additive effect | 解释表型变异率 Phenotypic variation explained /% |
纤维长度 FL /mm | qFL-A02-1 | F2 | 2.64 | BNL3545-NAU3903 | 6.2 | 0.504 4 | 6.074 6 |
qFL-D11-1 | F2 | 3.43 | DPL0062-HAU0423 | 7.3 | 0.675 7 | 7.845 5 | |
qFL-D11-1 | F2:3 | 4.37 | DPL0062-HAU0423 | 7.3 | 0.713 1 | 9.795 8 | |
qFL-L5-1 | F2:3 | 3.06 | CGR5667-NAU3557 | 26.0 | 0.657 4 | 6.743 2 | |
长度整齐度指数 UI /% | qUI-A05-1 | F2:3 | 4.84 | NAU6611-BNL3977 | 16.5 | 0.168 9 | 9.013 3 |
qUI-D04-1 | F2:3 | 3.93 | Gh322-NAU5046 | 3.0 | -0.021 2 | 6.904 5 | |
qUI-D09-1 | F2 | 2.78 | CGR6692-NAU3915 | 2.9 | 0.462 0 | 6.394 4 | |
qUI-D11-1 | F2:3 | 2.82 | Gh377-CGR5503 | 3.9 | 0.380 3 | 4.829 7 | |
qUI-L2-1 | F2:3 | 3.20 | NAU5129-Gh325 | 48.7 | -0.458 5 | 7.652 8 | |
断裂比强度 BT /(cN·tex-1) | qBT-A02-1 | F2 | 2.64 | BNL3545-NAU3903 | 6.2 | 0.720 2 | 5.473 9 |
qBT-D09-1 | F2 | 3.63 | CGR6692-NAU3915 | 2.9 | 1.084 0 | 8.065 3 | |
qBT-D11-1 | F2 | 3.17 | DPL0062-HAU0423 | 7.3 | 0.986 9 | 7.597 0 | |
马克隆值 MIC | qMIC-D11-1 | F2 | 3.47 | BNL3171-BNL3860 | 55.7 | -0.407 4 | 4.818 3 |
qMIC-D11-1 | F2:3 | 4.43 | DPL0062-HAU0423 | 7.3 | -0.139 8 | 10.311 7 | |
qMIC-L2-1 | F2:3 | 2.86 | NAU2306-NAU5129 | 21.1 | 0.113 3 | 7.797 3 | |
qMIC-L3-1 | F2 | 2.82 | DPL0135-DPL0319 | 40.9 | 0.303 2 | 3.814 6 | |
断裂伸长率 BE /% | qBE-A02-1 | F2 | 2.67 | BNL3545-NAU3903 | 6.2 | 0.040 3 | 7.133 5 |
qBE-A09-1 | F2:3 | 3.62 | Gh111-NAU4093 | 7.5 | -0.154 9 | 7.420 2 | |
qBE-L1-1 | F2:3 | 3.89 | NAU1298-BNL1227 | 9.1 | -0.164 3 | 7.913 9 | |
qBE-L4-1 | F2:3 | 3.94 | Gh638-NAU1042 | 28.9 | -0.148 7 | 8.784 9 |
[1] |
Chen Z J, Scheffler B E, Dennis E, et al. Toward sequencing cotton (Gossypium) genomes[J]. Plant Physiology, 2007, 145(4):1303-1310. DOI: 10.1104/pp.107.107672.
doi: 10.1104/pp.107.107672 |
[2] | 邵千顺. 利用3个陆地棉群体定位纤维品质QTL[D]. 重庆: 西南大学, 2013. |
Shao Qianshun. Identifying QTL for fiber quality traits with three upland cotton (Gossypium hirsutum L.) populations[D]. Chongqing: Southwest University, 2013. | |
[3] |
张茂启, 陈全家, 苏秀娟, 等. 5个纤维品质性状在棉花海陆杂交群体中的QTL定位研究[J]. 西北农业学报, 2015, 24(11):64-71. DOI: 10.7606/j.issn.1004-1389.2015.11.011.
doi: 10.7606/j.issn.1004-1389.2015.11.011 |
Zhang Maoqi, Chen Quanjia, Su Xiujuan, et al. QTL mapping of five fiber quality traits in cotton sea-land hybrid population[J]. Journal of Northwest Agriculture, 2015, 24(11):64-71.
