棉花学报 ›› 2021, Vol. 33 ›› Issue (5): 385-392.doi: 10.11963/cs20210015
• 研究与进展 • 下一篇
收稿日期:
2021-02-21
出版日期:
2021-09-15
发布日期:
2022-01-27
通讯作者:
彭文勇
E-mail:mingfengL0124@163.com;767957740@qq.com
作者简介:
李鸣凤(1991―),女,博士, 基金资助:
Li Mingfeng1(),Peng Wenyong2,*(
),He Hua1,Liu Xinwei3,Zhao Zhuqing3
Received:
2021-02-21
Online:
2021-09-15
Published:
2022-01-27
Contact:
Peng Wenyong
E-mail:mingfengL0124@163.com;767957740@qq.com
摘要:
【目的】研究外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响。【方法】采用土培方法,以中棉所83为试验材料,设置空白对照、无机硼酸(硼酸)、有机硼(硼酸二甘油酯)3个处理,施硼量均为1.00 mg·kg-1,棉花生长65 d后取样并测定相关指标。【结果】施用无机硼酸和有机硼均促进了棉花细胞壁和叶绿体的发育,增加了棉花叶、茎和根部及其细胞壁的硼含量,同时促进了棉花对磷和镁的吸收,但减少了棉花对钙的吸收,使单株生物量分别增加15.09%和22.49%。相比无机硼酸,有机硼处理对棉花叶和茎硼含量的增加效果更显著,增幅分别为16.88%和10.72%,且增加的主要为移动性高的自由态硼或原生质体硼。【结论】有机硼较无机硼酸更有利于植物对硼的吸收利用。
李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392.
Li Mingfeng,Peng Wenyong,He Hua,Liu Xinwei,Zhao Zhuqing. Effects of different forms of boron on absorption and utilization of boron and other mineral elements in cotton[J]. Cotton Science, 2021, 33(5): 385-392.
表2
不同形态硼肥对苗期棉花各部位硼含量和累积分配比的影响"
处理 Treatments | 硼含量 Boron content/(mg·kg-1) | 硼累积分配比 Boron distribution/% | |||||
叶Leaf | 茎Stem | 根Root | 叶Leaf | 茎Stem | 根Root | ||
CK | 14.32±1.18 c | 8.55±0.93 c | 9.79±1.78 b | 62.53±1.04 c | 26.11±2.22 a | 11.36±1.31 a | |
B | 52.25±2.12 b | 28.83±1.33 b | 24.33±1.00 a | 70.75±1.31 b | 22.38±1.31 b | 6.87±0.73 b | |
OB | 61.07±3.38 a | 31.92±1.76 a | 24.53±1.82 a | 73.42±1.70 a | 20.79±0.94 b | 5.79±0.89 b |
表3
不同形态硼肥对苗期棉花各部位细胞壁硼含量和比例的影响"
处理 Treatments | 细胞壁硼含量 Cell wall boron content/(mg·kg-1) | 细胞壁硼比例 Cell wall boron ratio/% | |||||
叶Leaf | 茎Stem | 根Root | 叶Leaf | 茎Stem | 根Root | ||
CK | 13.29±1.80 b | 14.28±2.11 b | 13.05±1.17 b | 56.11±4.70 a | 64.23±3.41 a | 45.16±8.85 a | |
B | 37.53±2.14 a | 26.17±1.74 a | 21.37±1.70 a | 39.19±3.21 b | 44.41±3.58 b | 29.46±2.44 b | |
OB | 35.58±2.42 a | 25.91±2.56 a | 21.97±0.58 a | 31.76±2.24 c | 40.08±2.08 b | 29.72±4.31 b |
[1] |
Matthes M S, Robil J M, McSteen P. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants[J/OL]. Journal of Experimental Botany, 2020,71(5): 1681-1693[2021-02-20]. https://doi.org/10.1093/jxb/eraa042.
doi: 10.1093/jxb/eraa042 |
[2] |
Hua Y P, Zhou T, Ding G D, et al. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes[J/OL]. Journal of Experimental Botany, 2016,67(19): 5769-5784[2021-02-20]. https://doi.org/10.1093/jxb/erw342.
