Please wait a minute...

   检索  |  高级检索
棉花学报  208, Vol. 30 Issue (4): 338-343    DOI: 10.11963/1002-7807.zcsdhl.20180703
  研究简报 本期目录 | 过刊浏览 | 高级检索 |
叶面施氮对棉花根系吸收硝态氮的影响
郑苍松,李鹏程*,孙淼,庞朝友,赵新华,贵会平,刘帅,秦宇坤,董合林*,余学科
中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南 安阳 455000
Effects of Foliar Nitrogen Applications on the Absorption of Nitrate Nitrogen by Cotton Roots
Zheng Cangsong, Li Pengcheng*, Sun Miao, Pang Chaoyou, Zhao Xinhua, Gui Huiping, Liu Shuai, Qin Yukun, Dong Helin*, Yu Xueke
Institute of Cotton Research, Chinese Academy of Agricultural Sciences/ State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
全文: PDF(820 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的】探讨叶面施用不同形态氮素的肥料对棉花根系吸收硝态氮及棉株生长的影响。【方法】采用营养液培养法,利用15N同位素示踪技术开展氮素吸收研究,设置叶面施用同等氮浓度的铵态氮、硝态氮和酰胺态氮及清水(对照)4个处理。【结果】叶面施氮处理6 d后,叶面施氮处理棉株地上部氮含量和整株氮含量显著高于对照;棉株地上部、根及整株氮素积累量以叶面施用铵态氮处理最高,但各处理间没有显著差异。同位素示踪结果显示,铵态氮处理棉株地上部和根系中15N积累量分别为0.794 mg·株-1和0.318 mg·株-1,高于对照和酰胺态氮处理,且显著高于硝态氮处理;叶面施氮后,铵态氮处理棉株积累通过根系吸收的氮素约为11.35 mg·株-1,较对照吸收氮素效率约提升28.0%,酰胺态氮和硝态氮处理较对照分别降低9.5%和20.5%。但是叶面施氮类型没有影响棉株对根系吸收硝态氮的分配,各处理棉株地上部和根系中分配根系吸收氮素的比例约为7∶3。【结论】在本试验条件下,叶面施用铵态氮能够促进棉苗根系对硝态氮的吸收利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑苍松
李鹏程
孙淼
庞朝友
赵新华
贵会平
刘帅
秦宇坤
董合林
余学科
关键词 陆地棉叶面施肥养分吸收同位素示踪    
Abstract:[Objective] The purpose of this study was to explore the effects of foliar nitrogen application on nitrate nitrogen uptake and cotton growth. [Method] The experiment was carried out using the 15N isotopic tracer technique in a greenhouse hydroponic culture experiment. Four foliar treatments were applied; ammonium nitrogen, nitrate nitrogen, amide nitrogen treatments (all with the same concentration of nitrogen applied), and a water control treatment. [Result] Compared to the water control treatment, the nitrogen contents of the cotton shoots and the whole plant were significantly higher in plants with foliar nitrogen treatments 6 d after application. The nitrogen accumulation in the shoots, roots, and total plants was higher with the ammonium nitrogen treatment, but there was no significant difference among treatments. The isotopic tracer results showed that 15N accumulation in the shoot and root was 0.794 mg·plant-1 and 0.318 mg·plant-1 with the ammonium nitrogen treatment, respectively. These values were higher than the 15N accumulation with the water control treatment and the amide nitrogen treatment and significantly higher than the nitrate treatment. After foliar application, the plant accumulation of nitrogen via root uptake was approximately 11.35 mg with the ammonium nitrogen treatment. Compared with the water control treatment, the nitrogen uptake efficiency increased by 28.0% with the ammonium nitrogen treatment and reduced by 9.5% and 20.5% with the amide nitrogen treatment and the nitrate treatment, respectively. The proportion of nitrogen from root uptake was about 7:3 between the shoots and the roots with each treatment, indicating that the form of foliar-applied nitrogen did not affect the distribution of nitrate nitrogen via root uptake. [Conclusion] Foliar application of ammonium nitrogen could, therefore, promote nitrate nitrogen uptake by cotton seedling roots.
