棉花学报 ›› 2021, Vol. 33 ›› Issue (4): 347-359.doi: 10.11963/cs20210003
马怡茹(),吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜(
)
收稿日期:
2021-01-11
出版日期:
2021-07-15
发布日期:
2021-09-14
通讯作者:
侯彤瑜
E-mail:mayiru@stu.shzu.edu.cn;tongyu.hou@shzu.edu.cn
作者简介:
马怡茹(1997―),女,硕士,农业信息化, 基金资助:
Ma Yiru(),Lü Xin,Qi Yaqin,Zhang Ze,Yi Xiang,Chen Xiangyu,Yan Tianying,Hou Tongyu(
)
Received:
2021-01-11
Online:
2021-07-15
Published:
2021-09-14
Contact:
Hou Tongyu
E-mail:mayiru@stu.shzu.edu.cn;tongyu.hou@shzu.edu.cn
摘要:
【目的】 脱叶率是评价机采棉脱叶催熟效果的重要依据。以无人机RGB图像为基础数据源,通过从RGB图像中提取14种可见光植被指数,建立快速、准确监测棉花脱叶率的模型,为机采棉适时采收提供理论和技术支持。【方法】 设置不同棉花品种,通过采集不同脱叶剂浓度及喷施时间处理下的棉花脱叶率数据,并利用无人机采集冠层RGB图像,提取可见光植被指数,分析其与棉花脱叶率的相关关系,进而采用一元线性回归(Simple linear regression,SLR)、多元线性回归(Multivariate linear regression,MLR)和偏最小二乘法回归(Partial least square regression,PLSR)构建棉花脱叶率监测模型,并进行模型评价。【结果】 不同处理下的棉花脱叶率有明显差异,脱叶率与不同可见光植被指数存在较好相关性,其中三角形绿度值(Triangular greenness index,TGI)与棉花脱叶率的相关性最高(r=0.81)。建模结果表明,SLR模型中,以TGI指数建模效果最好(决定系数0.66,均方根误差10.44%,相对均方根误差12.87%);MLR模型中,以过蓝指数(Excess blue index,ExB)、绿叶指数(Green leaf index,GLI)、TGI和过绿指数(Excess green index,ExG)4个植被指数组合建立的模型效果最好,其决定系数为0.70,均方根误差为10.26%,相对均方根误差为12.65%。PLSR模型中,以ExB、GLI、TGI、ExG、综合植被指数2和综合植被指数1建立的模型精度更高,其决定系数为0.70,均方根误差为10.02%,相对均方根误差为12.22%。外部验证表明,各模型实测值与预测值间有较好的拟合关系。【结论】 以MLR和PLSR方法建立的模型精度较高,拟合程度较好。从计算量及模型复杂程度角度考虑,通过MLR方法以ExB、GLI、TGI、ExG建立的棉花脱叶率监测模型,能够更好地监测棉花脱叶率。
马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359.
Ma Yiru,Lü Xin,Qi Yaqin,Zhang Ze,Yi Xiang,Chen Xiangyu,Yan Tianying,Hou Tongyu. Estimation of the defoliation rate of cotton based on unmanned aerial vehicle digital images[J]. Cotton Science, 2021, 33(4): 347-359.
