棉花学报 ›› 2021, Vol. 33 ›› Issue (6): 459-468.doi: 10.11963/cs20210061
王雪慧(),陈丽锦,赵若林,程海亮,张友平,王巧连,吕丽敏,宋国立,左东云*(
)
收稿日期:
2021-10-28
出版日期:
2021-11-15
发布日期:
2022-04-14
通讯作者:
左东云
E-mail:1115193717@qq.com;zdy041@163.com
作者简介:
王雪慧(1993―),女,硕士研究生, 基金资助:
Wang Xuehui(),Chen Lijin,Zhao Ruolin,Cheng Hailiang,Zhang Youping,Wang Qiaolian,Lü Limin,Song Guoli,Zuo Dongyun*(
)
Received:
2021-10-28
Online:
2021-11-15
Published:
2022-04-14
Contact:
Zuo Dongyun
E-mail:1115193717@qq.com;zdy041@163.com
摘要:
【目的】研究陆地棉类受体激酶GhCRPK1(Cold-responsive protein kinase 1,CRPK1)在棉花纤维发育中的功能。【方法】以陆地棉全基因组关联分析(Genome-wide association study,GWAS)数据及陆地棉纤维发育不同时期的表达数据,筛选到GhCRPK1在棉花纤维起始期优势表达,通过基因克隆、亚细胞定位等方法研究了GhCRPK1的功能,对过表达GhCRPK1的拟南芥及突变体crpk1的表皮毛长度和密度进行观察统计,利用酵母双杂交筛选与GhCRPK1相互作用的蛋白。【结果】GhCRPK1基因全长为4 594 bp,开放阅读框长度为1 047 bp,编码348个氨基酸,在开花当天到开花后3 d持续优势表达,编码产物定位在细胞膜上。GhCRPK1在拟南芥中异源表达后可促进表皮毛的伸长;拟南芥中同源基因突变后,表皮毛变短。酵母双杂交实验发现,GhCRPK1与热激蛋白Gh_D08G0057相互作用。【结论】GhCRPK1在棉花纤维发育起始时期优势表达,定位在细胞膜上,在拟南芥中异源表达后调控拟南芥表皮毛的伸长。
王雪慧,陈丽锦,赵若林,程海亮,张友平,王巧连,吕丽敏,宋国立,左东云. 陆地棉纤维起始期优势表达基因GhCRPK1的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 459-468.
Wang Xuehui,Chen Lijin,Zhao Ruolin,Cheng Hailiang,Zhang Youping,Wang Qiaolian,Lü Limin,Song Guoli,Zuo Dongyun. Cloning and functional analysis of GhCRPK1, a gene preferentially expressed during fiber initiation in upland cotton[J]. Cotton Science, 2021, 33(6): 459-468.
附表1
本研究中所用到的引物序列"
引物名称 | 引物序列 |
Primer names | Primer sequence |
Histone3PF | CCGTAAATCTGCCCCAACCA |
Histone3PR | GACCCACAAGGTATGCCTCTGC |
Gh_A09G0177PF | TTTCAGACGCAGACGCCATTGT |
Gh_A09G0177PR | GAATGCAGCCGCCAAGTGAATC |
Gh_A09G0186PF | TTCCTTGCCCTTCAACGAAGCA |
Gh_A09G0186PR | ACTGCCATAACCACCCATTCCA |
Gh_A09G1658PF | GTCTCTGCTCGATGCGGTAACT |
Gh_A09G1658PR | GCAAGGATTTCTCAAACTCCCCCA |
Gh_A10G1849PF | GAATACGCTGTGAGTGGACGCT |
Gh_A10G1849PR | ACGATCCACGTCTTGTTCCCAG |
Gh_A10G1850PF | AGGCCTTCCGATTCCAACTGTG |
Gh_A10G1850PR | ACTATACTGGCTAGCTGGCACGA |
Gh_D02G0129PF | GCTCGGTACATGTTTTTATGGCCG |
Gh_D02G0129PR | CAAGCGACAGCCAATCGTTCAC |
Gh_D05G3666PF | TCTCCTCAACTTGGCAGGCAAC |
Gh_D05G3666PR | AGATTCCCCATCGAGTCAGGCA |
Gh_D05G3667PF | GCTCGAGACTGATGATACCGCA |
Gh_D05G3667PR | CCAAATGTTCAAGATTGCTGCTCCG |
Gh_D08G0480PF | TGGGAAGGAGTTGAGTGCAACG |
Gh_D08G0480PR | CCATTCACGGTTATCCCATTGACG |
Gh_D08G0482PF | TTCATCGGAAAAGGTGCCTCCC |
Gh_D08G0482PR | CGCCAAAGAGGACTTTGAGGTGT |
Gh_D08G2087PF | TGGTTCTCTTTGCGGAAGGTCT |