Key wordsGossypium hirsutum L.    foliar application    nitrogen    nutrient uptake    isotopic tracing
收稿日期: 2017-11-28      出版日期: 2018-08-17
中图分类号:  S562.01  
基金资助:国家重点研发计划“棉花化肥农药减施技术集成研究与示范”(2017YFD0201900);国家现代农业产业技术体系——棉花产业技术体系(CARS-15-11);中国农业科学院科技创新工程;中央级公益性科研院所基本科研业务费专项(161012018033)
*通信作者: donghl668@sina.com,ORCID: 0000-0002-0658-9341;lpc1972@163.com,ORCID: 0000-0003- 2922-3278   
作者简介: 郑苍松(1986―),男,博士,助理研究员,zhengcangsong@163.com,ORCID: 0000- 0003-4832-4234
引用本文:   
郑苍松,李鹏程,孙淼, 等. 叶面施氮对棉花根系吸收硝态氮的影响[J]. 棉花学报, 208, 30(4): 338-343.
Zheng Cangsong,Li Pengcheng,Sun Miao, et al. Effects of Foliar Nitrogen Applications on the Absorption of Nitrate Nitrogen by Cotton Roots[J]. Cotton Science, 208, 30(4): 338-343.
链接本文:  
http://journal.cricaas.com.cn/Jweb_mhxb/CN/10.11963/1002-7807.zcsdhl.20180703      或      http://journal.cricaas.com.cn/Jweb_mhxb/CN/Y208/V30/I4/338
[1] Pate J S. Uptake, assimilation and transport of nitrogen compounds by plants[J]. Soil Biology & Biochemistry, 1973, 5(1): 109-119.<br />
[2] Marschner P. Marschner's mineral nutrition of higher plants[M]. Science Press: Beijing, 2013: 71-84.<br />
[3] 李永旗, 董合林, 李鹏程, 等. 叶施15N-尿素增加棉花苗期氮素吸收利用的生理生化机制研究[J]. 植物营养与肥料学报, 2014, 20(6): 1553-1559.<br />
Li Yongqi, Dong Helin, Li Pengcheng, et al. Physiological and biochemistry mechanism of 15N-urea foliage spraying in increasing the nitrogen uptake and utilization of cotton seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1553-1559.<br />
[4] Hassan I A, Zeid H M A, Taia W, et al. Fertilization regimes under hot conditions alter photosynthetic response of bean plants[J]. Photosynthetica, 2015, 53(1): 157-160.<br />
[5] Maibodi N D H, Kafi M, Nikbakht A, et al. Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of perennial ryegrass (<em>Lolium Perenne</em> L.)[J]. Journal of Plant Nutrition, 2015, 38(2): 224-236.<br />
[6] Ruan J, Gerendás J. Absorption of foliar-applied urea-15N and the impact of low nitrogen, potassium, magnesium and sulfur nutritional status in tea (<em>Camellia sinensis</em> L.) plants[J]. Soil Science and Plant Nutrition, 2015, 61(4): 653-663. <br />
[7] 李永旗, 夏绍南, 李鹏程, 等. 花铃期叶施不同浓度尿素对棉株氮素吸收分配及生理生化特性的影响[J]. 核农学报, 2016, 30(3): 580-587.<br />
Li Yongqi, Xia Shaonan, Li Pengcheng, et al. Effects of foliar spring urea on nitrogen absorption, distribution, physiological and biochemical characteristic of cotton plant at the flowering and boll-forming stages[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(3): 580-587.<br />
[8] 王晓茹, 董合林, 李永旗,等. 棉花不同品种钾吸收效率差异的根系形态学和生理学机理[J]. 棉花学报, 2016, 28(2): 152-159.<br />
Wang Xiaoru, Dong Helin, Li Yongqi, et al. Mechanisms underlying the effects of morphological and physiological characteristics of cotton varieties on differential potassium uptake efficiencies[J]. Cotton Science, 2016, 28(2): 152-159.<br />
[9] 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2015, 21(1): 81-91.<br />
Li Pengcheng, Dong Helin, Liu Aizhong, et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81-91.<br />
