棉花学报 ›› 2021, Vol. 33 ›› Issue (6): 448-458.doi: 10.11963/cs20200097
李丹1(),赵存鹏1,赵丽英1,2,刘旭1,刘素恩1,王凯辉1,王兆晓1,耿军义1,*(
),郭宝生1,*(
)
收稿日期:
2020-12-07
出版日期:
2021-11-15
发布日期:
2022-04-14
通讯作者:
耿军义,郭宝生
E-mail:lidan5279@163.com;gengjunyi66@126.com;guobaosheng111@126.com
作者简介:
李丹(1989―),女,助理研究员, 基金资助:
Li Dan1(),Zhao Cunpeng1,Zhao Liying1,2,Liu Xu1,Liu Su'en1,Wang Kaihui1,Wang Zhaoxiao1,Geng Junyi1,*(
),Guo Baosheng1,*(
)
Received:
2020-12-07
Online:
2021-11-15
Published:
2022-04-14
Contact:
Geng Junyi,Guo Baosheng
E-mail:lidan5279@163.com;gengjunyi66@126.com;guobaosheng111@126.com
摘要:
【目的】本研究对类棉花表皮特异性分泌糖蛋白基因GhA01EP1的克隆及功能分析,为进一步了解胞外蛋白抵抗环境胁迫的调控机制提供了基础。【方法】利用同源克隆法获得了冀2658中GhA01EP1的序列,通过实时定量聚合酶链式反应检测GhA01EP1基因的组织表达及干旱胁迫前后表达变化。对GhA01EP1蛋白的理化性质、结构、亚细胞定位等进行了生物信息学分析。用烟草瞬时转化试验对GhA01EP1蛋白进行亚细胞定位。利用农杆菌蘸花法获得转基因拟南芥,并对转基因植株进行抗旱鉴定。【结果】将克隆到的与抗旱相关的类表皮特异性分泌糖蛋白基因命名为GhA01EP1,位于A01号染色体。该基因无内含子,开放阅读框长1 371 bp,编码456个氨基酸,包含B-lectin、Plant PAN/APPLE-like 2个结构域。GhA01EP1基因在根、茎和叶片中均有表达,在根中表达量最高。KEGG通路分析发现,GhA01EP1参与甘氨酸、丝氨酸和苏氨酸代谢以及苯丙氨酸代谢的可信度较高。烟草瞬时转化试验结果显示,GhA01EP1蛋白为分泌蛋白。抗旱鉴定发现,与野生型相比,转基因拟南芥在干旱胁迫下长势好、根系长、胁迫复水后恢复能力强。【结论】GhA01EP1基因在棉花和拟南芥抗旱中起积极作用。
李丹,赵存鹏,赵丽英,刘旭,刘素恩,王凯辉,王兆晓,耿军义,郭宝生. 棉花类表皮特异性分泌糖蛋白基因GhA01EP1的克隆和功能分析[J]. 棉花学报, 2021, 33(6): 448-458.
Li Dan,Zhao Cunpeng,Zhao Liying,Liu Xu,Liu Su'en,Wang Kaihui,Wang Zhaoxiao,Geng Junyi,Guo Baosheng. Cloning and functional analysis of epidermis-specific secreted glycoprotein EP1-like gene GhA01EP1 in cotton[J]. Cotton Science, 2021, 33(6): 448-458.
[1] | Yadav N, Khurana S M P, Yadav D K. Plantomics: the omics of plant science[M/OL]. New Delhi: Springer, 2015: 357-384[2020-12-05]. https://doi.org/10.1007/978-81-322-2172-2_12. |
[2] |
Agrawal G K, Jwa N S, Lebrun M H, et al. Plant secretome: unlocking secrets of the secreted proteins[J/OL]. Proteomics, 2010, 10(4): 799-827[2020-12-05]. https://doi.org/10.1002/pmic.200900514.