doi: 10.1093/jxb/erw342 |
[3] |
Wu X W, Liu G D, Muhammad R, et al. Metabolic changes in roots of trifoliate orange [Poncirus trifoliate (L.) Raf.] as induced by different treatments of boron deficiency and resupply[J/OL]. Plant and Soil, 2019,431(2): 217-229[2021-02-20]. https://doi.org/10.1007/s11104-018-3684-8.
doi: 10.1007/s11104-018-3761-z |
[4] |
Milagres C C, Maia J T L S, Ventrella M C, et al. Anatomical changes in cherry tomato plants caused by boron deficiency[J/OL]. Brazilian Journal of Botany, 2019,42(30): 319-328[2021-02-20]. https://doi.org/10.1007/s40415-019-00537-y.
doi: 10.1007/s40415-019-00537-y |
[5] |
Poss J A, Grattan S R, Grieve C M, et al. Characterization of leaf boron injury in salt-stressed Eucalyptus by image analysis[J/OL]. Plant and Soil, 1999,206(2): 237-245[2021-02-20]. https://doi.org/10.1023/A:1004488331737.
doi: 10.1023/A:1004488331737 |
[6] |
Wu X, Lu X, Riaz M, et al. Boron deficiency and toxicity altered the subcellular structure and cell wall composition architecture in two citrus rootstocks[J/OL]. Scientia Horticulturae, 2018,238: 147-154[2021-02-20]. https://doi.org/10.1016/j.scienta.2018.04.057.
doi: 10.1016/j.scienta.2018.04.057 |
[7] |
Hu H, Brown P H. Localization of boron in cell walls of squash and tobacco and its association with pectin. Evidence for a structural role of boron in the cell wall[J/OL]. Plant Physiology, 1994,105(2): 681-689[2021-02-20]. https://doi.org/10.1104/pp.105.2.681
pmid: 12232235 |
[8] |
Bogiani J C, Sampaio T F, Abreu-Junior C H, et al. Boron uptake and translocation in some cotton cultivars[J/OL]. Plant and Soil, 2014,375(1-2): 241-253[2021-02-20]. https://doi.org/10.1007/s11104-013-1957-9.
doi: 10.1007/s11104-013-1957-9 |
[9] |
Yoshinari A, Takano J. Insights into the mechanisms underlying boron homeostasis in plants[J/OL]. Frontiers in Plant Science, 2017,8(1): 1951[2021-02-20]. https://doi.org/10.3389/fpls.2017.01951.
doi: 10.3389/fpls.2017.01951 |
[10] |
Stangoulis J, Tate M, Graham R, et al. The mechanism of boron mobility in wheat and canola phloem[J/OL]. Plant Physiology, 2010,153(2): 876-881[2021-02-20]. https://doi.org/10.1104/pp.110.155655.
doi: 10.1104/pp.110.155655 pmid: 20413647 |
[11] |
Brown P H, Hu H. Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species[J/OL]. Annals of Botany, 1996,77(5): 497-506[2021-02-20]. https://doi.org/10.1006/anbo.1996.0060.
doi: 10.1006/anbo.1996.0060 |
[12] |
Julkowska M M. Adjusting boron transport by two-step tuning of levels of the efflux transporter BOR1[J/OL]. Plant Physiology, 2018,177(2): 439-440[2021-02-20]. https://doi.org/10.1104/pp.18.00313.
doi: 10.1104/pp.18.00313 |
[13] |
Brown P H, Shelp B. Boron mobility in plants[J/OL]. Plant and Soil, 1997,193(1-2): 85-101[2021-02-20]. https://doi.org/10.1023/A:1004211925160.
doi: 10.1023/A:1004211925160 |
[14] | Hu H, Brown P H. The mechanism of phloem mobility of boron[J/OL]. Plant Nutrition for Sustainable Food Production and Environment, 1997,78: 153-156[2021-02-20]. https://doi.org/10.1007/978-94-009-0047-9_32. |
[15] |
Reid R. Understanding the boron transport network in plants[J/OL]. Plant and Soil, 2014,385(1-2): 1-13[2021-02-20]. https://doi.org/10.1007/s11104-014-2149-y.
doi: 10.1007/s11104-014-2149-y |
[16] |
Liakopoulos G, Stavrianakou S, Filippou Met al. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations[J/OL]. Tree Physiology, 2009,25(2): 157-165[2021-02-20]. https://doi.org/10.1093/treephys/25.2.157.