doi: 10.7606/j.issn.1004-1389.2015.11.011 |
|
[4] |
叶泗洪, 吴德祥, 路曦结, 等. 棉花纤维品质QTL定位研究进展[J]. 棉花科学, 2017, 39(1):2-6. DOI: 10.3969/j.issn.2095-3143.2017.01.001.
doi: 10.3969/j.issn.2095-3143.2017.01.001 |
Ye Sihong, Wu Dexiang, Lu Xijie, et al. Advances in QTL localization of cotton fiber quality[J]. Cotton Sciences, 2017, 39(1):2-6.
doi: 10.3969/j.issn.2095-3143.2017.01.001 |
|
[5] |
秦永生, 刘任重, 梅鸿献, 等. 陆地棉产量相关性状的QTL定位[J]. 作物学报, 2009, 35(10):1812-1821. DOI: 10.3724/SP.J.1006.2009.01812.
doi: 10.3724/SP.J.1006.2009.01812 |
Qin Yongsheng, Liu Renzhong, Mei Hongxian, et al. QTL mapping of yield related characters in upland cotton[J]. Acta Agronomica Sinica, 2009, 35(10):1812-1821.
doi: 10.3724/SP.J.1006.2009.01812 |
|
[6] | 郑风敏. 陆地棉F2与F2:7重组近交系群体图谱比较[D]. 重庆: 西南大学, 2010. |
Zheng Fengmin. Comparison of population map of recombinant inbred lines of upland cotton F2 and F2:7[D]. Chongqing: Southwest University, 2010. | |
[7] |
王启会, 李怀芹, 朱新宇, 等. 棉花数量性状基因定位研究进展[J]. 生命科学, 2011, 23(5):511-518. DOI: 10.13376/j.cbls/2011.05.011.
doi: 10.13376/j.cbls/2011.05.011 |
Wang Qihui, Li Huaiqin, Zhu Xinyu, et al. Advances in gene mapping of quantitative traits in cotton[J]. Chinese Bulletin of Life Sciences, 2011, 23(5):511-518.
doi: 10.13376/j.cbls/2011.05.011 |
|
[8] |
苏成付, 邱新棉, 李付振, 等. 棉花QTL定位原理、方法和研究进展[J]. 中国棉花, 2012, 39(8):6-10. DOI: 10.3969/j.issn.1000-632X.2012.08.002.
doi: 10.3969/j.issn.1000-632X.2012.08.002 |
Su Chengfu, Qiu Xinmian, Li Fuzhen, et al. Principle, method and research progress of QTL localization in cotton[J]. China Cotton, 2012, 39(8):6-10.
doi: 10.3969/j.issn.1000-632X.2012.08.002 |
|
[9] |
马麒, 宿俊吉, 陈红, 等. 棉花分子标记育种技术研究进展[J]. 广东农业科学, 2014, 41(2):138-143. DOI: 10.3969/j.issn.1004-874X.2014.02.033.
doi: 10.3969/j.issn.1004-874X.2014.02.033 |
Ma Qi, Su Junji, Chen Hong, et al. Advances in cotton molecular marker breeding[J]. Guangdong Agricultural Sciences, 2014, 41(2):138-143.
doi: 10.3969/j.issn.1004-874X.2014.02.033 |
|
[10] |
伊海法. 棉花产量和纤维品质性状QTL定位[D]. 泰安: 山东农业大学, 2014. DOI: 10.7666/d.Y2587802.
doi: 10.7666/d.Y2587802 |
Yi Haifa. QTL mapping of yield and fiber quality traits in Cotton[D]. Taian: Shandong Agricultural University, 2014.
doi: 10.7666/d.Y2587802 |
|
[11] |
乔文青, 严根土, 石建斌, 等. 陆地棉低世代群体纤维品质QTL定位及候选基因功能注释[J]. 棉花学报, 2019, 31(4):282-296. DOI: 10.11963/1002-7807.qwqhq.20190530.
doi: 10.11963/1002-7807.qwqhq.20190530 |
Qiao Wenqing, Yan Gentu, Shi Jianbin, et al. QTL Mapping of fiber quality and functional annotation of candidate genes in low generation population of upland cotton[J]. Cotton Science, 2019, 31(4):282-296.