Gh_D08G2087PR | AGACATGGTGCCAGCAATGGTT |
Gh_D13G2124PF | ATCTGAGGGAGATGGTGGTCCC |
Gh_D13G2124PR | CCGCCACTGAAATCCAGCTTCT |
Gh_D13G0607PF | GGTTCCAAAGCCAAGGGTGCTT |
Gh_D13G0607PR | CACAACTCCCTCCCAATCGCAG |
Gh_A01G0382PF | ATCTTGCAGGTGAGATACCATCCA |
Gh_A01G0382PR | ACCGGAAAGCTTGTTCCCTTTCA |
Gh_A01G0896PF | CATGTTTGACGGGCGATTGTGG |
Gh_A01G0896PR | GGGACGTTGTAACCGTCAACCA |
Gh_A02G0005PF | CAGCAGCTCCACAACCACATCT |
Gh_A02G0005PR | TCCTGGAATCCTCGAAGTCGCT |
Gh_A02G0017PF | GCCGAAGTCAATCATGCCCCAT |
Gh_A02G0017PR | CCGATTCTAAGAGGAGCGGCAC |
Gh_A02G1417PF | ACCAACTTTCCGGGGCTTTACC |
Gh_A02G1417PR | AAGGTTCCCAGCTCGGGAGTTA |
Gh_A02G1419PF | TCCTACGGCGAATGTGAGTCCT |
Gh_A02G1419PR | CCCCAGAATTTTTCCGGCAGGT |
Gh_D09G0223PF | TGGATGGAACGAGAAGATCGCC |
Gh_D09G0223PR | GCCTGTTAGCCGACAGATCCA |
Gh_A03G1520PF | TCACGGAAACCTGAAACCGTCC |
Gh_A03G1520PR | CGAGTGCTGGTATTCCGGTGAC |
Gh_A06G1067PF | GCGTTTGCTACTAAGTTGGACGA |
Gh_A06G1067PR | GGCTGCTTTTAAGTCGCGATGG |
Gh_A06G1068PF | GCCGTTTCATTGGCAGTTGTCC |
Gh_A06G1068PR | TGTTATGAGCTGCATCCGTGGG |
Gh_A08G0777PF | GTCTAAGGGGCTACTGCGTTGG |
Gh_A08G0777PR | GCAACCAGCGGTTCGAAGTTTG |
Gh_A08G0809PF | AAGAGGAGTGTCTGGAAGGTACGG |
Gh_A08G0809PR | GAACCACCATGGGCCGAGAAAA |
Gh_A08G2273PF | CGCAGAACTGAAAGCGCTCAAG |
Gh_A08G2273PR | GCCATAACCCCCTTCCCCAATC |
Gh_A08G2419PF | GGCCGACTGCGTCGAAGATT |
Gh_A08G2419PR | GCACAGCCCCTAGCATGTCC |
Gh_A08G2425PF | ATGCCATTGCACATTCAGCAGC |
Gh_A08G2425PR | TGCTGCCTCCTCAACTGGGATA |
Gh_A08G2434PF | TCACGCCGATCTTTGCAGACTT |
Gh_A08G2434PR | ACAACCTCAGCTGACTGCAAGC |
Gh_A09G0625PF | TGGTGGAATGTCACCCCTAACG |
Gh_A09G0625PR | TGCTCTAGCAACATCCCCGATT |
Gh_A10G1831PF | AGGGGCACAAAGAATGGGTGAC |
Gh_A10G1831PR | CTCCGGTTCGGCATGTATTCGT |
Gh_A11G1757PF | GGATCCTGACGAGCCGAAAGAC |
Gh_A11G1757PR | TCAGATGCCGACACTCAGGAGA |
Gh_A13G0484PF | ACGCAAGATCCAGCGCTATTGA |
Gh_A13G0484PR | GCTCCATGCCCTCCATCTCATT |
Gh_A13G2056PF | CATCCCGTTGGACAGGTGTGTT |
Gh_A13G2056PR | TATCCGCAAGCGAGATAAGCGG |
GhCRPK1PF1 | ATGGAATTTCATGTCCCCACAG |
GhCRPK1PR1 | TTATGAAGTTTGAAACTGAGGG |
GhCRPK1PF2 | TCCGGTACCCCCGGGGTCGACTTATGAAGTTTGAAACTGAATGGTGATGGTGATGATGGGG |
GhCRPK1PR2 | CTGAACCGCCTCCACCGGATCCTGAAGTTTGAAACTGAGGG |
GhCRPK1PF3 | TCCGGTACCCCCGGGGTCGACTTATGAAGTTTGAAACTGAATGGTGATGGTGATGATGGGG |
GhCRPK1PR3 | GAATTCCTAATGATGATGATGATGATGTGAAGTTTGAAACTGAGGG |
[1] |
Couto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology, 2016, 16(9): 537-552.