表1
本研究中使用的可见光植被指数"
植被指数 Vegetation index | 公式 Formula | 发明者 Inventor |
归一化绿红差值植被指数Normalized green-red difference index (NGRDI) | NGRDI= | Hunt等[ |
绿叶指数Green leaf index (GLI) | GLI= | Louhaichi等[ |
可见光抗大气指数Visible atmospherically resistant index (VARI) | VARI= | Gltelson等[ |
过红指数Excess red index (ExR) | ExR=1.4r-g | Meyer等[ |
过绿指数Excess green index (ExG) | ExG=2g-r-b | Woebbecke等[ |
过蓝指数Excess blue index (ExB) | ExB= | Mao等[ |
过绿过红差分指数Excess green minus excess red index (ExGR) | ExGR=ExG-ExR | Neto等[ |
植被颜色提取指数Color index of vegetation (CIVE) | CIVE=0.411R-0.811G+0.385B+18.787 45 | Kataoka等[ |
植被因子指数Vegetative index (VEG) | VEG=(α=0.667) | Hague等[ |
改进过绿指数Modified excess green index (MExG) | MExG=1.262G-0.884R-0.311B | Burgos-Artizzu等[ |
Kawashima指数Kawashima index (IKAW) | IKAW= | Kawashima等[ |
三角绿色指数Triangular greenness index (TGI) | TGI=0.5[0.19(R-G)-0.12(R-B)] | Hunt等[ |
综合植被指数1 Comprehensive 1 (COM1) | COM1=ExG+CIVE+ExGR+VEG | Guijarro等[ |
综合植被指数2 Comprehensive 2 (COM2) | COM2=0.36ExG+0.47CIVE+0.17VEG | Guerrero等[ |
表2
模型构建的脱叶率数据描述性统计"
样本 Sample | 样本数量 Number | 脱叶率统计指标Statistical indexes of defoliation rate | ||||
最大值 Maximum/% | 最小值 Minimum/% | 平均值 Mean/% | 标准偏差 Standard deviation/% | 变异系数 Coefficient of variation/% | ||
总样本 Total sample | 48 | 100.00 | 29.16 | 81.97 | 17.94 | 21.89 |
训练集 Training set | 36 | 99.78 | 29.16 | 83.75 | 9.38 | 11.20 |
验证集 Validation set | 12 | 100.00 | 49.73 | 82.16 | 18.60 | 22.64 |
表3
不同可见光植被指数的棉花脱叶率一元线性回归(SLR)模型"
植被指数 Vegetation index | 训练集Training set | 验证集Validation set | |||||
R2 | RMSE/% | rRMSE/% | R2 | RMSE/% | rRMSE/% | ||
GLI | 0.62 | 10.99 | 13.55 | 0.93 | 5.02 | 6.11 | |
VARI | 0.21 | 15.86 | 19.55 | 0.53 | 13.37 | 16.27 | |
ExR | 0.32 | 14.74 | 18.17 | 0.72 | 10.36 | 12.61 | |
ExG | 0.59 | 11.37 | 14.01 | 0.90 | 6.01 | 7.32 | |
ExB | 0.62 | 10.99 | 13.55 | 0.89 | 6.57 | 8.00 | |
ExGR | 0.48 | 12.83 | 15.81 | 0.84 | 7.73 | 9.41 | |
CIVE | 0.36 | 14.50 | 17.87 | 0.74 | 9.95 | 12.11 | |
VEG | 0.45 | 13.24 | 16.32 | 0.84 | 7.86 | 9.57 | |
MExG | 0.33 | 14.61 | 16.32 | 0.73 | 10.08 | 12.27 | |
IKAW | 0.16 | 16.32 | 20.12 | 0.49 | 13.95 | 16.98 | |
TGI | 0.66 | 10.44 | 12.87 | 0.93 | 5.28 | 6.43 | |
COM1 | 0.54 | 12.14 | 14.96 | 0.87 | 6.93 | 8.44 | |
COM2 | 0.59 | 11.36 | 14.00 | 0.91 | 5.97 | 7.27 |
表4
不同可见光植被指数的棉花脱叶率多元线性模型(MLR)模型"
植被指数 Vegetation index | 训练集Training set | 验证集Validation set | |||||
R2 | RMSE/% | rRMSE/% | R2 | RMSE/% | rRMSE/% | ||
GLI+TGI | 0.66 | 10.59 | 13.05 | 0.92 | 5.58 | 6.79 | |
ExB+GLI+TGI | 0.69 | 10.28 | 12.67 | 0.94 | 4.88 | 5.94 | |
ExB+GLI+TGI+ExG | 0.70 | 10.26 | 12.65 | 0.93 | 5.19 | 6.32 | |
ExB+GLI+TGI+ExG+COM2 | 0.70 | 10.43 | 12.86 | 0.94 | 4.75 | 5.78 | |
ExB+GLI+TGI+ExG+COM2+COM1 | 0.70 | 10.60 | 13.07 | 0.93 | 5.31 | 6.46 | |
ExB+GLI+TGI+ExG+COM2+COM1+ExGR | 0.71 | 10.67 | 13.15 | 0.93 | 5.20 | 6.33 |
表5
不同可见光植被指数的棉花脱叶率偏最小二乘法回归(PLSR)模型"
植被指数 Vegetation index | 训练集Training set | 验证集Validation set | |||||
R2 | RMSE/% | rRMSE/% | R2 | RMSE/% | rRMSE/% | ||
GLI+TGI | 0.66 | 10.59 | 12.92 | 0.92 | 5.58 | 6.79 | |
ExB+GLI+TGI | 0.68 | 9.84 | 12.34 | 0.94 | 4.97 | 6.05 | |
ExB+GLI+TGI+ExG | 0.68 | 10.11 | 12.34 | 0.93 | 5.00 | 6.10 | |