[10] Borowski E, Micha ek S. The effect of nitrogen form and air temperature during foliar fertilization on gas exchange, the yield and nutritive value of spinach (<em>Spinacia oleracea</em> L.)[J]. Folia Horticulturae, 2008, 20(2): 17-27.<br />
[11] 苏秀荣, 王秀峰, 杨凤娟,等. 硝酸根胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响[J]. 应用生态学报, 2007, 18(7): 1441-1446.<br />
Su Xiurong, Wang Xiufeng, Yang Fengjuan, et al. Effect of NO3- stress on photosynthetic rate, photochemical efficiency of PSⅡ and light energy allocation in cucumber seedling leaves[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1441-1446.<br />
[12] Franke W. Mechanism of foliar penetration of solutions[J]. Annual Review of Plant Physiology, 2003, 18(18): 281-300.<br />
[13] Leece D R. Composition and ultrastructure of leaf cuticles from fruit trees, relative to differential foliar absorption[J]. Australia Journal of Plant Physiology, 1976, 3(6): 833-847.<br />
[14] Eichert T, Goldbach H E. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces - further evidence for a stomatal pathway[J]. Physiologia Plantarum, 2008, 132(4): 491-502.<br />
[15] Roberts E A, Southwick M D, Palmiter D H. A microchemical examination of McIntosh apple leaves showing relationship of cellwall constituents to penetration of spray solutions[J]. Plant Physiology, 1948, 23(4): 557-559.<br />
[16] Bondada B R, Oosterhuis D M, Norman R J. Cotton leaf age, epicuticular wax, and nitrogen-15 absorption[J]. Crop Science, 1997, 37(3): 807-811.<br />
[17] Oosterhuis D M, Gomez S K, Meek C R. Effect of CoRoN<sup>TM</sup> slow-release foliar nitrogen fertilization on cotton growth and yield[R]. Special Report - Arkansas Agricultural Experiment Station, 2000: 106-108.<br />
[18] 沈其荣, 徐国华. 小麦和玉米叶面标记尿素态15N的吸收和运输[J]. 土壤学报, 2001, 38(1): 67-74.<br />
Shen Qirong, Xu Guohua. Foliar absorption and translocation of labelled urea-15N in corn and wheat[J]. Acta Pedologica Sinica. 2001, 38(1): 67-74.<br />
[19] Fernández V, Brown P H. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients[J]. Frontiers in Plant Science, 2013, 4: 289. <br />
[20] Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63(1): 153-<br />
18 2.<br />
[21] Li W, Jia L, Wang L. Chemical signals and their regulations on the plant growth and water use efficiency of cotton seedlings under partial root-zone drying and different nitrogen applications[J]. Saudi Journal of Biological Sciences, 2017, 24(3): 477-<br />
48 7.<br />
[22] Kant S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency[J]. Seminars in Cell & Developmental Biology, 2018, 74: 89-96.<br />
[23] 刘爱忠, 郑苍松, 李鹏程, 等. 追施不同形态氮肥对不同钾效率基因型棉花生长及产量品质的影响[J]. 棉花学报, 2017, 29(4): 356-364.<br />
Liu Aizhong, Zheng Cangsong, Li Pengcheng, et al. Effects of different nitrogen applied on the growth, yield, and fiber quality of cotton genotypes with different potassium-use efficiency in florescence[J]. Cotton Science, 2017, 29(4): 356-364.<br />
[24] 李建峰, 胡艳飞, 李新强, 等. 施用不同类型氮肥对棉花生长发育及产量的影响[J]. 中国棉花, 2017, 44(4): 24-26.<br />
Li Jianfeng, Hu Yanfei, Li Xinqiang, et al. Effect of different kinds of nitrogen fertilizers on the growth and yield of cotton[J]. China Cotton, 2017, 44(4): 24-26.