doi: 10.1002/pmic.200900514 pmid: 19953550 |
[3] | Isaacso T, Rose J K C. Surveying the plant cell wall proteome, or secretome[M/OL]. Finnie C. Plant proteomics. Oxford: Blackwell Publishing, 2006: 185-209[2020-12-05]. https://doi.org/10.1002/9780470988879.ch8. |
[4] | Kamoun S. The Secretome of plant-associated fungi and oomycetes. in:deising h.b. (eds) Plant relationships[M/OL]. CarterD, ChowdharyA, HeitmanJ, et al. The mycota. Berlin, Heidelberg: Springer: 2009:173-180[2020-12-05]. https://doi.org/10.1002/9780470988879.ch8. |
[5] |
Ellis J G, Dodds P N, Lawrence G J. The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi[J/OL]. Current Opinion in Microbiology. 2007, 10(4): 326-331[2020-12-05]. https://doi.org/10.1016/j.mib.2007.05.015.
doi: 10.1016/j.mib.2007.05.015 |
[6] | Mueller O, Kahmann R, Aguilar G, et al. The secretome of the maize pathogen Ustilago maydis[J/OL]. Fungal Genetics and Biology. 2008, 45(S1): S63-S70[2020-12-05]. https://doi.org/10.1016/j.fgb.2008.03.012. |
[7] | Jung Y H, Agrawal G K, Rakwal R, et al. Secretome: toward deciphering the secretory pathways and beyond[M/OL]. AgrawalG K, RakwalR. Plant proteomics:technologies, strategies, and applications. Hoboken: Wiley, 2008: 83-90[2020-12-05]. https://doi.org/10.1002/9780470369630.ch6. |
[8] | Tseng T T, Tyler B M, Setubal J C. Protein secretion systems in bacterial-host associations, and their description in the gene ontology[J/OL]. BMC Microbiology. 2009, 9(S1): S2[2020-12-05]. https://doi.org/10.1186/1471-2180-9-S1-S2. |
[9] |
Dani V, Simon W J, Duranti M, et al. Changes in the tobacco leaf apoplast proteome in response to salt stress[J/OL]. Proteomics, 2005, 5(3): 737-745[2020-12-05]. https://doi.org/10.1002/pmic.200401119.
doi: 10.1002/pmic.200401119 |
[10] |
Zhang L, Tian L H, Zhao J F, et al. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis[J/OL]. Plant Physiology, 2009, 149(2): 916-928[2020-12-05]. http://www.jstor.org/stable/4053768.
doi: 10.1104/pp.108.131144 pmid: 19036832 |
[11] |
Marentes E, Griffith M, Mlynarz A, et al. Proteins accumulate in the apoplast of winter rye leaves during cold acclimation[J/OL]. Physiologia Plantarum, 1993, 87(4): 499-507[2020-12-05]. https://doi.org/10.1111/j.1399-3054.1993.tb02499.x.
doi: 10.1111/ppl.1993.87.issue-4 |
[12] |
Cheng F Y, Blackburn K, Lin Y M, et al. Absolute protein quantification by LC/MSE for global analysis of salicylic acid-induced plant protein secretion responses[J/OL]. Journal of Proteome Research, 2009, 8(1): 82-93[2020-12-05]. https://doi.org/10.1021/pr800649s.
doi: 10.1021/pr800649s |
[13] |
Fecht-Christoffers M M, Braun H P, Lemaitre-Guillier C, et al. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea[J/OL]. Plant Physiology, 2003, 133(4): 1935-1946[2020-12-05]. https://doi.org/10.1104/pp.103.029215.
pmid: 14605229 |
[14] |
Oh I S, Park A R, Bae M S, et al. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola[J/OL]. The Plant Cell, 2005, 17(10): 2832-2847[2020-12-05]. https://doi.org/10.1105/tpc.105.034819.
doi: 10.1105/tpc.105.034819 |
[15] |
Song Y, Zhang C J, Ge W N, et al. Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE[J/OL]. Journal of Proteomics, 2011, 74(7): 1045-1067[2020-12-05]. https://doi.org/10.1016/j.jprot.2011.03.009.