doi: 10.1093/treephys/25.2.157 |
[17] | 孙淼, 李鹏程, 郑苍松, 等. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响[J/OL]. 棉花学报, 2018,30(1): 45-52[2021-02-20]. https://doi.org/10.11963/1002-7807.smdhl.20180103. |
Sun Miao, Li Pengcheng, Zheng Cangsong, et al. Effects of low phosphorus stress on root morphology and physiological characteristics of different cotton genotypes at the seedling stage[J/OL]. Cotton Science, 2018,30(1): 45-52[2021-02-20]. https://doi.org/10.11963/1002-7807.smdhl.20180103. | |
[18] | 毛树春, 李亚兵, 董合忠. 中国棉花辉煌70年--我国走出了一条适合国情、具有中国特色的棉花发展道路、发展模式和发展理论[J/OL]. 中国棉花, 2019,46(7): 1-14[2021-02-20]. https://doi.org/10.11963/1000-632X.mscmsc.20190715. |
Mao Shuchun, Li Yabing, Dong Hezhong. Brilliant 70 years of China cotton-China has embarked on a development path, model and theory of cotton production with Chinese characteristics suitable for national conditions[J/OL]. China Cotton, 2019,46(7): 1-14[2021-02-20]. https://doi.org/10.11963/1000-632X.mscmsc.20190715. | |
[19] | 王运华, 刘武定, 皮美美, 等. 我国主要棉区缺硼概况与施硼分区[J]. 华中农业大学学报, 1989(S1): 153-157. |
Wang Yunhua, Liu Wuding, Pi Meimei, et al. B-deficiency in cotton and division of B application in important producing cotton area of China[J]. Journal of Huazhong Agricultural University, 1989(S1): 153-157. | |
[20] | 刘铮, 朱其清. 土壤中硼的含量和分布的规律性[J]. 土壤学报, 1989,26(4): 353-361. |
Liu Zheng, Zhu Qiqing. Regularity of the content and distribution of boron in soil[J]. Acta Pedologica Sinica, 1989,26(4): 353-361. | |
[21] |
Monika A W, Isidro A, Richard W B, et al. Boron: an essential element for vascular plants[J/OL]. New Phytologist, 2020,226(5): 1232-1237[2021-02-20]. https://doi.org/10.1111/nph.16127.
doi: 10.1111/nph.16127 pmid: 31674046 |
[22] |
Matthes M S, Robil J M, Paula M S. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants[J/OL]. Journal of Experimental Botany, 2020,71(5): 1681-1693[2021-02-20]. https://doi.org/10.1093/jxb/eraa042.
doi: 10.1093/jxb/eraa042 |
[23] | 朱建华, 耿明建, 曹享云, 等. 硼对棉花不同品种根系吸收活力、根系分泌物和伤流液组分的影响[J]. 棉花学报, 2001,13(3): 142-145. |
Zhu Jianhua, Geng Mingjian, Cao Xiangyun, et al. Effect of boron on root absorbing capability, the composition of root exudates and root bleeding sap of two cotton cultivars[J]. Cotton Science, 2001,13(3): 142-145. | |
[24] | 闫磊, 姜存仓, 董肖昌, 等. 多元醇络合硼对油菜苗期生长及生理特性的影响[J/OL]. 华中农业大学学报, 2017,26(2): 38-44[2021-02-20]. https://doi.org/10.13300/j.cnki.hnlkxb.20170213.015. |
Yan Lei, Jiang Cuncang, Dong Xiaochang, et al. Effects of polyol chelated boron fertilizer on physiological characteristics of rapeseed seedlings[J/OL]. Journal of Huazhong Agricultural University, 2017,26(2): 38-44[2021-02-20]. https://doi.org/10.13300/j.cnki.hnlkxb.20170213.015. | |
[25] | 段蔚. 多元醇络合硼对油菜幼苗生长及营养元素吸收的功效[D]. 南京: 南京农业大学, 2012. |
Duan Wei. Effects of polyol-chelated boron fertilizers on seedling growth and uptake of mineral nutrients in rape[D]. Nanjing: Nanjing Agricultural University, 2012. | |
[26] | 张君, 危常州, 梁远航, 等. 陆地棉对叶面施硼的吸收和分配[J]. 棉花学报, 2012,24(4): 331-335. |
Zhang Jun, Wei Changzhou, Liang Yuanhang, et al. Absorption and distribution of foliar applied boron in upland cotton[J]. Cotton Science, 2012,24(4): 331-335. | |
[27] | 王海彤. 有机硼(GB)对大豆生长发育的影响[D]. 武汉: 华中农业大学, 2019. |
Wang Haitong. Effects of organic boron(GB) on the growth and development of soybean[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[28] | 徐建明, 汪鑫, 罗玉明, 等. 两种形态硼对小麦幼苗叶绿素荧光参数保护酶活性的影响[J/OL]. 华北农学报, 2010,24(2): 149-155[2021-02-20]. https://doi.org/10.7668/hbnxb.2010.02.030. |
Xu Jianming, Wang Xin, Luo Yuming, et al. Effects of two forms of boron on antioxidant enzymes and chlorophyll fluorescence parameters of wheat seedlings[J/OL]. Acta Agriculturae Boreali-Sinica, 2010,24(2): 149-155[2021-02-20]. https://doi.org/10.7668/hbnxb.2010.02.030. | |
[29] |
Will S, Eichert T, Victoria F, et al. Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex[J/OL]. Plant and Soil, 2011,344(1): 283-293[2021-02-20]. https://doi.org/10.1007/s11104-011-0746-6.