[1] 邵德意, 罗海华, 陈功, 刘云涛, 高欣, 汤飞宇. 花铃期土壤干旱对棉花叶片抗氧化及光合作用的影响[J]. 棉花学报, 2018, 30(2): 155-163.
[2] 宋兴虎, Tufail Ahmed Wagan, Biangkham Souliyanonh, Saif Ali, 黄颖, 袁源, 杨国正. 氮肥用量及其后效对棉花产量和生物质累积动态的影响[J]. 棉花学报, 2018, 30(2): 145-154.
[3] 李春艳 , 石洪亮, 文如意, 严青青 , 张巨松. 海岛棉和陆地棉花铃期光合特性及氮素累积特性的差异[J]. 棉花学报, 2018, 30(2): 164-171.
[4] 袁娜, 王彤, 刘廷利, 杨郁文, 郭月, 刘静, 张保龙, 杜建厂. 棉花FAR1/FHY3基因家族的全基因组分析[J]. 棉花学报, 2018, 30(1): 1-11.
[5] 李远, 王桂霞, 胡大鹏, Abidallah Eltayib, 张丽雅, 张祥, 陈源, 陈德华. 昼夜变温下高温对Bt棉铃壳杀虫蛋白及氮代谢生理的影响[J]. 棉花学报, 2018, 30(1): 38-44.
[6] 周娜, 汪露瑶, 张天真, 胡艳. 陆地棉MIKCC基因家族的全基因组分析[J]. 棉花学报, 2017, 29(6): 495-503.
[7] 孔凡金, 邓永胜, 申贵芳, 王景会, 韩宗福, 王宗文, 段冰, 张令山, 李汝忠. 转基因抗虫棉品种间杂交F1、F2竞争优势分析[J]. 棉花学报, 2017, 29(6): 504-512.
[8] 张祥, 胡大鹏, 李亚兵, 田巧凤, 王国平, 卢俊, 花明明, 陈源, 陈德华. 长江流域大麦后直播棉集中成铃与高产协同表达群体株型特征[J]. 棉花学报, 2017, 29(6): 513-524.
[9] 刘慧, 季灵艳, 赵天伦, 陈进红, 祝水金. 陆地棉色素腺体与不同棉酚旋光体含量之间的相关性研究[J]. 棉花学报, 2017, 29(5): 437-446.
[10] 张慧, 田新权, 高巍, 蔡应繁, 龙璐. 陆地棉PPO基因全基因组鉴定及对黄萎病菌的响应分析[J]. 棉花学报, 2017, 29(5): 428-436.
[11] 刘爱忠, 郑苍松, 李鹏程, 孙淼, 刘敬然, 赵新华, 董合林, 石书兵. 追施不同形态氮肥对不同钾效率基因型棉花生长及产量品质的影响[J]. 棉花学报, 2017, 29(4): 356-364.
[12] 祖米来提·吐尔干, 林涛, 王亮, 王静, 李健伟, 汤秋香. 地膜残留对连作棉田土壤氮素、根系形态及产量形成的影响[J]. 棉花学报, 2017, 29(4): 374-384.
[13] 桑晓慧,赵云雷,王红梅,陈伟,龚海燕,赵佩,崔艳利. 陆地棉抗旱性与SSR分子标记的关联分析[J]. 棉花学报, 2017, 29(3): 241-252.
[14] 陈鹏云,张景霞,陈煜,刘国栋,张传云,王芙蓉,刘志,张军. 陆地棉KFB基因家族全基因组鉴定与表达分析[J]. 棉花学报, 2017, 29(3): 222-232.
[15] 赵树琪,庞朝友,魏恒玲,王寒涛,李黎贝,宿俊吉,范术丽,喻树迅. 陆地棉早熟性状多世代联合遗传分析[J]. 棉花学报, 2017, 29(2): 119-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed