棉花学报 ›› 2016, Vol. 28 ›› Issue (4): 399-406.doi: 10.11963/issn.1002-7807.201604012
王振玉,李威**,周晓箭,裴小雨,刘艳改,周克海,张文生,孟清芹,王海风,葛勇,李莹,刘俊芳,马雄风*,杨代刚*
收稿日期:
2015-10-19
出版日期:
2016-07-15
发布日期:
2016-07-15
通讯作者:
maxf_caas@163.com,yangdg2013@qq.com
作者简介:
王振玉(1989―),男,硕士,wangzhenyu89@126.com;**并列第一作者
基金资助:
Wang Zhenyu, Li Wei**, Zhou Xiaojian, Pei Xiaoyu, Liu Yangai, Zhou Kehai, Zhang Wensheng, Meng Qingqin, Wang Haifeng, Ge Yong, Li Ying, Liu Junfang, Ma Xiongfeng*, Yang Daigang*
Received:
2015-10-19
Online:
2016-07-15
Published:
2016-07-15
摘要: 单核苷酸多态性标记已在农作物研究中得到广泛应用并取得重大进展。为了便利棉花SNP(Single nucleotide polymorphism)标记的研究和应用,介绍了利用基因芯片、简化基因组测序、重测序等在棉花中开发SNP标记的方法,综述了SNP标记在棉花遗传图谱构建、数量位点的定位和分子标记辅助育种、基因组测序以及系统进化等研究中的应用。并对异源四倍体棉花中SNP标记开发时,同源序列位点和部分同源序列位点上的SNP标记辨别问题进行了系统探讨,对其快捷的开发、检测方式和在数量基因定位中的应用前景进行了展望。
中图分类号:王振玉, 李威, 周晓箭, 裴小雨, 刘艳改, 周克海, 张文生, 孟清芹, 王海风, 葛勇, 李莹, 刘俊芳, 马雄风, 杨代刚. 棉花单核苷酸多态性标记研究进展[J]. 棉花学报, 2016, 28(4): 399-406.
Wang Zhenyu, Li Wei, Zhou Xiaojian, Pei Xiaoyu, Liu Yangai, Zhou Kehai, Zhang Wensheng, Meng Qingqin, Wang Haifeng, Ge Yong, Li Ying, Liu Junfang, Ma Xiongfeng, Yang Daigang. Review of Single Nucleotide Polymorphism Markers in Cotton[J]. Cotton Science, 2016, 28(4): 399-406.
Φ[1] Rong Junkang, Colette A, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)[J]. Genetics, 2004, 166(1): 389-417. [2] Guo W, Cai C, Wang C, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics, 2007, 176(1): 527-541. [3] Shen Xinlian, Guo Wangzhen, Zhu Xiefei, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers[J]. Molecular Breeding, 2005, 15(2):169-181. [4] Chen Guang, Du Xiongming. Genetic diversity of source germ- plasm of upland cotton in China as determined by SSR marker analysis[J]. Acta Genetica Sinica, 2006, 33(8): 733-745. [5] Wang C, Ulloa M, Roberts P A. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala NemX cotton (Gossypium hirsutum L.)[J]. Theoretical and Applied Genetics, 2006, 112(4): 770-777. [6] 左开井, 孙济中, 张献龙, 等. 利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图[J]. 华中农业大学学报, 2000, 19(3): 190-193. Zuo Kaijing, Sun Jizhong, Zhang Xianlong, et al. Constructing a linkage map of upland cotton (Gossypium hirsutum L.) using RFLP, RAPD and SSR markers[J]. Journal of Huazhong Agricultural University, 2000, 19(3): 190-193. [7] 朱云国, 王学德, 李悦有. 用AFLP技术构建棉花雄性不育三系及其杂种F1的DNA指纹图谱[J]. 棉花学报, 2001, 13(3): 158-160. Zhu Yunguo,Wang Xuede, Li Yueyou. DNA fingerprinting analysis of cytoplasmic male sterile, maintainer, restorer line and hybrid (F1) in upland cotton by using AFLP technique[J]. Cotton Science, 2001, 13(3): 158-160. [8] 林忠旭, 张献龙, 聂以春, 等. 棉花SRAP遗传连锁图构建[J]. 科学通报, 2003, 48(15): 1676-1679. Lin Zhongxu, Zhang Xianlong, Nie Yichun, et al. Constructing cotton genetic maps with SRAP[J]. Chinese Science Bulletin, 2003, 48(15): 1676-1679. [9] Semagn K, BjΦrnstad Â, Ndjiondjop M N. An overview of molecular marker methods for plants[J]. African Journal of Biotechnology, 2006, 5(25): 2540-2568. [10] Ganal M W, Altmann T, R?