doi: 10.1038/nri.2016.77 |
[2] |
Gómez-Gómez L, Felix G, Boller T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana[J]. The Plant Journal, 1999, 18(3): 277-284.
doi: 10.1046/j.1365-313X.1999.00451.x |
[3] |
Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell, 2000, 5(6): 1003-1011.
doi: 10.1016/s1097-2765(00)80265-8 pmid: 10911994 |
[4] |
Gómez-Gómez L, Bauer Z, Boller T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis[J]. The Plant Cell, 2001, 13(5): 1155-1163.
doi: 10.1105/tpc.13.5.1155 |
[5] |
Zipfel C, Kunze G, Chinchilla D, et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation[J]. Cell, 2006, 125(4): 749-760.
pmid: 16713565 |
[6] |
Li Jia, Wen Jiangqi, Lease K A, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2): 213-222.
doi: 10.1016/s0092-8674(02)00812-7 pmid: 12150929 |
[7] |
Nam K H, Li Jiangqi. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2): 203-212.
doi: 10.1016/S0092-8674(02)00814-0 |
[8] |
Fletcher J C, Brand U, Running M P, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems[J]. Science, 1999, 283(5409): 1911-1914.
doi: 10.1126/science.283.5409.1911 pmid: 10082464 |
[9] |
Somssich M, Je B I, Simon R, et al. CLAVATA-WUSCHEL signaling in the shoot meristem[J]. Development, 2016, 143(18): 3238-3248.
doi: 10.1242/dev.133645 pmid: 27624829 |
[10] |
Escobar-Restrepo J M, Huck N, Kessler S, et al. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception[J]. Science, 2007, 317(5838): 656-660.
pmid: 17673660 |
[11] |
Guo Hongqing, Li Lei, Ye Huaxun, et al. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2009, 106(18): 7648-7653.
doi: 10.1073/pnas.0812346106 |
[12] |
Duan Qiaohong, Kita D, Li Chao, et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development[J]. Proceedings of the National Academy of Sciences, 2010, 107(41): 17821-17826.
doi: 10.1073/pnas.1005366107 |
[13] |
Yu Feng, Qian Lichao, Nibau C, et al. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase[J]. Proceedings of the National Academy of Sciences, 2012, 109(36): 14693-14698.
doi: 10.1073/pnas.1212547109 |
[14] |
Boisson-Dernier A, Roy S, Kritsas K, et al. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge[J]. Development, 2009, 136(19): 3279-3288.
doi: 10.1242/dev.040071 pmid: 19736323 |
[15] |
Miyazaki S, Murata T, Sakurai-Ozato N, et al. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization[J]. Current Biology, 2009, 19(15): 1327-1331.
doi: 10.1016/j.cub.2009.06.064 pmid: 19646876 |
[16] |
Ge Zengxiang, Bergonci T, Zhao Yuling, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling[J]. Science, 2017, 358(6370): 1596-1600.
doi: 10.1126/science.aao3642 pmid: 29242234 |
[17] |
Mecchia M A, Santos-Fernandez G, Duss N N, et al. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis[J]. Science, 2017, 358(6370): 1600-1603.
doi: 10.1126/science.aao5467 pmid: 29242232 |
[18] |
Zhao Chunzhao, Zayed O, Yu Zheping, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2018, 115(51): 13123-13128.
doi: 10.1073/pnas.1816991115 |
[19] |
Ma Zhiying, He Shoupu, Wang Xingfen, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield[J]. Nature Genetics, 2018, 50(6): 803-813.
doi: 10.1038/s41588-018-0119-7 pmid: 29736016 |
[20] |
Larkin M, Blackshields G, Brown N, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036 |
[21] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 |
[22] |
Zhang Xiuren, Henriques R, Lin S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646.
pmid: 17406292 |
[23] |
Liu Ziyan, Jia Yuxin, Ding Yanglin, et al. Plasma Membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Molecular Cell, 2017, 66(1): 117-128.
doi: S1097-2765(17)30131-4 pmid: 28344081 |
[24] |
Catalá R, López-Cobollo R, Mar Castellano M, et al. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation[J]. The Plant Cell, 2014, 26(8): 3326-3342.
doi: 10.1105/tpc.114.127605 |
[25] |
Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiology, 2000, 124(4): 1854-1865.
pmid: 11115899 |
[26] |
Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 1998, 280(5360): 104-106.
pmid: 9525853 |
[27] |
Bao Fei, Huang Xiaozhen, Zhu Chipan, et al. Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses[J]. New Phytologist, 2014, 202(4): 1320-1334.
doi: 10.1111/nph.12760 pmid: 24611624 |
[28] |
McClellan A J, Tam S, Kaganovich D, et al. Protein quality control: chaperones culling corrupt conformations[J]. Nature Cell Biology, 2005, 7(8): 736-741.
pmid: 16056264 |
[1] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[2] | 吕丽敏,左东云,王省芬,张友平,程海亮,王巧连,宋国立,马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[3] | 张松雨,王敬敬,刘正文,张艳,杨君,马峙英,王省芬. 四倍体棉花GAE基因家族的鉴定及其在棉纤维发育中的表达分析[J]. 棉花学报, 2019, 31(3): 169-181. |
[4] | 左东云, 叶武威, 程海亮, 王德龙, 张友平, 王俊娟, 王巧连, 陈修贵, 陆许可, 宋国立. 棉花功能基因组研究进展[J]. 棉花学报, 2017, 29(增刊): 20-27. |
[5] | 钱森和, 洪亮, 魏明, 林毅, 蔡永萍. 绿色棉纤维发育过程中DNA表观遗传变化的甲基化敏感扩增多态性分析[J]. 棉花学报, 2017, 29(4): 316-326. |
[6] | 刘娜, 吴金华, 安亚茹, 杨君, 张艳, 王省芬, 马峙英. 陆地棉抗坏血酸过氧化物酶基因家族全基因组生物信息学分析[J]. 棉花学报, 2017, 29(1): 17-28. |
[7] | 洪亮, 张雷, 钱森和, 孙旭, 蔡永萍, 林毅, 高俊山, 郭宁. 光质对离体培养条件下绿色棉纤维发育及黄酮合成的影响[J]. 棉花学报, 2015, 27(4): 300-309. |
[8] | 徐文亭, 王 诚, 徐晓洋, 蔡彩平, 郭旺珍. 一个棉花果糖-1,6-二磷酸酶基因的克隆与表达特征[J]. 棉花学报, 2013, 25(6): 549-556. |
[9] | 李锡花, 吴 嫚, 于霁雯, 张金发, 范术丽, 宋美珍, 庞朝友, 喻树迅. 棉花纤维发育早期RNA-Seq转录组分析[J]. 棉花学报, 2013, 25(3): 189-196. |
[10] | 吴 霞, 李燕娥, 上官小霞. 棉纤维发育相关转录因子的研究进展[J]. 棉花学报, 2013, 25(3): 269-277. |
[11] | 闫洪颖, 胡文冉, 范 玲. 新疆特早熟陆地棉纤维细胞发育过程的超微结构观察[J]. 棉花学报, 2009, 21(6): 456-461. |
[12] | 张文静, 周治国, 胡宏标, 王友华. 棉花季节桃纤维发育相关酶活性变化与纤维比强度形成的关系[J]. 棉花学报, 2008, 20(5): 342-347. |
[13] | 上官小霞, 王凌健, 李燕娥, 梁运生. 棉花纤维发育的分子机理及品质改良研究进展[J]. 棉花学报, 2008, 20(1): 62-69. |
|