ExB+GLI+TGI+ExG+COM2 | 0.69 | 10.11 | 12.23 | 0.93 | 5.01 | 6.10 | |
ExB+GLI+TGI+ExG+COM2+COM1 | 0.70 | 10.02 | 12.22 | 0.93 | 5.01 | 6.11 | |
ExB+GLI+TGI+ExG+COM2+COM1+ExGR | 0.70 | 10.01 | 12.22 | 0.93 | 5.02 | 6.11 |
[1] | 中国国家统计局. 国家统计局关于2020年棉花产量的公告[EB/OL]. (2020-12-18)[2021-01-10]. http://www.stats.gov.cn/tjsj/zxfb/202012/t20201218_1810113.html. |
National Bureau of Statistics of China. Announcement of the National Bureau of Statistics on cotton production in 2020[EB/OL]. (2020-12-18)[2021-01-10]. http://www.stats.gov.cn/tjsj/zxfb/202012/t20201218_1810113.html. | |
[2] | 周婷婷, 肖庆刚, 杜睿, 等. 我国棉花脱叶催熟技术研究进展[J/OL]. 棉花学报, 2020, 32(2): 170-184[2021-01-10]. https://doi.org/10.11963/1002-7807.ztthxq.20200303. |
Zhou Tingting, Xiao Qinggang, Du Rui, et al. Research advances on cotton harvest aids in China[J/OL]. Cotton Science, 2020, 32(2): 170-184[2021-01-10]. https://doi.org/10.11963/1002-7807.ztthxq.20200303. | |
[3] | 李琼, 刘强, 王海标, 等. 脱叶剂及用量对不同熟性棉花的脱叶效果和种子发芽率影响[J]. 棉花科学, 2020, 42(3):45-49. |
Li Qiong, Liu Qiang, Wang Haibiao, et al. Effects of different defoliants on the defoliation and germination rate of cotton[J]. Cotton Sciences, 2020, 42(3):45-49. | |
[4] | 陈兵, 张国蕾, 王静, 等. 机采棉等行距密植模式下棉花脱叶催熟效果研究[J/OL]. 西北农业学报, 2019, 28(10): 1594-1601[2021-01-10]. https://doi.org/0.7606/j.issn.1004-1389.2019.10.005. |
Chen Bing, Zhang Guolei, Wang Jing, et al. Effect of different defoliants on machine-picked cotton under equal spacing and dense planting model[J/OL]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(10): 1594-1601[2021-01-10]. https://doi.org/0.7606/j.issn.1004-1389.2019.10.005. | |
[5] | 阿不都卡地尔·库尔班, 陈平, 程强, 等. 喷施脱叶剂对不同停水时间机采棉脱叶效果及纤维品质的影响[J/OL]. 新疆农业大学学报, 2018, 41(3): 157-163[2021-01-10]. https://doi.org/10.3969/j.issn.1007-8614.2018.03.001. |
Abudukadier Kuerban, Chen Ping, Cheng Qiang, et al. Influences of spraying defoliant on defoliation effect and fiber quality of machine-picked cotton under different water-shutdown time[J/OL]. Journal of Xinjiang Agricultural University, 2018, 41(3): 157-163[2021-01-10]. https://doi.org/10.3969/j.issn.1007-8614.2018.03.001. | |
[6] | Maes W H, Steppe K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture[J/OL]. Trends in Plant Science, 2019, 24(2): 152-164[2021-01-10]. https://doi.rog/10.1016/j.tplants.2018.11.007. |
[7] | 易秋香. 基于Sentinel-2多光谱数据的棉花叶面积指数估算[J/OL]. 农业工程学报, 2019, 35(16): 189-197[2021-01-10]. https://doi.org/10.11975/j.issn.1002-6819.2019.16.021. |
Yi Qiuxiang. Remote estimation of cotton LAI using Sentinel-2 multispectral data[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 189-197[2021-01-10]. https://doi.org/10.11975/j.issn.1002-6819.2019.16.021. | |
[8] | Maimaitijiang M, Ghulam A, Sidike P, et al. Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine[J/OL]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 134:43-58. https://doi.org/10.1016/j.isprsjprs.2017.10.011. |
[9] | 李亚兵. 棉花早衰程度诊断数码图像数字化指标的研究[D]. 棉花学报, 2006, 32(3): 160-163. |
Li Yabing. Study on the parameters of digital images of diagnosis on cotton premature senescence grade[J]. Cotton Science, 2006, 32(3): 160-163. | |
[10] | 王康丽. 基于无人机可见光和热红外图像的棉花冠层信息识别[D]. 北京: 中国农业科学院, 2019. |
Wang Kangli. Cotton canopy information recognition based on visible light and thermal infrared image of UAV[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
[11] | Liang G Z, Dong C W, Hu B, et al. Prediction of moisture content for congou black tea withering leaves using image features and nonlinear method[J/OL]. Scientific Reports, 2018, 8(1):7854[2021-01-10]. https://doi.org/10.1038/s41598-018-26165-2. |
[12] | Niu Y X, Zhang L Y, Zhang H H, et al. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery[J/OL]. Remote Sensing, 2019, 11(11): 1261[2021-01-10]. https://doi.org/10.3390/rs11111261. |
[13] | Hunt E R, Cavigelli M, Daughtry C S T, et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J/OL]. Precision Agriculture, 2005, 6(4): 359-378[2021-01-10]. https://doi.org/10.1007/s11119-005-2324-5. |
[14] | Louhaichi M, Borman M M Johnson D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat[J/OL]. Geocarto International, 2001, 16(1): 65-70[2021-01-10]. https://doi.org/10.1080/10106040108542184. |
[15] | Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J/OL]. Remote Sensing of Environment, 2002, 80(1): 76-87[2021-01-10]. https://doi.org/10.1016/S0034-4257(01)00289-9. |
[16] | Meyer G E, Hindman T W, Laksmi K. Machine vision detection parameters for plant species identification[C/OL]// Proceedings volume 3543: Precision agriculture and biological quality. Boston: International Society for Optics and Photonics, 1999: 327-335[2021-01-10]. https://doi.org/10.1117/12.336896. |
[17] | Woebbecke D M, Meyer G E, von Bargen K, et al. Color indices for weed identification under various soil, residue,lighting conditions[J/OL]. Transactions of the American Society of Agricultural Engineers, 1995, 38(1): 259-269[2021-01-10]. https://doi.org/10.13031/2013.27838. |
[18] | Mao W, Wang Y, Wang Y. Real-time detection of between-row weeds using machine vision[C/OL]// 2003 American Society of Agricultural and Biological Engineers(ASABE) Annual Meeting. St, Joseph: ASABE, 2003: 031004[2021-01-10]. https://doi.org/10.13031/2013.15381. |
[19] | Neto J C. A combined statistical-soft computing approach for classification and mapping weed species in minimum-tillage systems[D]. Lincoln: The University of Nebraska-Lincoln, 2004. 2003.1225492. |
[20] | Kataoka T, Kaneko T, Okamoto H, et al. Crop growth estimation system using machine vision[C/OL]// Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003). New Jersey: IEEE 2003, 2b1079-b1083[2021-01-10]. https://doi.org/10.1109/AIM.2003.1225492. |
[21] | Hague T, Tillett N D, Wheeler H. Automated crop and weed monitoring in widely spaced cereals[J/OL]. Precision Agriculture, 2006, 7(1): 21-32[2021-01-10]. https://doi.org/10.1007/s11119-005-6787-1. |
[22] | Burgos-Artizzu X P, Ribeiro A, Guijarro M, et al. Real-time image processing for crop/weed discrimination in maize fields[J/OL]. Computers and Electronics in Agriculture, 2011, 75(2): 337-346[2021-01-10]. https://doi.org/10.1016/j.compag.2010.12.011. |
[23] | Kawashima S, Nakatani M. An algorithm for estimating chlorophyll content in leaves using a video camera[J/OL]. Annals of Botany, 1998, 81(1): 49-54[2021-01-10]. https://doi.org/10.1006/anbo.1997.0544. |
[24] | Hunt E R, Jr, Daughtry C S T, Eitel J U H, et al. Remote sensing leaf chlorophyll content using a visible band index[J/OL]. Agronomy Journal, 2011, 103(4): 1090-1099[2021-01-10]. https://doi.org/10.2134/agronj2010.0395. |
[25] | Guijarro M, Pajares G, Riomoros I, et al. Automatic segmentation of relevant textures in agricultural images[J/OL]. Computers and Electronics in Agriculture, 2011, 75(1): 75-83[2021-01-10]. https://doi.org/10.1016/j.compag.2010.09.013. |
[26] | Guerrero J M, Pajares G, Montalvo M, et al. Support vector machines for crop/weeds identification in maize fields[J/OL]. Expert Systems with Applications, 2012, 39(12): 11149-11155[2021-01-10]. https://doi.org/10.1016/j.eswa.2012.03.040. |
[27] | 高丽丽, 李淦, 康正华, 等. 脱叶剂对棉花叶片叶绿素荧光动力学参数的影响[J/OL]. 棉花学报, 2016, 28(4): 345-352[2021-01-10]. https://doi.org/10.11963/issn.1002-7807.201604005. |
Gao Lili, Li Gan, Kang Zhenghua, et al. Effect of defoliants on chlorophyll fluorescence of cotton leaves[J/OL]. Cotton Science, 2016, 28(4): 345-352[2021-01-10]. https://doi.org/10.11963/issn.1002-7807.201604005. | |
[28] | 宋兴虎, 徐东永, 孙璐, 等. 在不同棉区噻苯隆和乙烯利用量及配比对脱叶催熟效果影响[J/OL]. 棉花学报, 2020, 32(3): 247-257[2021-01-10]. https://doi.org/10.11963/1002-7807.sxhlzh.20200512. |
Song Xinghu, Xu Dongyong, Sun Lu, et al. Effect of thidiazuron and ethylene use and ratio on defoliation ripening in different cotton area[J/OL]. Cotton Science, 2020, 32(3): 247-257[2021-01-10]. https://doi.org/10.11963/1002-7807.sxhlzh.20200512. | |
[29] | Putra B T W, Soni P. Enhanced broadband greenness in assessing chlorophyll a and b,carotenoid, nitrogen in Robusta coffee plantations using a digital camera[J/OL]. Precision Agriculture, 2018, 19(2): 238-256[2021-01-10]. https://doi.org/10.1007/s11119-017-9513-x. |
[30] | Buchaillot M, Gracia-Romero A, Vergara-Diaz O, et al. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques[J/OL]. Sensors, 2019, 19(8): 1815[2021-01-10]. https://doi.org/10.3390/s19081815. |
[31] | 江杰, 张泽宇, 曹强, 等. 基于消费级无人机搭载数码相机监测小麦长势状况研究[J/OL]. 南京农业大学学报, 2019(4): 622-631[2021-01-10]. https://doi.org/10.7685/jnau.201904065. |
Jiang Jie, Zhang Zeyu, Cao Qiang, et al. Use of a digital camera mounted on a consumer-grade unmanned aerial vehicle to monitor the growth status of wheat[J/OL]. Journal of Nanjing Agricultural University, 2019, 42(4): 622-631[2021-01-10]. https://doi.org/10.7685/jnau.201904065. | |
[32] | Che Y P, Wang Q, Xie Z W, et al. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography[J/OL]. Annals of Botany, 2020, 126(4): 765-773[2021-01-10]. https://doi.org/10.1093/aob/mcaa097. |
[33] | Lu N, Zhou J, Han Z X, et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system[J/OL]. Plant Methods, 2019, 15: 17[2021-01-10]. https://doi.org/10.1186/s13007-019-0402-3. |
[34] | 杨俊, 丁峰, 陈晨, 等. 小麦生物量及产量与无人机图像特征参数的相关性[J/OL]. 农业工程学报, 2019, 35(23): 104-110[2021-01-10]. https://doi.org/10.11975/j.issn.1002-6819.2019.23.013. |
Yang Jun, Ding Feng, Chen Chen, et al. Correlation of wheat biomass and yield with UAV image characteristic parameters[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 104-110[2021-01-10]. https://doi.org/10.11975/j.issn.1002-6819.2019.23.013. | |
[35] | 刘畅. 无人机影像‘图-谱’信息融合在作物氮素诊断中的应用研究[D]. 西安: 西安科技大学, 2018. |
Liu Chang. Unmanned aerial vehicle (UAV) based 'image and spectrum' information fusion for nitrogen diagnosis in winter wheat[D]. Xi’an: Xi’an University of Science and Technology, 2018. | |
[36] | Fathipoor H, Arefi H, Shah-Hosseini R, et al. Corn forage yield prediction using unmanned aerial vehicle images at mid-season growth stage[J/OL]. Journal of Applied Remote Sensing, 2019, 13(3): 034503[2021-01-10]. https://doi.org/10.1117/1.JRS.13.034503. |
[37] | Tao H L, Feng H K, Xu L J, et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data[J/OL]. Sensors, 2020, 20(5): 1296[2021-01-10]. https://doi.org/10.3390/s20051296. |
[38] | 李天胜, 崔静, 王海江, 等. 基于高光谱特征波长的冬小麦水分含量估测模型[J/OL]. 新疆农业科学, 2019, 56(10): 1772-1782[2021-01-10]. https://doi.org/10.6048/j.issn.1001-4330.2019.10.002. |
Li Tiansheng, Cui jing, Wang Haijiang, et al. Study on water content estimation model of winter wheat based on hyperspectral characteristic wavelength[J/OL]. Xinjiang Agricultural Sciences, 2019, 56(10): 1772-1782[2021-01-10]. https://doi.org/10.6048/j.issn.1001-4330.2019.10.002. | |
[39] | Kim D W, Yun H S, Jeong S J, et al. Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery[J/OL]. Remote Sensing, 2018, 10(4): 563[2021-01-10]. https://doi.org/10.3390/rs10040563. |
[40] | 田明璐, 班松涛, 常庆瑞, 等. 基于低空无人机成像光谱仪影像估算棉花叶面积指数[J/OL]. 农业工程学报, 2016, 32(21): 102-108[2021-01-10]. https://doi.org/10.11975/j.issn.1002-6819.2016.21.014. |
Tian Minglu, Ban Songtao, Chang Qingrui, et al. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21): 102-108[2021-01-10]. https://doi.org/10.11975/j.issn.1002-6819.2016.21.014. | |
[41] | 李梅, 徐明珠, 何勇, 等. 马铃薯晚疫病叶片SPAD值的高光谱研究[J/OL]. 农机化研究, 2016, 38(2): 136-142[2021-01-10]. https://doi.org/10.3969/j.issn.1003-188X.2016.12.027. |
Li Mei, Xu Mingzhu, He Yong, et al. SPAD measurement of potato leaves infected late blight based on hyper-spectral [J/OL]. Journal of Agricultural Mechanization Research, 2016, 38(2): 136-142[2021-01-10]. https://doi.org/10.3969/j.issn.1003-188X.2016.12.027. |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[4] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[5] | 王林, 张强, 马江锋, 朱玉永, 田英, 李红, 毕显杰, 宋敏, 王海标, 雷天翔, 李召虎, 田晓莉, 杜明伟, 张立祯, 赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[6] | 王金刚, 姜艳, 田甜, 朱永琪, 杨振康, 周天航, 张文旭, 佟炫梦, 孙嘉祺, 王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[7] | 易翔, 张立福, 吕新, 张泽, 田敏, 印彩霞, 马怡茹, 范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[8] | 孙璘, 海艳, 唐晓雪, 祖丽皮亚·艾买, 焦瑞莲, 任毓忠, 李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[9] | 党文芳, 刘萍, 管力慧, 杨红梅, 牛新湘, 李萍, 楚敏, 娄恺, 史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[10] | 杨可心, 陈秀叶, 刘畅, 鹿秀云, 郭庆港, 马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[11] | 宋勇, 陈兵, 王琼, 苏维, 孙乐鑫, 赵静, 韩焕勇, 王方永. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306. |
[12] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[13] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[14] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[15] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
|