[1] 詹少华, 林毅, 蔡永萍, 等. 天然棕色棉纤维色素光谱学特性及其化学结构初步推断[J]. 植物学通报, 2007, 24(1): 99-104.
Zhan Shaohua, Lin Yi, Cai Yongping, et al. Preliminary deductions of the chemical structure of the pigment brown in cotton fiber[J]. Chinese Bulletin of Botany, 2007, 24(1): 99-104.
[2] 茹宗玲, 王国喜, 何守朴, 等. 不同天然彩色棉纤维品质和纤维超微结构的差异[J]. 棉花学报, 2013, 25(2): 184-188.
Ru Zongling, Wang Guoxi, He Shoupu, et al. The difference of fiber quality and fiber ultrastructure in different natural colored cotton[J]. Cotton Science, 2013, 25(2): 184-188.
[3] Gao Junshan, Wu Nan, Shen Zhilin, et al. Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton(Gossypium hirsutum L.)[J]. Gene, 2016, 576(2): 763-769.
[4] Morita Y, Kodama K, Shiota S, et al. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli[J]. Antimicrob Agents Chemother, 1998, 42(7): 1778-1782.
[5] Morita Y, Kataoka A, Shiota S, et al. NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump[J]. Journal of Bacteriology, 2000, 182(23): 6694-6697.
[6] Pao S S, Paulsen I T, Saier M H Jr. Major facilitator superfamily[J]. Microbiology and Molecular Biology Reviews, 1998, 62(1): 1-34.
[7] Brown M H, Paulsen I T, Skurray R A. The multidrug efflux protein NorM is a prototype of a new family of transporters[J]. Molecular Microbiology, 1999, 31(1): 394-395.
[8] Chung Y J, Krueger C, Metzgar D, et al. Size comparisons among integral membrane transport protein homologues in bacteria, archaea, and eucarya[J]. Journal of Bacterology, 2001, 183(3): 1012- 1021.
[9] Diener A C, Gaxiola R A, Fink G R. Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins[J]. The Plant Cell, 2001, 13(7): 1625-1638.
[10] Debeaujon I, Peeters A J M, Léon-Kloosterziel K M, et al. The transparent TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium[J]. The Plant Cell, 2001, 13(4): 853-871.
[11] Nawrath C, Heck S, Parinthawong N, et al. EDS5, an essential component of salicylic acid2 dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family[J]. The Plant Cell, 2002, 14(1): 275-286.
[12] Rogers E E, Guerinot M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis[J]. The Plant Cell, 2002, 14(8): 1787-1799.
[13] Li Legong, He Zongyong, Pandey G K, et al. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification[J]. Journal of Biological Chemistry, 2002, 277(7): 5360-5368.
[14] 吴平治, 栾升, 李东屏. 拟南芥中MATE基因家族的研究进展[J]. 遗传, 2006, 28(7): 906-910.
Wu Pingzhi, Luan Sheng, Li Dongping. Advances in the study of MATE gene family in Arabidopsis[J]. Hereditas, 2006, 28(7): 906-910.
[15] Klein M, Weissenb?觟ck G, Dufaud A, et al. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside[J]. Journal of Biological Chemistry, 1996, 271(47): 29666-29671.
[16] 谢小东, 程廷才, 王根洪, 等. 植物ABC和MATE转运蛋白与次生代谢物跨膜转运[J]. 植物生理学报, 2011, 47(8): 752- 758.
Xie Xiaodong, Cheng Tingcai, Wang Genhong, et al. ABC and MATE transporters of plant and their roles in membrane transport of secondary metabolites[J]. Plant Physiology Journal, 2011, 47(8): 752-758.
[17] Yazaki K, Sugiyama A, Morita M, et al. Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites[J]. Phytochemistry Reviews, 2008, 7(3): 513-524.
[18] 张毓婷, 王敏华, 陈家栋, 等. 雷蒙德氏棉HSP70基因家族的进化分析及其同源基因在陆地棉中的表达分析[J]. 遗传, 2014, 36(9): 921-933.
Zhang Yuting, Wang Minhua, Chen Jiadong, et al. Genome- wide analysis of HSP70 superfamily in Gossypium raimondii and the expression of orthologs in Gossypium hirsutum[J]. Hereditas, 2014, 36(9): 921-933.
[19] Li Fuguang, Fan Guangyi, Wang Kunbo, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6): 567-572.
[20] Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44(10): 1098-1103.
[21] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429): 423-427.
[22] 关鹰, 许在恩, 郭小勤. 毛竹IDD基因家族的生物信息学分析[J]. 核农学报, 2014, 28(6): 998-1005.
Guan Ying, Xu Zaien, Guo Xiaoqin. Bioinformatic analysis of IDD gene family in Phyllostachys heterocycla[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(6): 998-1005.
[23] Ikegami A, Akagi T, Poaer D, et al.Molecular identification of 1-cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb.)[J]. Planta, 2009, 230(4): 841-855.
[24] Li Yuguang, Tanner G, Larkin P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes[J]. Journal of the Science of Food and Agriculture, 1996, 70(1): 89-101.
[25] Yokosho K, Yamaji N, Ueno D, et al. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice[J]. Plant Physiology, 2009, 149: 297-305.
[26] Marinova K, Pourcel L, Weder B, et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat[J]. The Plant Cell, 2007, 19(6): 2023-2038.
[27] Green L S, Rogers E E. FRD3 controls iron localization in Arabidopsis[J]. Plant Physiology, 2004, 136(1): 2523-2531.
[28] Magalhaes J V, Liu Jiping, Guimaraes C T, et al. A gene in the multidrug and toxic compound extrusion(MATE) family confers aluminum tolerance in sorghum[J]. Nature Genetics, 2007, 39(9): 1156-1161.
[29] Uhde-Stone C, Liu Junqi, Zinn K E, et al. Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress[J]. Plant Journal, 2005, 44(5): 840-853.
[30] Gilbert W. The exon theory of genes[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52: 901-905.
[31] Plomin R, Spinath F M. Intelligence: genetics, genes, and genomics[J]. Journal of Personality and Social Psychology, 2004, 86(1): 112-129.
[32] Kleindt C K, Stracke R, Mehrtens F, et al. Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway[J/OL]. BMC Research Notes, 2010, 3(1): 255 [2015-12-24]. www.biomedcentral.com/ 1756-0500/3/255.
[33] 张凡. 柿单宁及花青苷跨膜相关基因的克隆与表达分析[D]. 武汉: 华中农业大学, 2012.
Zhang Fan. Molecular cloning and expression analysis of genes related to transmembrane tannin and anthocyanin[D]. Wuhan: Huazhong Agricultural University, 2012.
[34] Zhao Jian, Dixon R. MATE transporters facilitate vacuolar uptake of epicatechin 3’-O-Glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis[J]. The Plant Cell, 2009, 21(8): 2323-2340.
[35] Frank S, Keck M, Sagasser M, et al. Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testal2 mutant[J]. Plant Biology, 2011, 13(1): 42-50. |