[1] Martín-Trillo M, Cubas P. TCP genes: A family snapshot ten years later[J]. Trends in Plant Science, 2010, 15(1): 31-39.
[2] Murre C, McCaw P S, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, myoD and myc proteins[J]. Cell, 1989, 56(5): 777-783.
[3] Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis-elements in the rice proliferating cell nuclear antigen gene[J]. The Plant Cell, 1997, 9(9): 1607-1619.
[4] Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plant growth and development[J]. Plant Journal, 1999, 18(2): 215-222.
[5] Aggarwal P, Das Gupta M, Joseph A P, et al. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis[J]. Plant Cell, 2010, 22(4): 1174-1189.
[6] Viola I L, Reinheimer R, Ripoll R, et al. Determinants of the DNA binding specificity of classⅠ and classⅡ TCP transcription factors[J]. The Journal of Biological Chemistry, 2012, 287(1): 347-356.
[7] Howarth D G, Donoghue M J. Phylogenetic analysis of the ‘ECE’ (CYC/TB1) clade reveals duplications predating the core eudicots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24): 9101-9106.
[8] Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants[J]. Journal of Molecular Evolutionl, 2007, 65(1): 23-33.
[9] Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance[J]. Genetics, 1995, 141(1): 333-346.
[10] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624): 485-488.
[11] Carpenter R. and Coen E S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus[J]. Genes & Development, 1990, 4(9): 1483-1493.
[12] Luo Da, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603): 794-799.
[13] Crawford B C W, Nath U, Carpenter R, et al. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J]. Plant Physiology, 2004, 135(1): 244- 253.
[14] Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[M]// Cronk Q C B, Bateman R M, Hawkins J A. Developmental genetics and plant evolution. London: Taylor & Francis, 2002: 247-266.
[15] Yao Xuan, Ma Hong, Wang Jian, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. Journal of Integrative Plant Biology, 2007, 49(6): 885-897.
[16] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[17] Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J/OL]. BMC Plant Biology, 2004, 4: 10 (2004-06-01) [2015-11-16]. http://www.biomed- central.com/1471-2229/4/10. doi:10.1186/1471-2229-4-10.
[18] Danisman S, van der Wal F, Dhondt S, et al. Arabidopsis classⅠ and classⅡ TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J]. Plant Physiology, 2012, 159(4): 1511-1523.
[19] Aguilar-Martínez J A, Sinha N. Analysis of the role of Arabidopsis classⅠ TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development[J/OL]. Plant Science, 2013, 4: 406 (2013-10-16) [2015-11-16]. http://journal.frontiersin.org/ article/10.3389/fpls.2013.00406/full.
[20] Steiner E, Efroni I, Gopalraj M, et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with ClassⅠ TCPs to facilitate cytokinin responses in leaves and flowers[J]. Plant Cell, 2012, 24(1): 96-108.
[21] Uberti-Manassero N, Lucero L E, Viola I L, et al. The classⅠ protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins[J]. Journal of Experimental Botany, 2012, 63(2): 809-823.
[22] Li Ziyu, Li Bin, Dong Aiwu. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes[J]. Molecular Plant, 2012, 5(1): 270-280.
[23] Hao Juan, Tu Lili, Hu Haiyan, et al. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system[J]. Journal of Experimental Botany, 2012, 63(17): 6267-6281.
[24] Palatnik J F, Allen E, Wu Xuelin, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263.
[25] Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J]. Plant Cell, 2007, 19(2): 473-484.
[26] Cubas P, Coen E, Zapater J M. Ancient asymmetries in the evolution of flowers[J]. Current Biology, 2001, 11(3): 1050-1052.
[27] Aguilar-Martinez J A, Poza-Carrion C, Cubas P, et al. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell, 2007, 19(2): 458- 472.
[28] 刘伟娜, 韩建民, 董金皋, 等. 棉花TCP 家族转录因子基因GhTCP1的克隆与表达分析[J]. 棉花学报, 2010, 22(5): 409- 414.
Liu Weina, Han Jianmin, Dong Jingao, et al. Cloning and expression analysis cotton TCP family transcription factors GhTCP1 gene[J]. Cotton Science, 2010, 22(5): 409-414.
[29] 邢进, 刘伟娜, 赵琳琳, 等. 棉花GhTCP2基因启动子分离及其在幼嫩组织的表达分析[J]. 棉花学报, 2013, 25(3): 197-204.
Xing Jin, Liu Weina, Zhao Linlin, et al. Isolation of the cotton GhTCP2 gene promoter and analysis of its expression in young tissues[J]. Cotton Science, 2013, 25 (3): 197-204.
[30] Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium)[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(1): 280-284. |