觟der M S. SNP identification in crop plants[J]. Current Opinion in Plant Biology, 2009, 12(2): 211- 217. [11] Ching A, Caldwell K S, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines[J/OL]. BMC Genetics, 2002, 3(1): 19 [2015-10-19]. http:// www.biomedcentral.com/1471-2156/3/19. doi.org/10.1186/1471- 2156-3-19. [12] Shen Yingjia, Jiang Hua, Jin Jianpeng, et al. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes[J]. Plant Physiology, 2004, 135(3): 1198- 1205. [13] Lam H M, Xu Xun, Liu Xin, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics, 2010, 42(12): 1053-1059. [14] An Chuanfu, Saha S, Jenkins J N, et al. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton[J]. Molecular Genetics and Genomics, 2007, 278(5): 539-553. [15] An Chuanfu, Saha S, Jenkins J N, et al. Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping[J]. Theoretical and Applied Genetics, 2008, 116(7): 1015-1026. [16] Helyar S J, Hemmer-Hansen J, Bekkevold D, et al. Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges[J]. Molecular Ecology Resources, 2011, 11(S1): 123-136. [17] 刘传光, 张桂权. 水稻单核苷酸多态性及其应用[J]. 遗传, 2006, 28(6): 737-744. Liu Chuanguang, Zhang Guiquan. Single nucleotide polymorphism (SNP) and its application in rice[J]. Hereditas, 2006, 28(6): 737-744. [18] 李琳,杨德光,胡正,等. 单核苷酸多态性检测方法研究概述及其应用[J]. 玉米科学, 2009, 17(3): 142-145. Li Lin, Yang Deguang, Hu Zheng, et al. The outline of detection for single nucleotide polymorphism[J]. Journal of Maize Sciences, 2009, 17(3): 142-145. [19] Van Deynze A, Stoffel K, Lee M, et al. Sampling nucleotide diversity in cotton[J/OL]. BMC Plant Biology, 2009, 9(1): 125 [2015-10-19]. http://bmcplantbiol.biomedcentral.com/articles/ 10.1186/1471-2229-9-125. doi: 10.1186/1471-2229-9-125. [20] Fang D D, Xiao Jinhua, Canci P C, et al. A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.)[J]. Theoretical & Applied Genetics, 2010, 120(5): 943-953. [21] Byers R L, Harker D B, Yourstone S M, et al. Development and mapping of SNP assays in allotetraploid cotton[J]. Theoretical & Applied Genetics, 2012, 124(7): 1201-1214. [22] Yu J Z, Kohel R J, Fang D D, et al. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome[J]. Genes Genomes Genetics, 2012, 2(1): 43-58. [23] Gore M A, Fang D D, Poland J A. Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton[J/OL]. Plant Genome, 2014, 7(1): 1-10 [2015-10-19]. https://dl.sciencesocieties.org/publications/tpg/ pdfs/7/1/plantgenome2013.07.0023. doi: 10.3835/plantgenome 2013.07.0023. [24] Islam M S, Thyssen G N, Jenkins J N, et al. Detection, validation and application of genotyping - by - sequencing based single nucleotide polymorphisms in upland cotton[J/OL]. The Plant Genome, 2015, 8(1): 1-10 [2015-10-19]. https://dl.sciencesocieties.org/publications/tpg/pdfs/8/1/plantgenome2014.07.0034. doi:10.3835/plantgenome2014.07.0034. [25] Zhu Qianhao, Spriggs A, Taylor J M. Transcriptome and complexity-reduced, DNA-based identification of intraspecies single-nucleotide polymorphisms in the polyploid Gossypium hirsutum L.