[1] 孙晓婷, 鹿秀云, 张敬泽, 等. 浙江棉花黄萎病菌致病型菌株的鉴定及高温抑制病害的表征分析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 671-678.
Sun Xiaoting, Lu Xiuyun, Zhang Jingze, et al. Identification of Verticillium dahliae isolates on cotton in Zhejiang province and phenotypic analysis on inhibitory effect by high temperature[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2016, 42(6): 671-678.
[2] Elzik K M. Integrated control of Verticillium wilt of cotton[J]. Plant Disease, 1986, 69(12): 1025-1032.
[3] Cai Y F, He X H, Mo J C, et al. Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: A review[J]. African Journal of Biotechnology, 2009, 8(25): 7363-7372.
[4] Zhang D D, Wang X Y, Chen J Y, et al. Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae[J/OL]. Scientific Reports, 2016, 6: 27979 (2016-
06-22) [2017-09-20]. http://www.nature.com/articles/srep27979. DOI: 10.1038/srep27979.
[5] Klosterman S J, Subbarao K V, Kang S, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens[J/OL]. PLoS Pathology, 2011, 7: e1002137 (2011-
07-28) [2017-09-20]. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3145793/pdf/ppat.1002137. DOI: 10.1371/journal. ppat.1002137.
[6] Zhang T Z, Hu Y, Jiang W K, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537.
[7] Liu X, Zhao B, Zheng H J, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J/OL]. Scientific Reports, 2015, 5: 14139 (2015-09-30) [2017-09-20]. www.nature.com/articles/
srep14139. DOI: 10.1038/srep14139.
[8] Katsantonis D, Hillocks R J, Gowen S. Comparative effect of root-knot nematode on severity of Verticillium and Fusarium wilt in cotton[J]. Phytoparasitica, 2003, 31(2): 154-162.
[9] Saeed I A M, Macguidwin A E, Rouse D I. Effect of initial nematode population density on the interaction of Pratylenchus penetrans and Verticillium dahliae on 'Russet burbank' potato[J]. Journal of Nematology, 1998, 30(1): 100-107.
[10] Katsantonis D, Hillocksr J, Gowen S. Enhancement of germination of spores of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum in vascular fluid from cotton plants infected with the root-knot nematode[J]. Phytoparasitica, 2005, 33(3): 215-224.
[11] Li X L, Ojaghian M R, Zhang J Z, et al. A new species of Scopulariopsis and its synergistic effect on pathogenicity of Verticillium dahliae on cotton plants[J/OL]. Microbiological Research, 2017, 201: 12-20 (2017-04-10) [2017-09-20]. http://dx.doi.org/10.1016/j.micres.2017.04.006.
[12] Li Z F, Wang L F, Feng Z L, et al. Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro[J]. Journal of Microbiology and Biotechnology, 2014, 24(9): 1149-1161.
[13] Sword G A, Kerns D L, Morgan G D, et al. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum)[J/OL]. PLoS ONE, 2013, 8(6): e66049 (2013-06-11) [2017-09-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679028/pdf/pone.0066049. DOI: 10.
1371/journal.pone.0066049.
[14] Wang B, Priest M J, Davidson A, et al. Fungal endophytes of native Gossypium species in Australia[J]. Mycological Research, 2007, 111(3): 347-354.
[15] Guarro J, Wiederhold N P, Decock C A, et al. Redefining Microascus, Scopulariopsis and allied genera[J/OL]. Persoonia, 2016, 36: 1-36 (2015-04-15) [2017-09-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988368/pdf/per-36-1. DOI: 10.
3767/003158516X688027.
[16] Domsch K H, Gams W, Anderson T H. Compendium of soil fungi[M]. Eching, Germany: IHW-Verlag, 1993: 859.
[17] Iwen P, Schutte S D, Florescu D F, et al. Invasive Scopulariopsis brevicaulis infection in an immunocompromised patient and review of prior cases caused by Scopulariopsis and Microascus species[J]. Medical Mycology, 2012, 50(6): 561-569.
[18] Sandoval-Denis M, Sutton D A, Fothergill A W, et al. Scopulariopsis, a poorly known opportunistic fungus: Spectrum of species in clinical samples and in vitro responses to antifungal drugs[J]. Journal of Clinical Microbiology, 2013, 51(12): 3937-
3943.