doi: 10.1007/s11104-011-0746-6 |
[30] |
Benjamin P, Eggert K, Bienert G P. Boron deficiency effects on sugar, ionome, and phytohormone profiles of vascular and non-vascular leaf tissues of common plantain (Plantago major L.)[J/OL]. International Journal of Molecular Sciences, 2019,20(16): 3882[2021-02-20]. https://doi.org/10.3390/ijms20163882.
doi: 10.3390/ijms20163882 |
[31] | 刘桂东, 胡萍, 张婧卉, 等. 缺硼对脐橙幼苗硼分配及叶片细胞壁组分硼含量的影响[J/OL]. 植物营养与肥料学报, 2018,24(1): 179-186[2021-02-20]. http://dx.doi.org/10.11674/zwyf.17107. |
Liu Guidong, Hu Ping, Zhang Jinghui, et al. Effect of boron deficiency on boron distribution in different plant parts and boron concentration in leaf cell wall components in navel orange plants[J/OL]. Journal of Plant Nutrition and Fertilizers, 2018,24(1): 179-186[2021-02-20]. http://dx.doi.org/10.11674/zwyf.17107. | |
[32] |
Dannel F, Pfeffer H, R mheld V. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply[J/OL]. Journal of Plant Physiology, 1998,153(5-6): 615-622[2021-02-20]. https://doi.org/10.1016/S0176-1617(98)80212-5.
doi: 10.1016/S0176-1617(98)80212-5 |
[33] |
Camacho-Cristo′bal J J, Maldonado J M, González-Fontes A. Boron deficiency increases putrescine levels in tobacco plants[J/OL]. Journal of Plant Physiology, 2005,162(8): 921-928[2021-02-20]
pmid: 16146318 |
[34] |
Kobayashi M, Miyamoto M, Matoh T, et al. Mechanism underlying rapid responses to boron deprivation in Arabidopsis roots[J/OL]. Soil Science and Plant Nutrition, 2018,64(1): 106-115[2021-02-20]. https://doi.org/10.1080/00380768.2017.1416670.
doi: 10.1080/00380768.2017.1416670 |
[1] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[2] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[3] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[4] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[5] | 王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[6] | 王金刚,姜艳,田甜,朱永琪,杨振康,周天航,张文旭,佟炫梦,孙嘉祺,王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[7] | 易翔,张立福,吕新,张泽,田敏,印彩霞,马怡茹,范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[8] | 孙璘,海艳,唐晓雪,祖丽皮亚·艾买,焦瑞莲,任毓忠,李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[9] | 党文芳,刘萍,管力慧,杨红梅,牛新湘,李萍,楚敏,娄恺,史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[10] | 杨可心,陈秀叶,刘畅,鹿秀云,郭庆港,马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[11] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[12] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[13] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[14] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
[15] | 郁凯,霍钰阳,朱俊俊,陈兵林,汤秋香. 盐胁迫下施钾调节棉纤维断裂比强度的糖代谢机制[J]. 棉花学报, 2021, 33(1): 22-32. |
|