[J]. Genes Genomes Genetics, 2014, 4(10): 1893-1905. [26] Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium Raimondii[J]. Nature Genetics, 2012, 44(10): 1098-1103. [27] Li Fuguang, Fan Guangyi, Wang Kunbo, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6): 567-572. [28] Li Fuguang, Fan Guangyi, Lu Cairui, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530. [29] Hulse-Kemp A M, Lemm J, Plieske J, et al. Development of a 63K SNP array for cotton and high-density mapping of intra- and inter-specific populations of Gossypium spp.[J]. Genes Genomes Genetics, 2015, 5(6): 1187-1209. [30] Zhang Zhen, Li Junwen, Muhammad J, et al. High resolution consensus mapping of quantitative trait loci for fiber strength, length and micronaire on chromosome 25 of the upland cotton (Gossypium hirsutum L.)[J/OL]. PLoS ONE, 2015, 10(8): e0135430 [2015-10-19]. http://journals.plos.org/plosone/article?id=10.1371/ journal.pone.0135430. doi:10.1371/journal.pone.0135430. [31] Thyssen G N, Fang D D, Turley R B, et al. Mapping-by-sequencing of Ligon-lintless-1 (Li 1) reveals a cluster of neighboring genes with correlated expression in developing fibers of upland cotton (Gossypium hirsutum L.)[J]. Theoretical & Applied Genetics, 2015, 128(9): 1703-1712. [32] Feng Xuehui, Keim D, Wanjugi H, et al. Development of molecular markers for genetic male sterility in Gossypium hirsutum[J/OL]. Molecular Breeding, 2015, 35(6): 141 [2015-10-19]. http://link.springer.com/content/pdf/10.1007%2Fs11032-015- 0336-z.pdf. doi: 10.1007/s11032-015-0336-z. [33] Li Ximei, Gao Wenhui, Guo Huanle, et al. Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping[J/OL]. BMC Genomics, 2014, 15(1): 1046 [2015-10-19]. http://www.biomedcentral.com/content/ pdf/1471-2164-15-1046.pdf. doi:10.1186/1471-2164-15-1046. [34] Yu Yu, Yuan Daojun, Liang Shaoguang, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense[J/OL]. BMC Genomics, 2011, 12(1): 15 [2015-10-19]. http://www.biomedsearch.com/attachments/00/21/ 21/49/21214949/1471-2164-12-15.pdf. doi: 10.1186/1471-2164- 12-15. [35] Hulse-Kemp A M, Ashrafi H, Stoffel K, et al. BAC-end sequence-based SNP mining in allotetraploid cotton (Gossypium) utilizing resequencing data, phylogenetic inferences and perspectives for genetic mapping[J]. Genes Genomes Genetics, 2015, 5(6): 1095-1105. [36] Elshire R J, Glaubitz J C, Sun Qi, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[J/OL]. PLoS ONE, 2011, 6(5): e19379 [2015-10-19]. http://jour- nals.plos.org/plosone/article?id=10.1371/journal.pone.0019379. doi:10.1371/journal.pone.0019379. [37] Glaubitz J C, Casstevens T M, Lu Fei, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline[J/OL]. PLoS ONE, 2014, 9(2): e90346 [2015-10-19]. http://jour- nals.plos.org/plosone/article?id=10.1371/journal.pone.0090346. doi:10.1371/journal.pone.0090346. [38] Logan-Young C J, John Z Y, Verma S K, et al. SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing[J/OL]. Applications in Plant Sciences, 2015, 3(3): apps.1400077 [2015-10-19]. http://www.bioone.org/doi/10.3732/apps.1400077. [39] Wang Yangkun, Ning Zhiyuan, Hu Yan, et al. Molecular mapping of restriction-site associated DNA markers in allotetraploid upland cotton[J/OL]. PloS ONE, 2015, 10(4): e0124781 [2015- 10-19]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124781. doi:10.1371/journal.pone.0124781. [40] Wang Sen, Chen Jiedan, Zhang Wenpan, et al. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes[J/OL]. Genome Biology, 2015, 16(1): 108 [2015-10-19]. http://qnnkxjj.cast.org.cn/uploadfile/jiangxiang/2015Jul23/1437636389468.pdf. doi: 10.1186/ s13059-015-0678-1. [41] Lockhart D J, Winzeler E A. Genomics, gene expression and DNA arrays[J]. Nature, 2000, 405(6788): 827-836. [42] Yu Jun, Hu Songnian, Wang Jun, et al. A draft sequence of the rice (Oryza sativa ssp. indica) genome[J]. Chinese Science Bulletin, 2004, 46(23): 1937-1942. [43] Brookes A J. The essence of SNPs[J]. Gene, 1999, 234(2): 177- 186. [44] Roberts L. SNP mappers confront reality and find it daunting[J]. Science, 2000, 287(5460): 1898-1899. [45] Stadler L J, Uber F M. Genetic effects of ultraviolet radiation in maize. IV. comparison of monochromatic radiations[J]. Genetics, 1942, 27(1): 84-118. [46] Grover C E, Zhu X, Grupp K K, et al. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack[J]. Genetic Resources & Crop Evolution, 2015, 62(1): 103-114. [47] Kaur S, Francki M G, Forster J W. Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species[J]. Plant Biotechnology Journal, 2012, 10(2): 125-138. [48] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429): 423-427. [49] Wu Jiejun, Smith L T, Christoph P, et al. Chip-chip comes of age for genome-wide functional analysis[J]. Cancer Research, 2006, 66(14): 6899-6902. [50] Garber K. More SNPs on the way[J]. Science, 1998, 281(5384): 1788. |
[1] | 李智, 韩笑, 张一豪, 马峙英, 杨召恩. 棉花磷胁迫响应基因GhWRKY6克隆及功能分析[J]. 棉花学报, 2019, 31(3): 182-191. |
[2] | 张允昔, 夏绍南, 杨茅难, 李永旗, 张丽娟, 谢业涛, 李直兴, 董合林. 植物生长促进剂对赣北移栽棉生长发育及产量的影响[J]. 棉花学报, 2019, 31(3): 233-241. |
[3] | 鲁宁宁, 赵云雷, 王红梅, 陈伟, 赵佩, 龚海燕, 崔艳利, 桑晓慧, 张凯. 基于RIL群体鉴定棉花抗黄萎病相关QTLs[J]. 棉花学报, 2019, 31(3): 254-262. |
[4] | 王俊娟, 陆许可, 阴祖军, 王德龙, 王帅, 穆敏, 陈修贵, 郭丽雪, 樊伟丽, 陈超, 叶武威. 陆地棉GhLEA3基因的克隆及其响应低温胁迫表达分析[J]. 棉花学报, 2019, 31(2): 89-100. |
[5] | 李敏, 李彩红, 赵瑞元, 刘冰蕾, 张志刚. 湖南省棉花黄萎病菌致病力分化及致病型分布研究[J]. 棉花学报, 2019, 31(2): 129-137. |
[6] | 洪帅, 张泽, 张立福, 马露露, 海兴岩, 王振, 张辉, 吕新. 滴灌棉花不同生育时期冠层叶片叶绿素含量的高光谱估测模型[J]. 棉花学报, 2019, 31(2): 138-146. |
[7] | 田新权, 付小琼, 时萌, 方丹, 徐双娇, 马磊. 棉纤维DNA的提取及其在品种溯源中的尝试[J]. 棉花学报, 2019, 31(2): 156-162. |
[8] | 宫慧慧, 张玉娟, 赵军胜, 李振怀, 卢合全, 徐士振, 赵逢涛, 孟庆华, 董合忠. 棉花/芝麻间作模式对作物生长和产量的影响[J]. 棉花学报, 2019, 31(2): 147-155. |
[9] | 张冬梅, 张艳军, 李存东, 董合忠. 论棉花轻简化栽培[J]. 棉花学报, 2019, 31(2): 163-168. |
[10] | 朱晓伟, 刘连涛, 万华龙, 张永江, 孙红春, 李存东. 整枝方式和冠层高度对棉铃时空分布及产量的影响[J]. 棉花学报, 2019, 31(1): 79-88. |
[11] | 李岩, 张希鹤, 郁凯, 霍钰阳, 王友华, 陈兵林. 不同棉花品种及施钾量对黄萎病抗性生理机制的影响[J]. 棉花学报, 2019, 31(1): 40-53. |
[12] | 朱协飞, 司占峰. 棉花导入系耐盐性鉴定及耐盐基因QTL定位[J]. 棉花学报, 2019, 31(1): 23-30. |
[13] | 曲朝阳, 贾晓昀, 马启峰, 王寒涛, 魏恒玲, 范术丽. 棉花重组自交系铃重性状的QTL定位[J]. 棉花学报, 2019, 31(1): 12-22. |
[14] | 藏旭阳, 代培红, 李继洋, 蒲艳, 顾爱星, 刘晓东. 棉花U3和U6启动子在CRISPR/Cas9基因组编辑体系中的功能鉴定[J]. 棉花学报, 2019, 31(1): 31-39. |
[15] | 王晓婧, 李思嘉, 刘瑞显, 张国伟, 杨长琴, 倪万潮. 棉花施用脱叶剂对相邻未着药叶片生理活性的影响[J]. 棉花学报, 2019, 31(1): 64-71. |
|