doi: 10.11963/1002-7807.qwqhq.20190530 |
|
[12] |
Fang X M, Liu X Y, Wang X Q, et al. Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.)[J]. Theoretical and Applied Genetics, 2017, 130(4):795-806. DOI: 10.1007/s00122-017-2852-1.
doi: 10.1007/s00122-017-2852-1 |
[13] |
Paterson A H, Brubaker C L, Wendel J F, et al. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter, 1993, 11(2):122-127. DOI: 10.1007/BF02670470.
doi: 10.1007/BF02670470 |
[14] |
张军, 武耀廷, 郭旺珍, 等. 棉花微卫星标记的 PAGE 银染快速检测[J]. 棉花学报, 2000, 12(5):267-269. DOI: 10.3969/j.issn.1002-7807.2000.05.012.
doi: 10.3969/j.issn.1002-7807.2000.05.012 |
Zhang Jun, Wu Yaoting, Guo Wangzhen, et al. Fast screening of microsatellite markers in cotton with PAGE/silver staining[J]. Cotton Science, 2000, 12(5):267-269.
doi: 10.3969/j.issn.1002-7807.2000.05.012 |
|
[15] |
Lei Meng, Huihui Li, Luyan Zhang, et al. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal, 2015, 3(3):269-283. DOI: 10.1016/j.cj.2015.01.001.
doi: 10.1016/j.cj.2015.01.001 |
[16] |
Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1):185-199. DOI: 10.1007/BF00121515.
doi: 10.1007/BF00121515 pmid: 2563713 |
[17] |
周坤华, 雷刚, 方荣, 等. 利用辣椒种间F2和F2:3两个群体进行其主要农艺性状QTL分析[J]. 园艺学报, 2015, 42(5):879-889. DOI: 10.16420/j.issn.0513-353x.2014-0966.
doi: 10.16420/j.issn.0513-353x.2014-0966 |
Zhou Kunhua, Lei Gang, Fang Rong, et al. QTL analysis of main agronomic characters was carried out by using two populations of capsicum interspecific F2 and F2:3[J]. Acta Horticulturae Sinica, 2015, 42(5):879-889.
doi: 10.16420/j.issn.0513-353x.2014-0966 |
|
[18] | 赵娜. 甘蓝型油菜抗寒生理特性及相关性状的QTL定位[D]. 杨凌: 西北农林科技大学, 2017. |
Zhao Na. QTL Mapping of cold resistance physiological characteristics and related characters in Brassica napus[D]. Yangling: Northwest University of Agriculture and Forestry Science and Technology, 2017. | |
[19] | 张瑶尧. 利用F2:3家系定位小麦苗期耐盐相关的QTL[D]. 呼和浩特: 内蒙古师范大学, 2019. |
Zhang Yaoyao. The QTL related to salt tolerance in wheat at seedling stage was located by F2:3 family[D]. Huhhot: Inner Mongolia normal University, 2019. | |
[20] |
李超, 李志坤, 谷淇深, 等. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8):1114-1126. DOI: 10.3724/SP.J.1006.2018.01114.
doi: 10.3724/SP.J.1006.2018.01114 |
Li Chao, Li Zhikun, Gu Qishen, et al. Molecular evaluation for chromosome segment substitution lines of Gossypium barbadense and QTL mapping for fiber quality and yield[J]. Acta Agronomica Sinica, 2018, 44(8):1114-1126.
doi: 10.3724/SP.J.1006.2018.01114 |
|
[21] | Wang Hantao, Huang Cong, Guo Huanle, et al. QTL mapping for fiber and yield traits in upland cotton under multiple environments[J/OL]. PLoS One, 2015, 10(6): e0130742 (2015-06-25)[2019-12-06]. http://doi.org/10.1371/journal.pone.0130742 . |
[22] |
杨继龙. 利用RILs进行棉花早熟和纤维品质性状的QTL定位研究[D]. 武汉: 华中农业大学, 2013. DOI: 10.7666/d.Y2393970.
doi: 10.7666/d.Y2393970 |
Yang Jilong. QTL location of earliness and fiber quality in cotton using RILs[D]. Wuhan: Huazhong Agricultural University, 2013.
doi: 10.7666/d.Y2393970 |
|
[23] |
李帅阳. 棉花SSCP标记的开发及产量和纤维品质性状的QTL定位[D]. 武汉: 华中农业大学, 2012. DOI: 10.7666/d.Y2162846.
doi: 10.7666/d.Y2162846 |
Li Shuaiyang. Development of the cotton SSCP markers and QTL location of yield and fiber quality[D]. Wuhan: Huazhong Agricultural University, 2012.
doi: 10.7666/d.Y2162846 |
|
[24] |
Lorieux M, Perrier X, Goffinet B, et al. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations[J]. Theoretical & Applied Genetics, 1995, 90(1):81-89. DOI: 10.1007/BF00220999.
doi: 10.1007/BF00220999 |
[25] |
Lashermes P, Combes M C, Prakash N S, et al. Genetic linkage map of Coffea canephora: Effect of segregation distortion and analysis of recombination rate in male and female meiosis[J]. Genome, 2001, 44(4):589-596. DOI: 10.1139/gen-44-4-589.
doi: 10.1139/gen-44-4-589 pmid: 11550892 |
[26] |
Sandbrink J M, Ooijen J W Van, Purimahua C C, et al. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs[J]. Theoretical & Applied Genetics, 1995, 90(3):444-450. DOI: 10.1007/BF00221988.
doi: 10.1007/BF00221988 |
[27] |
宋宪亮, 孙学振, 张天真. 偏分离及对植物遗传作图的影响[J]. 农业生物技术学报, 2006, 14(2):286-292. DOI: 10.3969/j.issn.1674-7968.2006.02.028.
doi: 10.3969/j.issn.1674-7968.2006.02.028 |
Song Xianliang, Sun Xuezhen, Zhang Tianzhen. Segregation and its effect on plant genetic mapping[J]. Journal of Agricultural Biotechnology, 2006, 14(2):286-292.
doi: 10.3969/j.issn.1674-7968.2006.02.028 |
|
[28] |
王玉晶, 杨洋, 胡文冉, 等. 棉花种间SSR标记遗传图谱的构建[J]. 新疆农业科学, 2014, 51(10):1765-1771. DOI: 10.6048/j.issn.1001-4330.2014.10.001.
doi: 10.6048/j.issn.1001-4330.2014.10.001 |
Wang Yujing, Yang Yang, Hu Wenran, et al. Construction of genetic map of interspecific SSR markers in cotton[J]. Xinjiang Agricultural Sciences, 2014, 51(10):1765-1771.
doi: 10.6048/j.issn.1001-4330.2014.10.001 |
[1] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[2] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[3] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[4] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[5] | 薛羽君, 魏恒玲, 王寒涛, 马亮, 程帅帅, 郝蓬勃, 顾丽姣, 付小康, 芦建华, 喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[6] | 吕丽敏, 左东云, 王省芬, 张友平, 程海亮, 王巧连, 宋国立, 马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[7] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
[8] | 窦玲玲,孙亚如,赵琴,田瑞洁,康洋洋,朱怡然,杨蕾蕾,王彩虹,冯宇,王文博,肖光辉. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
[9] | 贾晓昀,王士杰,赵红霞,朱继杰,李妙,王国印. 陆地棉株型及生育期相关性状QTL定位[J]. 棉花学报, 2021, 33(2): 124-133. |
[10] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[11] | 刘佩佩,魏喜,陈艳丽,王晔,张桂寅,李付广. 脱落酸对棉花体细胞胚胎发生的影响[J]. 棉花学报, 2021, 33(1): 42-53. |
[12] | 张爱,王彩香,宿俊吉,张先亮,史春辉,刘娟娟,彭云玲,马雄风. 陆地棉MADS-box家族基因鉴定及组织特异性表达分析[J]. 棉花学报, 2020, 32(5): 404-404. |
[13] | 耿延会,边盈盈,裴文锋,刘国元,吴嫚,臧新山,李丹,李兴丽,Zhang Jinfa,于霁雯. 棉花陆海回交自交系群体叶绿素含量性状QTL定位[J]. 棉花学报, 2020, 32(5): 463-471. |
[14] | 琚龙贞,赵汀,方磊,胡艳,张天真. 陆地棉Dof基因家族的全基因组鉴定及分析[J]. 棉花学报, 2020, 32(4): 279-291. |
[15] | 杨永飞,葛常伟,沈倩,张思平,刘绍东,马慧娟,陈静,刘瑞华,李士丛,赵新华,李志坤,庞朝友. 陆地棉苗期低温响应基因GhZAT10的克隆及功能研究[J]. 棉花学报, 2020, 32(4): 305-315. |
|