doi: 10.1016/j.jprot.2011.03.009 pmid: 21420516 |
[16] |
Gupta R, Deswal R. Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a himalayan wonder plant[J/OL]. Journal of Proteome Research, 2012, 11(5): 2684-2696[2020-12-05]. https://doi.org/10.1021/pr200944z.
doi: 10.1021/pr200944z pmid: 22486727 |
[17] | 李元宝. 棉花响应大丽轮枝菌侵染的质外体蛋白组学分析及质外体蛋白GbNRX1和GbCRR1的功能研究[D]. 北京: 中国科学院大学, 2016. |
Li Yuanbao. Apoplast proteomics analysis of cotton in response to Verticillium dahliae infection and the functional study of apoplast protein GbNRX1 and GbCRR1[D]. Beijing: University of Chinese Academy of Sciences, 2016. | |
[18] | 张磊. 水稻类受体激酶OsAPRLK1的定位和功能研究[D]. 石家庄: 河北师范大学, 2008. |
Zhang Lei. Localization and functional analysis of rice receptor-like kinase-OsAPRLK1[D]. Shijiazhuang: Hebei Normal University, 2008. | |
[19] |
Wang H M, Zhou L, Fu Y P, et al. Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress[J/OL]. Plant Cell and Environment, 2012, 35(11): 1932-1947[2020-12-05]. https://doi.org/10.1111/j.1365-3040.2012.02526.x.
doi: 10.1111/j.1365-3040.2012.02526.x |
[20] | 周琪, 冯燕茹, 李嵩, 等. 小麦TaXTH-7A基因的克隆及抗旱性鉴定[J/OL]. 农业生物技术学报, 2019, 27(9): 1521-1532[2020-12-05]. https://doi.org/10.3969/j.issn.1674-7968.2019.09.001. |
Zhou Qi, Feng Yanru, Li Song, et al. Cloning and drought resistance identification of TaXTH-7A Gene in wheat (Triticum aestivum)[J]. Journal of Agricultural Biotechnology, 2019, 27(9): 1521-1532. | |
[21] | 孙金月, 赵玉田, 常汝镇, 等. 小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J]. 中国农业科学, 1997, 30(4): 9-15. |
Sun Jinyue, Zhao Yutian, Chang Ruzhen, et al. Study on the protective function and mechanism of cell wall glycoproteins in salt tolerance of wheat[J]. Scientia Agricutura Sinica, 1997, 30(4): 9-15. | |
[22] | 简令成, 孙龙华, 孙德兰. 几种植物细胞表面糖蛋白的电镜细胞化学及其与植物抗逆性的关系[J]. 实验生物学报, 1986, 19(3): 261-271. |
Jian Lingcheng, Sun Longhua, Sun Delan. Electron microscopic cytochemistry on the glycoproteins at the cell surface in several species of plants and its relations to stress resistance[J]. Acta Biologiae Experimentalis Sinica, 1986, 19(3): 261-271. | |
[23] | 梁欣欣. 利用DREB转录因子改良小麦耐盐性的研究[D]. 北京: 中国农业科学院, 2004. |
Liang Xinxin. Study on improvement of salt tolerance by transformation with transcription factor DREB in wheat (Triticum Aestivum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. | |
[24] | 叶文武, 王源超, 窦道龙. SeqHunter: 序列搜索与分析的生物信息学软件包[J/OL]. 生物信息学, 2010, 8(4): 364-367[2020-12-05]. https://doi.org/10.3969/j.issn.1672-5565.2010.04.020. |
Ye Wenwu, Wang Yuanchao, Dou Daolong. SeqHunter: a bioinformatics toolbox for local blast and sequence analysis[J]. China Journal of Bioinformatics, 2010, 8(4): 364-367. | |
[25] |
Zhang T Z, Hu Y, Jiang W K, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fibre improvement[J/OL]. Nature Biotechnology, 2015, 33(5): 531-537[2020-12-05]. https://doi.org/10.1038/nbt.3207.