[19] Yadeta K A, Thomma B P H J. The xylem as battleground for plant hosts and vascular wilt pathogens[J/OL]. Frontiers in Plant Science, 2013, 4: 97 (2013-04-23) [2017-09-20]. https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3632776/pdf/fpls-04-
00097. DOI: 10.3389/fpls.2013.00097.
[20] Mccully M E. Niches for bacterial endophytes in crop plants: A plant biologist’s view[J]. Functional Plant Biology, 2001, 28(9): 983-990.
[21] Divon H H, Fluhr R. Nutrition acquisition strategies during fungal infection of plants[J]. FEMS Microbiology Letters, 2007, 266(1): 65-74.
[22] Divon H H, Rothan-Denoyes B, Davydov O, et al. Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxysporum f. sp. lycopersici infection[J]. Molecular Plant Pathology, 2005, 6(4): 459-470.
[23] M bius N, Hertweck C. Fungal phytotoxins as mediators of virulence[J]. Current Opinion in Plant Biology, 2009, 12(4): 390-398.
[24] Ma L J, Van Der Does H C, Borkovich K A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium[J]. Nature, 2010, 464(7287): 367-373.
[25] H ffner E, Diederichsen E. Belowground defence strategies against Verticillium pathogens[M]// Vos C, Kazan K. Belowground defence strategies in plants. Cham Z G, Switzerland: Springer International Publishing, 2016: 118-150. DOI: 10.1007/
978-3-319-42319-7_6.
[26] Eynck C, Koopmann B, Grunewaldt-Stoecker G, et al. Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques[J]. European Journal of Plant Pathology, 2007, 118(3): 259-274.
[27] Eynck C, Koopmann B, Karlovsky E, et al. Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum[J]. Phytopathology, 2009, 99(7): 802-811.
[28] Bowers J H, Nameth S T, Riedel R M, et al. Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus[J]. Phytopathology, 1996, 86(6): 614-621.
[29] Huisman O. Interrelations of root growth dynamics to epidemiology of root-invading fungi[J]. Annual Review of Phytopathology, 1982, 20(20): 303-327.
[30] Reusche M, Truskina J, Thole K, et al. Infections with the vascular pathogens Verticillium longisporum and Verticillium dahliae induce distinct disease symptoms and differentially affect drought stress tolerance of Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2014, 108: 23-37.
[31] Beckman C H, Vander Molen G E, Mueller W C, et al. Vascular structure and distribution of vascular pathogens in cotton[J]. Physiological Plant Pathology, 1976, 9(1): 87-94.
[32] Perry J W, Evert R F. Structure of microsclerotia of Verticillium dahliae in roots of 'Russett Burbank' potatoes[J]. Canadian Journal of Botany, 1984, 62(2): 396-401.
[33] Abhishek K, Bernard H, Mikko A, et al. De novo assembly and genome analyses of the marine-derived Scopulariopsis brevicaulis strain LF580 unravels life-style traits and anticancerous scopularide biosynthetic gene cluster[J/OL]. PLoS ONE, 2015, 10(10): e0140398 (2015-10-27) [2017-09-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624724/pdf/pone.0140398.
pdf. DOI: 10.1371/journal.pone.0140398.
[34] De Jonge R, Van Esse H P, Maruthachalam K, et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing[J]. Proceedings of the National Academy of Science of the United States of America, 2012, 109(13): 5110-5115.
[35] Faino L, Seidl M F, Shi-Kunne X Q, et al. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen[J]. Genome Research, 2016, 26(8): 1091-
1100.
[36] Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: Why bigger can be better[J]. Nature Reviews Microbiology, 2012, 10(6): 417-430.
[37] Liu S Y, Chen J Y, Wang J L, et al. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae[J]. Gene, 2013, 529(2): 307-316.
[38] Liu T L, Song T Q, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J/OL]. Nature Communications, 2014, 5: 249-569 (2014-08-26) [2017-09-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348438/pdf/ncomms5686. DOI: 10.
1038/ncomms5686.
[39] Santhanam P, Thomma B P. Verticillium dahliae Sge1 differentially regulates of candidate effector genes[J]. Molecular Plant Microbe Interactions, 2013, 26(2): 249-569.
[40] Tran V T, Braus-Stromeyer S A, Kusch H, et al. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots[J]. New Phytology, 2014, 202(2): 565-581.
[41] Tzima A K, Paplomatas E J, Rauyaree P, et al. VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and of genes involved in cell-wall degradation[J]. Molecular Plant Microbe Interactions, 2011, 24(1): 129-142.
[42] Tzima A K, Paplomatas E J, Tsitsigiannis D I, et al. The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae[J]. Fungal Genetics and Biology, 2012, 49(4): 271-283.
[43] Deng S, Wang C Y, Zhang X, et al. VdNUC-2, the key regulator of phosphate responsive signaling pathway, is required for Verticillium dahliae infection[J/OL]. PLoS ONE, 2015, 10(12): e0145190 (2015-09-15) [2017-09-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682923/pdf/pone.0145190.pdf. DOI: 10.1371/journal.pone.0145190.
[44] Klimes, A, Dobinson K F. A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae[J]. Fungal Genetics and Biology, 2006, 43(4): 283-294.
[45] Starr J L, Koenning S R, Kirkpatrick T L, et al. The future of nematode management in cotton[J]. Journal of Nematology, 2007, 39(4): 283-294.
[46] Koenning S R, Kirkpatrick T L, Starr J L, et al. Plant-parasitic nematodes attacking cotton in the U. S.[J]. Plant Disease, 2004, 88(2): 100-113.
[47] Overstreet C, Mcgawley E C, Khalilian A, et al. Site specific nematode management-development and success in cotton production in the United States[J]. Journal of Nematology, 2014, 46(4): 309-320.
[48] 李克梅, 梁智, 徐万里, 等. 新疆棉田寄生线虫的种类[J]. 西北农业学报, 2009, 18(2): 273-275.
Li Kemei, Liang Zhi, Xu Wanli, et al. The species of parasitic nematodes in cotton field of Xinjiang[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(2): 273-275.
[49] 邓先明, 杨永柱, 刘光珍. 四川省棉田寄生线虫种类及肾形线虫与棉花枯萎病发生关系的研究[J]. 植物病理学报, 1993, 23(2): 163-167.
Deng Xianming, Yang Yongzhu, Liu Gguangzhen. Studies on species of parasitic nematodes in cotton fields and the relationship between reniform nematodes and the incidence of Fusarium wilt in Sichuan[J]. Acta Phytopathologica Sinica, 1993, 23(2): 163-167.
[50] 王汝贤, 杨之为, 庞惠玲, 等. 陕西省棉田主要线虫类群对棉花枯萎病发生影响的研究[J]. 植物病理学报, 1989, 19(4): 205-209.
Wang Ruxian, Yang Zhiwei, Pang Huiling, et al. Studies on the effect of major groups of nematode in the cotton fields of Shaanxi province on Fusarium wilt of cotton[J]. Acta Phytopathologica Sinica, 1989, 19(4): 205-209.
[51] 风春, 李刚, 修伟明, 等. 复合性状转基因棉花对土壤线虫多样性的影响[J]. 棉花学报, 2015, 27(3): 268-274.
Feng Chun, Li Gang, Xiu Weiming, et al. Effects of genetically modified stacked cottons on diversity of soil nematodes[J]. Cotton Science, 2015, 27(3): 268-274.
[52] 符美英, 芮凯, 符尚娇, 等. 海南岛南繁区棉花根结线虫病发生情况调查及综合防治[J]. 热带农业科学, 2015, 35(8): 69-73.
Fu Meiying, Rui Kai, Fu Shangjiao, et al. Survey and comprehensive prevention of root knot nematode disease on cotton in south area of Hainan island[J]. Chinese Journal of Tropical Agriculture, 2015, 35(8): 69-73.
[53] 还进, 戎文治, 申屠广仁. 棉花根结线虫病病原生物学研究[J]. 浙江大学学报(农业与生命科学版), 1986, 12(4): 385-391. Huan Jin, Rong Wenzhi, Shentu Guangren. Biological study of cotton disease caused by root-knot nematodes (Meloidogyne incognita)[J]. Acta Agriculturae Universitatis Zhejiangensis, 1986, 12(4): 385-391.
[54] 马承铸, 陈品三. 南方根结线虫(Meloidogyne incognita)小种2, 3号对棉花的寄生力[J]. 上海农业学报, 1986, 2(3): 81-88.
Ma Chengzhu, Chen Pinsan. The parasitic ability of southern root knot nematodes (Meloidogyne incognita) race 2 and 3 on cotton[J]. Acta Agriculture Shanghai, 1986, 2(3): 81-88.
[55] Schnathorst W C, Mathre D E. Host range and differentiation of a severe form of Verticillium albo-atrum in cotton[J]. Phytopathology, 1966, 56(10): 1155-1161. |