doi: 10.1038/nbt.3207 |
[26] |
Li Z G. Methylglyoxal and glyoxalase system in plants: old players, new concepts[J/OL]. Botanical Review, 2016, 82(2): 183-203[2020-12-05]. https://doi.org/10.1007/s12229-016-9167-9.
doi: 10.1007/s12229-016-9167-9 |
[27] | 王月, 周志豪, 叶芯妤, 等. 甲基乙二醛: 植物中一种新的信号分子[J/OL]. 植物生理学报, 2018, 54(1): 10-18[2020-12-05]. https://doi.org/10.13592/j.cnki.ppj.2017.0467. |
Wang Yue, Zhou Zhihao, Ye Xinshu, et al. Methylglyoxal: a new signaling molecule in plants[J]. Plant Physiology Journal. 2018, 54(1): 10-18. | |
[28] |
Kaur C, Sharma S, Singla-Pareek S L, et al. Methylglyoxal detoxification in plants: role of glyoxalase pathway[J/OL]. Indian Journal of Plant Physiology, 2016, 21(4): 377-390[2020-12-05]. https://doi.org/10.1007/s40502-016-0260-1.
doi: 10.1007/s40502-016-0260-1 |
[29] | Yadav S K, Singla-Pareek S L, Ray M, et al. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione[J/OL]. Biochemical & Biophysical Research Communications, 2005, 337(1): 61-67[2020-12-05]. https://doi.org/10.1016/j.bbrc.2005.08.263. |
[30] | 秦秋琳. 银杏中与木质素合成和苯丙氨酸代谢相关的转录调控因子的克隆与研究[D]. 上海: 复旦大学, 2007. |
Qin Qiulin. Molecular cloning and characterization of transcription factors involved in lignin biosynthetic pathway and phenylpropanoid pathway in Ginkgo bilobal[D]. Shanghai: Fudan University, 2007. | |
[31] | 魏建华, 宋艳茹. 木质素生物合成途径及调控的研究进展[J/OL]. 植物学报, 2001, 43(8): 771-779[2020-12-05]. https://doi.org/10.3321/j.issn:1672-9072.2001.08.001. |
Wei Jianhua, Song Yanru. Recent advances in study of lignin biosynthesis and manipulation[J]. Acta Botanica Sinica, 2001, 43(8): 771-779. | |
[32] |
Jaswanthi N, Krishna M S R, Uppuluri L S, et al. Apoplast proteomic analysis reveals drought stress-responsive protein datasets in chilli (Capsicum annuum L.)[J/OL]. Data in Brief, 2019, 25: 104041[2020-12-05]. https://doi.org/10.1016/j.dib.2019.104041
doi: 10.1016/j.dib.2019.104041 |
[33] |
Ndimba B K, Chivasa S, Hamilton J M, et al. Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors[J/OL]. Proteomics, 2003, 3(6): 1047-1059[2020-12-05]. https://doi.org/10.1002/pmic.200300413
doi: 10.1002/pmic.200300413 |
[34] |
Irshad M, Canut H, Borderies G, et al. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers[J/OL]. BMC Plant Biology, 2008, 8: 94[2020-12-05]. https://doi.org/10.1186/1471-2229-8-94
doi: 10.1186/1471-2229-8-94 |
[35] |
Swidzinski J A, Leaver C J, Sweetlove L J. A proteomic analysis of plant programmed cell death[J/OL]. Phytochemistry, 2004, 65(12):1829-1838[2020-12-05]. https://doi.org/10.1016/j.phytochem.2004.04.020
pmid: 15276441 |
[36] | Shen J, Suen P K, Wang X, et al. An in vivo expression system for the identification of cargo proteins of vacuolar sorting receptors in Arabidopsis culture cells[J/OL]. Plant Journal for Cell & Molecular Biology, 2014, 75(6):1003-1017[2020-12-05]. https://doi.org/10.1111/tpj.12257 |
[37] |
Mostofa M G, Ghosh A, Li Z G, et al. Methylglyoxal: a signaling molecule in plant abiotic stress responses[J/OL]. Free Radical Biology & Medicine, 2018, 122: 96-109[2020-12-05]. https://doi.org/10.1016/j.freeradbiomed.2018.03.009.
doi: 10.1016/j.freeradbiomed.2018.03.009 |
[38] |
Li Z G, Long W B, Yang S Z, et al. Signaling molecule methylglyoxal-induced thermotolerance is partly mediated by hydrogen sulfide in maize (Zea mays L.) seedlings[J/OL]. Acta Physiologiae Plantarum, 2018, 40(4): 76[2020-12-05]. https://doi.org/10.1007/s11738-018-2653-4.
doi: 10.1007/s11738-018-2653-4 |
[39] |
Sankaranarayanan S, Jamshed M, Kumar A, et al. Glyoxalase goes green: the expanding roles of glyoxalase in plants[J/OL]. International Journal of Molecular Sciences, 2017, 18(4): 898[2020-12-05]. https://doi.org/10.3390/ijms18040898.
doi: 10.3390/ijms18040898 |
[40] |
Mostofa M G, Yoshida N, Fujita M. Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems[J/OL]. Plant Growth Regulation, 2014, 73(1): 31-44[2020-12-05]. https://doi.org/10.1007/s10725-013-9865-9.
doi: 10.1007/s10725-013-9865-9 |
[41] |
Li Z G, Duan X Q, Min X, et al. Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes[J/OL]. Protoplasma, 2017, 254(5): 1995-2006[2020-12-05]. https://doi.org/10.1007/s00709-017-1094-z.
doi: 10.1007/s00709-017-1094-z |
[42] | 王月. 甲基乙二醛信号诱导玉米幼苗耐热性的形成及其可能的机理[D]. 昆明: 云南师范大学, 2019. |
Wang Yue. Methylglyoxal signaling induces the heat tolerance of maize seedlings and its possible mechanisms[D]. Kunming: Yunnan Normal University, 2019. |
[1] | 贺浪,张华崇,司宁,简桂良. 陆地棉GhBZR1基因的克隆及功能研究[J]. 棉花学报, 2021, 33(6): 435-447. |
[2] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[3] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[4] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[5] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[6] | 薛羽君,魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[7] | 吕丽敏,左东云,王省芬,张友平,程海亮,王巧连,宋国立,马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[8] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
[9] | 窦玲玲,孙亚如,赵琴,田瑞洁,康洋洋,朱怡然,杨蕾蕾,王彩虹,冯宇,王文博,肖光辉. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
[10] | 贾晓昀,王士杰,赵红霞,朱继杰,李妙,王国印. 陆地棉株型及生育期相关性状QTL定位[J]. 棉花学报, 2021, 33(2): 124-133. |
[11] | 郭晓豪,王寒涛,魏鑫,张晶晶,付小康,马亮,魏恒玲,喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL[J]. 棉花学报, 2021, 33(1): 33-42. |
[12] | 刘佩佩,魏喜,陈艳丽,王晔,张桂寅,李付广. 脱落酸对棉花体细胞胚胎发生的影响[J]. 棉花学报, 2021, 33(1): 42-53. |
[13] | 张爱,王彩香,宿俊吉,张先亮,史春辉,刘娟娟,彭云玲,马雄风. 陆地棉MADS-box家族基因鉴定及组织特异性表达分析[J]. 棉花学报, 2020, 32(5): 404-404. |
[14] | 琚龙贞,赵汀,方磊,胡艳,张天真. 陆地棉Dof基因家族的全基因组鉴定及分析[J]. 棉花学报, 2020, 32(4): 279-291. |
[15] | 杨永飞,葛常伟,沈倩,张思平,刘绍东,马慧娟,陈静,刘瑞华,李士丛,赵新华,李志坤,庞朝友. 陆地棉苗期低温响应基因GhZAT10的克隆及功能研究[J]. 棉花学报, 2020, 32(4): 305-315. |
|